1932

Abstract

The twentieth century's arsenal of chemical anthelmintics brought manifold improvement in human health and, more abundantly, in animal health. The benefits were not only in health per se but also in agricultural economics, livestock management, and the overall production of food and fiber to support expanding human populations. Nevertheless, there remains (due in large part to drug resistance and paucity of available vaccines) a great need for new means of controlling disease caused by parasitic worms. Prudence should persuade us to look to our past for lessons that might help in our quest for new drugs. The lessons suggested here derive from the history of ivermectin and other anthelmintics. They deal with the means of finding substances with useful antiparasitic activity and with alternative approaches to drug discovery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-021815-111209
2016-02-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/animal/4/1/annurev-animal-021815-111209.html?itemId=/content/journals/10.1146/annurev-animal-021815-111209&mimeType=html&fmt=ahah

Literature Cited

  1. Campbell WC. 1.  1999. In memoriam: James Desmond Smyth, Honorary Member ASP. J. Parasitol 85:992–93 [Google Scholar]
  2. Campbell WC. 2.  2001. In memoriam: Ashton C. Cuckler. J. Parasitol 87:466–67 [Google Scholar]
  3. Campbell WC. 3.  1977. Control of parasites: the role of drugs. Proc. Helminthol. Soc. Wash. 44:17–28 [Google Scholar]
  4. Campbell WC. 4.  2012. History of ivermectin and abamectin: with notes on the history of later macrocyclic lactone antiparasitic agents. Curr. Pharmacol. Biotechnol. 13:853–65 [Google Scholar]
  5. Campbell WC, Fisher MH, Stapley EO, Albers-Schonberg G, Jacob TA. 5.  1983. Ivermectin: a potent new antiparasitic agent. Science 221:823–28 [Google Scholar]
  6. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA. 6.  et al. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15:3361–67 [Google Scholar]
  7. Stapley EO, Woodruff HB. 7.  1982. Avermectins, antiparasitic lactones produced by Streptomyces avermitilis isolated from a soil in Japan. Trends in Antibiotic Research H Umezawa, AL Demain, T Hata, CR Hutchinson 154–70 Tokyo: Japan Antibiot. Res. Assoc. [Google Scholar]
  8. Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D. 8.  et al. 1979. Avermectins, a new family of potent anthelmintic agents: efficacy of the B1a component. Antimicrob. Agents Chemother. 15:372–78 [Google Scholar]
  9. Vercruysse J, Rew RS. 9.  2002. Macrocyclic Lactones in Antiparasitic Therapy Wallingford, UK: CABI432
  10. Gonzalez-Canga A. 10.  2012. Special issue: macrocyclic lactones in antiparasitic therapy. Curr. Pharm. Biotechnol. 13:6851–1119 [Google Scholar]
  11. Campbell WC. 11.  1989. Avermectin and Abamectin New York: Springer-Verlag363
  12. Campbell WC. 12.  1992. The genesis of the antiparasitic drug ivermectin. Inventive Minds: Creativity in Technology RJ Weber, DN Perkins 194–214 New York: Oxford Univ. Press [Google Scholar]
  13. Campbell WC. 13.  2015. Anthelmintic Chemotherapy: Centennial Perspective Hoboken, NJ: Wiley Co In press
  14. Hennessy DR, Alvinerie MR. 14.  2002. Pharmacokinetics of the macrocyclic lactones: conventional wisdom and new paradigms. Macrocyclic Lactones in Antiparasitic Therapy J Vercruysse, RS Rew 97–123 Wallingford, UK: CABI [Google Scholar]
  15. Shoop WL, Egerton JR, Eary CH, Haines HW, Michael BF. 15.  et al. 1996. Eprinomectin: a novel avermectin for use as a topical endectocide for cattle. Int. J. Parasitol. 26:1237–42 [Google Scholar]
  16. Soll MD, Kunkle BN, Royer GC, Yazwinski TA, Baggott DG. 16.  et al. 2013. An eprinomectin extended-release formulation providing nematode control in cattle for up to 150 days. Vet. Parasitol. 193:313–20 [Google Scholar]
  17. Miller TA. 17.  1978. Industrial development and field use of the canine hookworm vaccine. Adv. Parasitol. 16:333–42 [Google Scholar]
  18. Lovato R, Guevara A, Guderian R, Proano R, Unnasch T. 18.  et al. 2014. Interruption of infection transmission in the onchocerciasis focus of Ecuador leading to the cessation of ivermectin distribution. PLOS Negl. Trop. Dis. 8:5e2821 [Google Scholar]
  19. Rodríguez-Pérez MA, Fernández-Santos N, Orosco-Algarra ME, Rodríguez-Atanacio JA, Domínguez-Vázquez A. 19.  et al. 2015. Elimination of onchocerciasis from Mexico. PLOS Negl. Trop. Dis. 9:7e0003922 [Google Scholar]
  20. Hopkins A. 20.  2012. Beyond providing drugs: The Mectizan donation stimulates new strategies in service delivery and in strengthening health systems. Curr. Pharm. Biotechnol. 13:1110–19 [Google Scholar]
  21. Caffrey CR. 21.  2012. Preface. See Reference 31 xi–xii
  22. Geary TG. 22.  2002. Macrocyclic lactones as antiparasitic agents in the future. Macrocyclic Lactones in Antiparasitic Therapy J Vercruysse, RS Rew 413–423 Wallingford, UK: CABI [Google Scholar]
  23. Campbell WC, Conder GA, Marchiondo AA. 23.  2009. Future of the animal health industry at a time of food crisis. Vet. Parasitol. 163:188–95 [Google Scholar]
  24. Brown HD, Matzuk AR, Ilves IR, Peterson LH, Harris SA. 24.  et al. 1961. Antiparasitic drugs. IV. 2-(4′-thiazolyl)-benzimidazole, a new anthelmintic. J. Am. Chem. Soc. 83:1764–65 [Google Scholar]
  25. Ostlind DA, Mickle WG, Smith S, Ewanchiw DV, Cifelli S. 25.  2013. Efficacy of ivermectin versus dual infections of Haemonchus contortus and Heligmosomoides polygyrus in the mouse. J. Parasitol. 99:1168–69 [Google Scholar]
  26. Gabriel EM, Campbell WC. 26.  2003. Effect of ambient salinity on immobilization of Caenorhabditis elegans by nematocidal agents. Parasitol. Res. 90:390–92 [Google Scholar]
  27. Campbell WC, Bartels E, Cuckler AC. 27.  1978. A method for detecting chemotherapeutic activity against Schistosoma mansoni in mice. J. Parasitol. 64:69–77 [Google Scholar]
  28. Martin RJ, Robertson AP, Buxton SK, Beech R, Charvet CL, Neveu C. 28.  2012. Levamisole receptors: a second awakening. Trends Parasitol. 28:289–96 [Google Scholar]
  29. de Carneri I, Vita G. 29.  1973. Drugs used in cestode diseases. Chemotherapy of Helminthiasis R Cavier, F Hawking 145–213 Oxford: Pergamon [Google Scholar]
  30. Campbell WC. 30.  1977. Can alcoholic beverages provide protection against trichinosis?. Proc. Helminthol. Soc. Wash. 44:120–25 [Google Scholar]
  31. Caffrey CR. 31.  2012. Parasitic Helminths: Targets, Screens, Drugs and Vaccines Weinheim, Ger.: Wiley-Blackwell540
  32. Geary TG. 32.  2012. Mechanism-based screening strategies for anthelmintic screening. See Reference 31 123–34
  33. Maule AG, Day TA, Chappell LH. 33.  2005. Parasite neuromusculature and its utility as a drug target. Parasitology 131:Suppl. 1192 [Google Scholar]
  34. Robertson AP, Buxton SK, Puttachary S, Williamson SM, Wolstenholme AJ. 34.  et al. 2012. Antinematodal drugs—modes of action and resistance: and worms will not come to thee (Shakespeare: Cymbeline: IV, ii). See Reference 31 233–49
  35. Gilleard JS, Woods DJ, Julian AT, Dow JAT. 35.  2005. Model-organism genomics in veterinary parasite drug discovery. Trends Parasitol. 21:302–5 [Google Scholar]
  36. Marcellino C, Gut J, Lim KC, Singh R, McKerrow J, Sakanari J. 36.  2012. WormAssay: a novel computer application for whole-plate motion-based screening of macroscopic parasites. PLOS Negl. Trop. Dis. 6:1e1494 doi:10.1371/journal.pntd.0001494 [Google Scholar]
  37. Frankhauser R, Cozzie LR, Nare B, Powell K, Sluder AE, Hammerland LG. 37.  2012. Use of rodent models in the discovery of novel anthelmintics. See Reference 31 181–99
  38. Esch EW, Bahinski A, Huh D. 38.  2015. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14:248–60 doi:10.1038/nrd4539 [Google Scholar]
  39. Campbell WC. 39.  1983. Progress and prospects in the chemotherapy of nematode infections of man and other animals. J. Nematol. 15:608–15 [Google Scholar]
  40. Keiser J. 40.  2010. In vitro and in vivo trematode models for chemotherapeutic studies. Parasitology 137:589–603 [Google Scholar]
  41. Mullard A. 41.  2014. New drugs cost US$2.6 billion to develop. Nat. Rev. Drug Discov. 13:877 doi:10.1038/nrd4507 [Google Scholar]
/content/journals/10.1146/annurev-animal-021815-111209
Loading
/content/journals/10.1146/annurev-animal-021815-111209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error