1932

Abstract

During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020420-042015
2022-02-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-020420-042015.html?itemId=/content/journals/10.1146/annurev-animal-020420-042015&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Betancur RR, Wiley EO, Arratia G, Acero A, Bailly N et al. 2017. Phylogenetic classification of bony fishes. BMC Evol. Biol. 17:162
    [Google Scholar]
  2. 2. 
    Zhang C, Forlano PM, Cone RD. 2012. AgRP and POMC neurons are hypophysiotropic and coordinately regulate multiple endocrine axes in a larval teleost. Cell Metab 15:2256–64
    [Google Scholar]
  3. 3. 
    Trudeau VL. 1997. Neuroendocrine regulation of gonadotrophin II release and gonadal growth in the goldfish, Carassius auratus. Rev. Reprod. 2:155–68
    [Google Scholar]
  4. 4. 
    Pinto P, Velez Z, Sousa C, Santos S, Andrade A et al. 2017. Responsiveness of pituitary to galanin throughout the reproductive cycle of male European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 250:152–61
    [Google Scholar]
  5. 5. 
    Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. 2020. The gonadotropin-releasing hormones: lessons from fish. Gen. Comp. Endocrinol. 291:113422
    [Google Scholar]
  6. 6. 
    Yang W, Zhang N, Wu Y, Zhang L, Zhang L, Zhang W. 2021. Oxytocin-like signal regulates Lh cells directly but not Fsh cells in the ricefield eel Monopterus albus. Biol. Reprod. 104:2399–409
    [Google Scholar]
  7. 7. 
    Somoza GM, Mechaly AS, Trudeau VL. 2020. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen. Comp. Endocrinol. 298:113568
    [Google Scholar]
  8. 8. 
    Jiang D-N, Li J-T, Tao Y-X, Chen H-P, Deng S-P et al. 2017. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. . J. Comp. Physiol. B 187:4603–12
    [Google Scholar]
  9. 9. 
    Biran J, Palevitch O, Ben-Dor S, Levavi-Sivan B. 2012. Neurokinin Bs and neurokinin B receptors in zebrafish—potential role in controlling fish reproduction. PNAS 109:2610269–74
    [Google Scholar]
  10. 10. 
    Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O 2010. Neuroendocrinology of reproduction in teleost fish. Gen. Comp. Endocrinol. 165:3438–55
    [Google Scholar]
  11. 11. 
    Chang JP, Johnson JD, Sawisky GR, Grey CL, Mitchell G et al. 2009. Signal transduction in multifactorial neuroendocrine control of gonadotropin secretion and synthesis in teleosts—studies on the goldfish model. Gen. Comp. Endocrinol. 161:142–52
    [Google Scholar]
  12. 12. 
    Rajeswari JJ, Unniappan S. 2020. Phoenixin-20 stimulates mRNAs encoding hypothalamo-pituitary-gonadal hormones, is pro-vitellogenic, and promotes oocyte maturation in zebrafish. Sci. Rep. 10:6264
    [Google Scholar]
  13. 13. 
    Mitchell K, Zhang WS, Lu C, Tao B, Chen L et al. 2020. Targeted mutation of secretogranin-2 disrupts sexual behavior and reproduction in zebrafish. PNAS 117:2312772–83
    [Google Scholar]
  14. 14. 
    Acharjee A, Chaube R, Joy KP 2018. Reproductive stage- and sex-dependent effects of neurohypophyseal nonapeptides on gonadotropin subunit mRNA expression in the catfish Heteropneustes fossilis: an in vitro study. Gen. Comp. Endocrinol. 260:80–89
    [Google Scholar]
  15. 15. 
    Ganesh CB. 2021. The stress-reproductive axis in fish: the involvement of functional neuroanatomical systems in the brain. J. Chem. Neuroanat. 112:101904
    [Google Scholar]
  16. 16. 
    Grey CL, Chang JP. 2013. Nitric oxide signaling in ghrelin-induced LH release from goldfish pituitary cells. Gen. Comp. Endocrinol. 183:7–13
    [Google Scholar]
  17. 17. 
    Gonzalez R, Shepperd E, Thiruppagazh V, Lohan S, Grey GL et al. 2012. Nesfatin-1 regulates the hypothalamo-pituitary-ovarian axis of fish. Biol. Reprod. 87:484
    [Google Scholar]
  18. 18. 
    Li S, Xiao L, Liu Q, Zheng B, Chen H et al. 2015. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper. J. Mol. Endocrinol. 55:295–106
    [Google Scholar]
  19. 19. 
    Cohen Y, Hausken K, Bonfil Y, Gutnick M, Levavi-Sivan B. 2020. Spexin and a novel cichlid-specific spexin paralog both inhibit FSH and LH through a specific galanin receptor (Galr2b) in tilapia. Front. Endocrinol. 11:71
    [Google Scholar]
  20. 20. 
    Dufour S, Sebert M-E, Weltzien F-A, Rousseau K, Pasqualini C. 2010. Neuroendocrine control by dopamine of teleost reproduction. J. Fish Biol. 76:1129–60
    [Google Scholar]
  21. 21. 
    Prasad P, Ogawa S, Parhar IS 2015. Role of serotonin in fish reproduction. Front. Neurosci. 9:195
    [Google Scholar]
  22. 22. 
    Trudeau VL, Spanswick D, Fraser EJ, Lariviére K, Crump D et al. 2000. The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem. Cell Biol. 78:3241–59
    [Google Scholar]
  23. 23. 
    Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. 2020. Origin and evolution of the neuroendocrine control of reproduction in vertebrates, with special focus on genome and gene duplications. Physiol. Rev. 100:2869–943
    [Google Scholar]
  24. 24. 
    Ravi V, Venkatesh B 2018. The divergent genomes of teleosts. Annu. Rev. Anim. Biosci. 6:47–68
    [Google Scholar]
  25. 25. 
    Tello JA, Wu S, Rivier JE, Sherwood NM. 2008. Four functional GnRH receptors in zebrafish: analysis of structure, signaling, synteny and phylogeny. Integr. Comp. Biol. 48:5570–87
    [Google Scholar]
  26. 26. 
    Chang JP, Pemberton JG. 2018. Comparative aspects of GnRH-stimulated signal transduction in the vertebrate pituitary—contributions from teleost model systems. Mol. Cell. Endocrinol. 463:142–67
    [Google Scholar]
  27. 27. 
    Wang Y, Guo B. 2021. The divergence of alternative splicing between ohnologs in teleost fishes. BMC Ecol. Evol. 21:98
    [Google Scholar]
  28. 28. 
    Siddique K, Ager-Wick E, Fontaine R, Weltzien F-A, Henkel CV 2020. Characterization of hormone-producing cell types in the teleost pituitary gland using single-cell RNA-seq. Sci. Data 8:279
    [Google Scholar]
  29. 29. 
    Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E et al. 2020. Gonadotrope plasticity at cellular, population and structural levels: a comparison between fishes and mammals. Gen. Comp. Endocrinol. 287:113344
    [Google Scholar]
  30. 30. 
    Trudeau VL, Somoza GM. 2020. Multimodal hypothalamo-hypophysial communication in the vertebrates. Gen. Comp. Endocrinol. 293:113475
    [Google Scholar]
  31. 31. 
    Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ 2010. Perspectives on fish gonadotropins and their receptors. Gen. Comp. Endocrinol. 165:3412–37
    [Google Scholar]
  32. 32. 
    Xie Y, Chu L, Liu Y, Sham KWY, Li J, Cheng CHK 2017. The highly overlapping actions of Lh signaling and Fsh signaling on zebrafish spermatogenesis. J. Endocrinol. 234:3233–46
    [Google Scholar]
  33. 33. 
    Li J, Ge W 2020. Zebrafish as a model for studying ovarian development: recent advances from targeted gene knockout studies. Mol. Cell. Endocrinol. 507:110778
    [Google Scholar]
  34. 34. 
    García-López A, Bogerd J, Granneman JCM, van Dijk W, Trant JM et al. 2009. Leydig cells express follicle-stimulating hormone receptors in African catfish. Endocrinology 150:1357–65
    [Google Scholar]
  35. 35. 
    Sambroni E, Lareyre J-J, Le Gac F 2013. Fsh controls gene expression in fish both independently of and through steroid mediation. PLOS ONE 8:10e76684
    [Google Scholar]
  36. 36. 
    Shang G, Peng X, Ji C, Zhai G, Ruan Y et al. 2019. Steroidogenic acute regulatory protein and luteinizing hormone are required for normal ovarian steroidogenesis and oocyte maturation in zebrafish. Biol. Reprod. 101:4760–70
    [Google Scholar]
  37. 37. 
    Chu L, Li J, Liu Y, Cheng CHK. 2015. Gonadotropin signaling in zebrafish ovary and testis development: insights from gene knockout study. Mol. Endocrinol. 29:121743–58
    [Google Scholar]
  38. 38. 
    Chu L, Li J, Liu Y, Hu W, Chen CHK. 2014. Targeted gene disruption in zebrafish reveals noncanonical functions of LH signaling in reproduction. Mol. Endocrinol. 28:111785–95
    [Google Scholar]
  39. 39. 
    Zhang Z, Zhu B, Ge W. 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol. Endocrinol. 29:176–98
    [Google Scholar]
  40. 40. 
    Zhang ZW, Lau S-W, Zhang L, Ge W 2015. Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 156:103747–62
    [Google Scholar]
  41. 41. 
    Whitlock KE, Postlethwait J, Ewer J 2019. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable?. Front. Neuroendocrinol. 53:100738
    [Google Scholar]
  42. 42. 
    Ogawa S, Parhar I. 2020. Morphological evidence for functional crosstalk between multiple GnRH systems in the male tilapia. Oreochromis niloticus. Front. Endocrinol. 11:586
    [Google Scholar]
  43. 43. 
    Abraham E, Palevitch O, Ijiri S, Du SJ, Gothilf Y, Zohar Y. 2008. Early development of forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of GnRH as an autocrine migration factor. J. Neuroendocrinol. 20:3394–405
    [Google Scholar]
  44. 44. 
    Hollander-Cohen L, Golan M, Levavi-Sivan B. 2021. Differential regulation of gonadotropins as revealed by transcriptomes of distinct LH and FSH cells of fish pituitary. Int. J. Mol. Sci. 22:126478
    [Google Scholar]
  45. 45. 
    Abraham E, Palevitch O, Gothilf Y, Zohar Y. 2010. Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction. Endocrinology 151:1332–40
    [Google Scholar]
  46. 46. 
    Spicer OS, Wong T-T, Zmora N, Zohar Y 2016. Targeted mutagenesis of the hypophysiotropic Gnrh3 in zebrafish (Danio rerio) reveals no effects on reproductive performance. PLOS ONE 11:6e0158141
    [Google Scholar]
  47. 47. 
    Marvel M, Spicer OS, Wong T-T, Zmora N, Zohar Y 2018. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol. Reprod. 99:3565–77
    [Google Scholar]
  48. 48. 
    Feng K, Cui X, Song Y, Tao B, Chen J et al. 2020. Gnrh3 regulates PGC proliferation and sex differentiation in developing zebrafish. Endocrinology 161:1bqz024
    [Google Scholar]
  49. 49. 
    Takahashi A, Kanda S, Abe T, Oka Y 2016. Evolution of the hypothalamic-pituitary-gonadal axis regulation in vertebrates revealed by knockout medaka. Endocrinology 157:103994–4002
    [Google Scholar]
  50. 50. 
    Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y et al. 2014. A neural mechanism underlying mating preferences for familiar individuals in medaka fish. Science 343:616691–94
    [Google Scholar]
  51. 51. 
    Trudeau VL. 2018. Facing the challenges of neuropeptide gene knockouts: Why do they not inhibit reproduction in adult teleost fish?. Front. Neurosci. 12:302
    [Google Scholar]
  52. 52. 
    Di Yorio MP, Muñoz-Cueto JA, Paullada-Salmerón JA, Somoza GM et al. 2019. The gonadotropin-inhibitory hormone: what we know and what we still have to learn from fish. Front. Endocrinol. 10:78
    [Google Scholar]
  53. 53. 
    Espigares F, Zanuy S, Gómez A 2015. Kiss2 as a regulator of Lh and Fsh secretion via paracrine/autocrine signaling in the teleost fish European sea bass (Dicentrarchus labrax). Biol. Reprod. 93:5114
    [Google Scholar]
  54. 54. 
    Zmora N, Stubblefield JD, Wong T-T, Levavi-Sivan B, Millar RP, Zohar Y. 2015. Kisspeptin antagonists reveal kisspeptin 1 and kisspeptin 2 differential regulation of reproduction in the teleost, Morone saxatilis. Biol. Reprod. 93:376
    [Google Scholar]
  55. 55. 
    Valipour A, Heidari B, Asghari SM, Balalaie S, Rabouti H, Omidian N. 2021. The effect of different exogenous kisspeptins on sex hormones and reproductive indices of the goldfish (Carassius auratus) broodstock. J. Fish Biol. 98:41137–43
    [Google Scholar]
  56. 56. 
    Zmora N, Stubblefield J, Zulperi Z, Biran J, Levavi-Sivan B et al. 2012. Differential and gonad stage-dependent roles of kisspeptin1 and kisspeptin2 in reproduction in the modern teleosts, Morone species. Biol. Reprod. 86:6177
    [Google Scholar]
  57. 57. 
    Ogawa S, Sivalingam M, Anthonysamy R, Parhar IS 2020. Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res. 379:2349–72
    [Google Scholar]
  58. 58. 
    Servili A, Le Page Y, Leprince J, Caraty A, Escobar S et al. 2011. Organization of two independent kisspeptin systems derived from evolutionary-ancient kiss genes in the brain of zebrafish. Endocrinology 152:41527–40
    [Google Scholar]
  59. 59. 
    Escobar S, Felip A, Gueguen M-M, Zanuy S, Carrillo M et al. 2013. Expression of kisspeptins in the brain and pituitary of the European sea bass (Dicentrarchus labrax). J. Comp. Neurol. 521:4933–48
    [Google Scholar]
  60. 60. 
    Kanda S, Akazome Y, Mitani Y, Okubo K, Oka Y. 2013. Neuroanatomical evidence that kisspeptin directly regulates isotocin and vasotocin neurons. PLOS ONE 8:4e62776
    [Google Scholar]
  61. 61. 
    Nakajo M, Kanda S, Karigo T, Takahashi A, Akazome Y et al. 2018. Evolutionally conserved function of kisspeptin neuronal system is nonreproductive regulation as revealed by nonmammalian study. Endocrinology 159:1163–83
    [Google Scholar]
  62. 62. 
    Tang H, Liu Y, Luo D, Ogawa S, Yin Y et al. 2015. The kiss/kissr systems are dispensable for zebrafish reproduction: evidence from gene knockout studies. Endocrinology 156:2589–99
    [Google Scholar]
  63. 63. 
    Liu Y, Tang H, Xie R, Li S, Liu X et al. 2017. Genetic evidence for multifactorial control of the reproductive axis in zebrafish. Endocrinology 158:3604–11
    [Google Scholar]
  64. 64. 
    Song Y, Duan X, Chen J, Huang W, Zhu Z, Hu W. 2015. The distribution of kisspeptin (Kiss)1- and Kiss2-positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain. J. Neuroendocrinol. 27:3198–211
    [Google Scholar]
  65. 65. 
    Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y et al. 2000. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 275:2661–67
    [Google Scholar]
  66. 66. 
    Maugars G, Pasquier J, Atkinson C, Lafont A-G, Campo A et al. 2020. Gonadotropin-inhibitory hormone in teleosts: new insights from a basal representative, the eel. Gen. Comp. Endocrinol. 287:113350
    [Google Scholar]
  67. 67. 
    Spicer OS, Zmora N, Wong T-T, Golan M, Levavi-Sivan B et al. 2017. The gonadotropin-inhibitory hormone (Lpxrfa) system's regulation of reproduction in the brain-pituitary axis of the zebrafish (Danio rerio). Biol. Reprod. 96:51031–42
    [Google Scholar]
  68. 68. 
    Moussavi M, Wlasichuk M, Chang JP, Habibi HR 2012. Seasonal effect of GnIH on gonadotrope functions in the pituitary of goldfish. Mol. Cell. Endocrinol. 350:153–60
    [Google Scholar]
  69. 69. 
    Moussavi M, Wlasichuk M, Chang JP, Habibi HR. 2013. Seasonal effect of gonadotrophin inhibitory hormone on gonadotrophin-releasing hormone-induced gonadotroph functions in the goldfish pituitary. J. Neuroendocrinol. 25:5506–16
    [Google Scholar]
  70. 70. 
    Mohan H, Unniappan S. 2013. Phylogenetic aspects of nucleobindin-2/nesfatin-1. Curr. Pharm. Des. 19:396929–34
    [Google Scholar]
  71. 71. 
    Rajeswari JJ, Unniappan S. 2020. Nesfatin-1 suppresses fish reproductive axis and gonadal steroidogenesis. Reproduction 160:3445–54
    [Google Scholar]
  72. 72. 
    Rajeswari JJ, Hatef A, Unniappan S. 2020. Nesfatin-1-like peptide suppresses hypothalamo-pituitary-gonadal mRNAs, gonadal steroidogenesis, and oocyte maturation in fish. Biol. Reprod. 103:4802–16
    [Google Scholar]
  73. 73. 
    Nagae M, Uenoyama Y, Okamoto S, Tsuchida H, Ikegami K et al. 2021. Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator. PNAS 118:5e2009156118
    [Google Scholar]
  74. 74. 
    Hu G, Lin C, He M, Wong AOL. 2014. Neurokinin B and reproductive functions: “KNDy neuron” model in mammals and the emerging story in fish. Gen. Comp. Endocrinol. 208:94–108
    [Google Scholar]
  75. 75. 
    Ogawa S, Ramadasan PN, Goschorska M, Anantharajah A, Ng KW, Parhar IS. 2012. Cloning and expression of tachykinins and their association with kisspeptins in the brains of zebrafish. J. Comp. Neurol. 520:132991–3012
    [Google Scholar]
  76. 76. 
    Biran J, Golan M, Mizrahi N, Ogawa S, Parhar IS, Levavi-Sivan B. 2014. Direct regulation of gonadotropin release by neurokinin B in tilapia (Oreochromis niloticus). Endocrinology 155:124831–42
    [Google Scholar]
  77. 77. 
    Mizrahi N, Gilon C, Atre I, Ogawa S, Parhar IS, Levavi-Sivan B. 2019. Deciphering direct and indirect effects of neurokinin B and GnRH in the brain-pituitary axis of tilapia. Front. Endocrinol. 10:469
    [Google Scholar]
  78. 78. 
    Li Y, Zhao T, Liu Y, Lin HR, Li S, Zhang Y. 2021. Knockout of tac3 genes in zebrafish shows no impairment of reproduction. Gen. Comp. Endocrinol. 2021.113839
    [Google Scholar]
  79. 79. 
    Blázquez M, Bosma PT, Chang JP, Docherty K, Trudeau VL. 1998. γ-Aminobutyric acid up-regulates the expression of a novel secretogranin-II messenger ribonucleic acid in the goldfish pituitary. Endocrinology 139:124870–80
    [Google Scholar]
  80. 80. 
    Troger J, Theurl M, Kirchmair R, Pasqua T, Tota B et al. 2017. Granin-derived peptides. Prog. Neurobiol. 154:37–61
    [Google Scholar]
  81. 81. 
    Mitchell K, Mikwar M, Da Fonte D, Lu C, Tao B et al. 2020. Secretoneurin is a secretogranin-2 derived hormonal peptide in vertebrate neuroendocrine systems. Gen. Comp. Endocrinol. 299:113588
    [Google Scholar]
  82. 82. 
    Zhao E, Basak A, Trudeau VL. 2006. Secretoneurin stimulates goldfish pituitary luteinizing hormone production. Neuropeptides 40:4275–82
    [Google Scholar]
  83. 83. 
    Zhao E, Basak A, Wong AOL, Ko W, Chen A et al. 2009. The secretogranin II-derived peptide secretoneurin stimulates luteinizing hormone secretion from gonadotrophs. Endocrinology 150:52273–82
    [Google Scholar]
  84. 84. 
    Zhao E, Grey CL, Zhang D, Mennigen JA, Basak A et al. 2010. Secretoneurin is a potential paracrine factor from lactotrophs stimulating gonadotropin release in the goldfish pituitary. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:5R1290–97
    [Google Scholar]
  85. 85. 
    Zhao E, McNeilly JR, McNeilly AS, Rischer-Colbrie R, Basak A et al. 2011. Secretoneurin stimulates the production and release of luteinizing hormone in mouse LβT2 gonadotropin cells. Am. J. Physiol. Endocrinol. Metab. 301:2E288–97
    [Google Scholar]
  86. 86. 
    Canosa LF, Lopez GC, Scharrig E, Lesaux-Farmer K, Somoza GM et al. 2011. Forebrain mapping of secretoneurin-like immunoreactivity and its colocalization with isotocin in the preoptic nucleus and pituitary gland of goldfish. J. Comp. Neurol. 519:183748–65
    [Google Scholar]
  87. 87. 
    Shu H, Yang L, Zhang Y, Liu X, Lin H et al. 2018. Identification and functional characterization of two Secretogranin II genes in orange-spotted grouper (Epinephelus coioides). Gen. Comp. Endocrinol. 261:115–26
    [Google Scholar]
  88. 88. 
    Trudeau VL, Martyniuk CJ, Zhao E, Hu H, Volkoff H et al. 2012. Is secretoneurin a new hormone?. Gen. Comp. Endocrinol. 175:110–18
    [Google Scholar]
  89. 89. 
    Tao B, Hu H, Mitchell K, Chen J, Jia H et al. 2018. Secretogranin-II plays a critical role in zebrafish neurovascular modeling. J. Mol. Cell Biol. 10:5388–401
    [Google Scholar]
  90. 90. 
    Chang JP, Peter RE. 1983. Effects of dopamine on gonadotropin release in female goldfish, Carassius auratus. Neuroendocrinology 36:5351–57
    [Google Scholar]
  91. 91. 
    Popesku JT, Martyniuk CJ, Mennigen J, Xiong H, Zhang D et al. 2008. The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Mol. Cell. Endocrinol. 293:1–243–56
    [Google Scholar]
  92. 92. 
    Fontaine R, Affaticati P, Yamamoto K, Jolly C, Bureau C et al. 2013. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes. Endocrinology 154:2807–18
    [Google Scholar]
  93. 93. 
    Copeland PA, Thomas P. 1989. Control of gonadotropin release in the Atlantic croaker (Micropogonias undulatus): evidence for lack of dopaminergic inhibition. Gen. Comp. Endocrinol. 74:3474–83
    [Google Scholar]
  94. 94. 
    Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. 2018. Regulation of GnRH pulsatility in ewes. Reproduction 156:3R83–R99
    [Google Scholar]
  95. 95. 
    Berga SL, Loucks AB, Rossmanith WG, Kettel LM, Laughlin GA, Yen SSC. 1991. Acceleration of luteinizing hormone pulse frequency in functional hypothalamic amenorrhea by dopaminergic blockade. J. Clin. Endocrinol. Metab. 72:1151–56
    [Google Scholar]
  96. 96. 
    Popesku JT, Martyniuk CJ, Trudeau VL. 2012. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish. Front. Endocrinol. 3:130
    [Google Scholar]
  97. 97. 
    Popesku JT, Mennigen JA, Chang JP, Trudeau VL 2011. Dopamine D1 receptor blockage potentiates AMPA-stimulated luteinising hormone release in the goldfish. J. Neuroendocrinol. 23:4302–9
    [Google Scholar]
  98. 98. 
    Bosma PT, Blázquez M, Collins MA, Bishop JD, Drouin G et al. 1999. Multiplicity of glutamic acid decarboxylases (GAD) in vertebrates: molecular phylogeny and evidence for a new GAD paralog. Mol. Biol. Evol. 16:3397–404
    [Google Scholar]
  99. 99. 
    Grone BP, Maruska KP. 2016. Three distinct glutamate decarboxylase genes in vertebrates. Sci. Rep. 6:30507
    [Google Scholar]
  100. 100. 
    Song Y, Tao B, Chen J, Jia S, Zhu Z et al. 2017. GABAergic neurons and their modulatory effects on GnRH3 in zebrafish. Endocrinology 158:4874–86
    [Google Scholar]
  101. 101. 
    Trudeau VL, Sloley BD, Peter RE. 1993. GABA stimulation of gonadotropin-II release in goldfish: involvement of GABAA receptors, dopamine, and sex steroids. Am. J. Physiol. Regul. Integr. Comp. Physiol. 265:2 Pt. 2R348–55
    [Google Scholar]
  102. 102. 
    Martyniuk CJ, Chang JP, Trudeau VL 2007. The effects of GABA agonists on glutamic acid decarboxyl-ase, GABA-transaminase, activin, salmon gonadotrophin-releasing hormone and tyrosine hydroxylase mRNA in the goldfish (Carassius auratus) neuroendocrine brain. J. Neuroendocrinol. 19:5390–96
    [Google Scholar]
  103. 103. 
    Lado WE, Spanswick DC, Lewis JE, Trudeau VL 2014. Electrophysiological characterization of male goldfish (Carassius auratus) ventral preoptic area neurons receiving olfactory inputs. Front. Neurosci. 8:185
    [Google Scholar]
  104. 104. 
    Lado WE, Zhang D, Mennigen JA, Zamora JM, Popesku JT, Trudeau VL. 2013. Rapid modulation of gene expression profiles in the telencephalon of male goldfish following exposure to waterborne sex pheromones. Gen. Comp. Endocrinol. 192:204–13
    [Google Scholar]
  105. 105. 
    Dulka JG, Sloley BD, Stacey NE, Peter RE 1992. A reduction in pituitary dopamine turnover is associated with sex pheromone-induced gonadotropin secretion in male goldfish. Gen. Comp. Endocrinol. 86:3496–505
    [Google Scholar]
  106. 106. 
    Fontaine R, Royan MR, von Krogh K, Weltzien F-A, Baker DM 2020. Direct and indirect effects of sex steroids on gonadotrope cell plasticity in the teleost fish pituitary. Front. Endocrinol. 11:605068
    [Google Scholar]
  107. 107. 
    Kah O, Anglade I, Leprêtre E, Dubourg P, de Monbrison D. 1993. The reproductive brain in fish. Fish Physiol. Biochem. 11:1–685–98
    [Google Scholar]
  108. 108. 
    Yam KM, Yoshiura Y, Kobayashi M, Ge W 1999. Recombinant goldfish activin B stimulates gonadotropin-Iβ but inhibits gonadotropin-IIβ expression in the goldfish, Carassius auratus. Gen. Comp. Endocrinol. 116:181–89
    [Google Scholar]
  109. 109. 
    Aroua S, Maugars G, Jeng S-R, Chang C-F, Weltzien F-A et al. 2012. Pituitary gonadotropins FSH and LH are oppositely regulated by the activin/follistatin system in a basal teleost, the eel. Gen. Comp. Endocrinol. 175:182–91
    [Google Scholar]
  110. 110. 
    Trudeau VL, Peter RE, Sloley BD. 1991. Testosterone and estradiol potentiate the serum gonadotropin response to gonadotropin-releasing hormone in goldfish. Biol. Reprod. 44:6951–60
    [Google Scholar]
  111. 111. 
    Lin SW, Ge W. 2009. Differential regulation of gonadotropins (FSH and LH) and growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the zebrafish—an in vitro approach. Gen. Comp. Endocrinol. 160:2183–93
    [Google Scholar]
  112. 112. 
    Vetillard A, Atteke C, Saligaut C, Jego P, Bailhache T 2003. Differential regulation of tyrosine hydroxylase and estradiol receptor expression in the rainbow trout brain. Mol. Cell. Endocrinol. 199:1–237–47
    [Google Scholar]
  113. 113. 
    Linard B, Anglade I, Corio M, Navas JM, Pakdel F et al. 1996. Estrogen receptors are expressed in a subset of tyrosine hydroxylase-positive neurons of the anterior preoptic region in the rainbow trout. Neuroendocrinology 63:2156–65
    [Google Scholar]
  114. 114. 
    Huggard-Nelson DL, Nathwani PS, Kermouni A, Habibi HR 2002. Molecular characterization of LH-β and FSH-β subunits and their regulation by estrogen in the goldfish pituitary. Mol. Cell. Endocrinol. 188:1–2171–93
    [Google Scholar]
  115. 115. 
    Li G, Tang H, Chen Y, Yin Y, Ogawa S et al. 2018. Estrogen directly stimulates LHb expression at the pituitary level during puberty in female zebrafish. Mol. Cell. Endocrinol. 461:1–11
    [Google Scholar]
  116. 116. 
    Fontaine R, Ager-Wick E, Hodne K, Weltzien F-A. 2019. Plasticity of Lh cells caused by cell proliferation and recruitment of existing cells. J. Endocrinol. 240:2361–77
    [Google Scholar]
  117. 117. 
    Zhai G, Shu T, Xia Y, Lu Y, Shang G et al. 2018. Characterization of sexual trait development in cyp17a1-deficient zebrafish. Endocrinology 159:103549–62
    [Google Scholar]
  118. 118. 
    Wang C, Liu D, Chen W, Ge W, Hong W et al. 2016. Progestin increases the expression of gonadotropins in pituitaries of male zebrafish. J. Endocrinol. 230:1143–56
    [Google Scholar]
  119. 119. 
    Tang H, Liu Y, Li J, Yin Y, Li G et al. 2016. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish. Sci. Rep. 6:28545
    [Google Scholar]
  120. 120. 
    Tang H, Chen Y, Liu Y, Yin Y, Li G et al. 2017. New insights into the role of estrogens in male fertility based on findings in aromatase-deficient zebrafish. Endocrinology 158:93042–54
    [Google Scholar]
  121. 121. 
    Navas JM, Anglade I, Bailhache T, Pakdel F, Breton B et al. 1995. Do gonadotrophin-releasing hormone neurons express estrogen receptors in the rainbow trout? A double immunohistochemical study. J. Comp. Neurol. 363:3461–74
    [Google Scholar]
  122. 122. 
    Zempo B, Karigo T, Kanda S, Akazome Y, Oka Y 2018. Morphological analysis of the axonal projections of EGFP-labeled Esr1-expressing neurons in transgenic female medaka. Endocrinology 159:21228–41
    [Google Scholar]
  123. 123. 
    Ogawa S, Parhar IS. 2020. Single-cell gene profiling reveals social status-dependent modulation of nuclear hormone receptors in GnRH neurons in a male cichlid fish. Int. J. Mol. Sci. 21:82724
    [Google Scholar]
  124. 124. 
    Wang Q, Sham KWY, Ogawa S, Li S, Parhar IS et al. 2013. Regulation of the two kiss promoters in goldfish (Carassius auratus) by estrogen via different ERα pathways. Mol. Cell. Endocrinol. 375:1–2130–39
    [Google Scholar]
  125. 125. 
    Golshan M, Habibi HR, Alavi SM. 2016. Transcripts of genes encoding reproductive neuroendocrine hormones and androgen receptor in the brain and testis of goldfish exposed to vinclozolin, flutamide, testosterone, and their combinations. Fish Physiol. Biochem. 42:41157–65
    [Google Scholar]
  126. 126. 
    Guo Y, Wang Q, Li G, He M, Tang H et al. 2017. Molecular mechanism of feedback regulation of 17β-estradiol on two kiss genes in the protogynous orange-spotted grouper (Epinephelus coioides). Mol. Reprod. Dev. 84:6495–507
    [Google Scholar]
  127. 127. 
    Qi X, Zhou W, Wang Q, Guo L, Lu D, Lin H 2017. Gonadotropin-inhibitory hormone, the piscine ortholog of LPXRFa, participates in 17β-estradiol feedback in female goldfish reproduction. Endocrinology 158:4860–73
    [Google Scholar]
  128. 128. 
    Mangiamele LA, Gomez JR, Curtis NJ, Thompson RR. 2017. GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J. Comp. Neurol. 525:2252–70
    [Google Scholar]
  129. 129. 
    Da Fonte DF, Xing L, Mikwar M, Trudeau VL 2018. Secretoneurin-A inhibits aromatase B (cyp19a1b) expression in female goldfish (Carassius auratus) radial glial cells. Gen. Comp. Endocrinol. 257:106–12
    [Google Scholar]
  130. 130. 
    Diotel N, Charlier TD, d'Hellencourt CL, Couret D, Trudeau VL et al. 2018. Steroid transport, local synthesis, and signaling within the brain: roles in neurogenesis, neuroprotection, and sexual behaviors. Front. Neurosci. 12:84
    [Google Scholar]
  131. 131. 
    Muñoz-Cueto JA, Paullada-Salmerón JA, Aliaga-Guerrero M, Cowan ME, Parhar IS, Ubaka T 2017. A journey through the gonadotropin-inhibitory hormone system of fish. Front. Endocrinol. 8:285
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020420-042015
Loading
/content/journals/10.1146/annurev-animal-020420-042015
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error