1932

Abstract

Vitamins and minerals (micronutrients) play an important role in regulating and shaping an immune response. Deficiencies generally result in inadequate or dysregulated cellular activity and cytokine expression, thereby affecting the immune response. Decreased levels of natural killer, granulocyte, and phagocytic cell activity and T and B cell proliferation and trafficking are associated with inadequate levels of micronutrients, as well as increased susceptibility to various adverse health conditions, including inflammatory disorders, infection, and altered vaccine efficacy. In addition, most studies of micronutrient modulation of immune responses have been done in rodents and humans, thus limiting application to the health and well-being of livestock and companion animals. This exploratory review elucidates the role of vitamins and minerals on immune function and inflammatory responses in animals (pigs, dogs, cats, horses, goats, sheep, and cattle), with reference to rodents and humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022516-022914
2018-02-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/animal/6/1/annurev-animal-022516-022914.html?itemId=/content/journals/10.1146/annurev-animal-022516-022914&mimeType=html&fmt=ahah

Literature Cited

  1. Chattha KS, Roth JA, Saif LJ. 1.  2015. Strategies for design and application of enteric viral vaccines. Annu. Rev. Anim. Biosci. 3:375–95 [Google Scholar]
  2. Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD. 2.  et al. 2015. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J. Nutr. 145:1039S–108S [Google Scholar]
  3. Dawson HD. 3.  2011. A comparative assessment of the pig, mouse, and human genomes: structural and functional analysis of genes involved in immunity and inflammation. The Minipig in Biomedical Research323–42 Boca Raton, FL: CRC [Google Scholar]
  4. Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H. 4.  et al. 2013. Structural and functional annotation of the porcine immunome. BMC Genom 14:332 [Google Scholar]
  5. Dawson HD, Smith AD, Chen C, Urban JF Jr.. 5.  2016. An in-depth comparison of the porcine, murine and human inflammasomes: lessons from the porcine genome and transcriptome. Vet. Microbiol. 202:2–15 [Google Scholar]
  6. Holderness J, Hedges JF, Ramstead A, Jutila MA. 6.  2013. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu. Rev. Anim. Biosci. 1:99–124 [Google Scholar]
  7. Klose CS, Artis D. 7.  2016. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17:765–74 [Google Scholar]
  8. Nelson CD, Reinhardt TA, Lippolis JD, Sacco RE, Nonnecke BJ. 8.  2012. Vitamin D signaling in the bovine immune system: a model for understanding human vitamin D requirements. Nutrients 4:181–96 [Google Scholar]
  9. Andreini C, Banci L, Bertini I, Rosato A. 9.  2006. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 5:196–201 [Google Scholar]
  10. Wingender E, Schoeps T, Haubrock M, Donitz J. 10.  2015. TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res 43:D97–102 [Google Scholar]
  11. Ganz T, Nemeth E. 11.  2015. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15:500–10 [Google Scholar]
  12. Kubota H, Chiba H, Takakuwa Y, Osanai M, Tobioka H. 12.  et al. 2001. Retinoid X receptor α and retinoic acid receptor γ mediate expression of genes encoding tight-junction proteins and barrier function in F9 cells during visceral endodermal differentiation. Exp. Cell Res. 263:163–72 [Google Scholar]
  13. McDowell EM, Keenan KP, Huang M. 13.  1984. Effects of vitamin A-deprivation on hamster tracheal epithelium. A quantitative morphologic study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 45:197–219 [Google Scholar]
  14. McDowell EM, DeSanti AM, Newkirk C, Strum JM. 14.  1990. Effects of vitamin A-deficiency and inflammation on the conducting airway epithelium of Syrian golden hamsters. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 59:231–42 [Google Scholar]
  15. De Luca L, Schumacher M, Nelson DP. 15.  1971. Localization of the retinol-dependent fucose-glycopeptide in the goblet cell of the rat small intestine. J. Biol. Chem. 246:5762–65 [Google Scholar]
  16. Rojanapo W, Lamb AJ, Olson JA. 16.  1980. The prevalence, metabolism and migration of goblet cells in rat intestine following the induction of rapid, synchronous vitamin A deficiency. J. Nutr. 110:178–88 [Google Scholar]
  17. Reifen R, Nyska A, Koperstein L, Zusman I. 17.  1998. Intestinal and hepatic cell kinetics and mucous changes in vitamin-A-deficient rats. Int. J. Mol. Med. 1:579–82 [Google Scholar]
  18. Ahmed F, Jones DB, Jackson AA. 18.  1990. The interaction of vitamin A deficiency and rotavirus infection in the mouse. Br. J. Nutr. 63:363–73 [Google Scholar]
  19. Amit-Romach E, Uni Z, Cheled S, Berkovich Z, Reifen R. 19.  2009. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J. Nutr. Biochem. 20:70–77 [Google Scholar]
  20. Cha HR, Chang SY, Chang JH, Kim JO, Yang JY. 20.  et al. 2010. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J. Immunol. 184:6799–806 [Google Scholar]
  21. Czarnewski P, Das S, Parigi SM, Villablanca EJ. 21.  2017. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients 9:68 [Google Scholar]
  22. Reifen R, Mor A, Nyska A. 22.  2004. Vitamin A deficiency aggravates rotavirus infection in CD-1 mice through extensive involvement of the gut. Int. J. Vitam. Nutr. Res. 74:355–61 [Google Scholar]
  23. Tei M, Spurr-Michaud SJ, Tisdale AS, Gipson IK. 23.  2000. Vitamin A deficiency alters the expression of mucin genes by the rat ocular surface epithelium. Investig. Ophthalmol. Vis. Sci. 41:82–88 [Google Scholar]
  24. Bhattacharyya SN, Ashbaugh P, Kaufman B, Manna B. 24.  1994. Retinoic acid modulation of mucin mRNA in rat tracheal explants: response to actinomycin D, cycloheximide, signal transduction effectors and antisense oligodeoxynucleotide. Inflammation 18:565–74 [Google Scholar]
  25. Koo JS, Jetten AM, Belloni P, Yoon JH, Kim YD, Nettesheim P. 25.  1999. Role of retinoid receptors in the regulation of mucin gene expression by retinoic acid in human tracheobronchial epithelial cells. Biochem. J. 338:Pt. 2351–57 [Google Scholar]
  26. Koo JS, Yoon JH, Gray T, Norford D, Jetten AM, Nettesheim P. 26.  1999. Restoration of the mucous phenotype by retinoic acid in retinoid-deficient human bronchial cell cultures: changes in mucin gene expression. Am. J. Respir. Cell Mol. Biol. 20:43–52 [Google Scholar]
  27. Tan S, Cheng PW. 27.  2007. Mucin biosynthesis: identification of the cis-regulatory elements of human C2GnT-M gene. Am. J. Respir. Cell Mol. Biol. 36:737–45 [Google Scholar]
  28. Pai T, Chen Q, Zhang Y, Zolfaghari R, Ross AC. 28.  2007. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells. Biochemistry 46:15198–207 [Google Scholar]
  29. Kong J, Zhang Z, Musch MW, Ning G, Sun J. 29.  et al. 2008. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G208–16 [Google Scholar]
  30. Ooi JH, Li Y, Rogers CJ, Cantorna MT. 30.  2013. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J. Nutr. 143:1679–86 [Google Scholar]
  31. Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M. 31.  et al. 2008. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell 19:1912–21 [Google Scholar]
  32. Smith AD, Cheung L, Botero S. 32.  2011. Long-term selenium deficiency increases the pathogenicity of a Citrobacter rodentium infection in mice. Biol. Trace Elem. Res. 144:965–82 [Google Scholar]
  33. Dimitrov V, White JH. 33.  2016. Species-specific regulation of innate immunity by vitamin D signaling. J. Steroid Biochem. Mol. Biol. 164:246–53 [Google Scholar]
  34. Su D, Nie Y, Zhu A, Chen Z, Wu P. 34.  et al. 2016. Vitamin D signaling through induction of Paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front. Physiol. 7:498 [Google Scholar]
  35. Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA. 35a.  et al. 2017. NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep. 19:4733–45 [Google Scholar]
  36. Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M. 35.  et al. 2016. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48:1396–406 [Google Scholar]
  37. Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T. 36.  et al. 2012. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 142:271–77 [Google Scholar]
  38. Pereira DI, Aslam MF, Frazer DM, Schmidt A, Walton GE. 37.  et al. 2015. Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III). MicrobiologyOpen 4:12–27 [Google Scholar]
  39. IJssennagger N, Derrien M, van Doorn GM, Rijnierse A, van den Bogert B. 38.  et al. 2012. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLOS ONE 7:e49868 [Google Scholar]
  40. Zackular JP, Moore JL, Jordan AT, Juttukonda LJ, Noto MJ. 39.  et al. 2016. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat. Med. 22:1330–34 [Google Scholar]
  41. MacFarlane AJ, Behan NA, Matias FM, Green J, Caldwell D, Brooks SP. 40.  2013. Dietary folate does not significantly affect the intestinal microbiome, inflammation or tumorigenesis in azoxymethane-dextran sodium sulphate-treated mice. Br. J. Nutr. 109:630–38 [Google Scholar]
  42. Bulet P, Stocklin R, Menin L. 41.  2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198:169–84 [Google Scholar]
  43. Dimitrov V, White JH. 42.  2017. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol. Cell. Endocrinol. 453:68–78 [Google Scholar]
  44. Grubor B, Meyerholz DK, Lazic T, DeMacedo MM, Derscheid RJ. 43.  et al. 2006. Regulation of surfactant protein and defensin mRNA expression in cultured ovine type II pneumocytes by all-trans retinoic acid and VEGF. Int. J. Exp. Pathol. 87:393–403 [Google Scholar]
  45. Campbell Y, Fantacone ML, Gombart AF. 44.  2012. Regulation of antimicrobial peptide gene expression by nutrients and by-products of microbial metabolism. Eur. J. Nutr. 51:899–907 [Google Scholar]
  46. Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A. 45.  et al. 2012. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep. 39:10957–70 [Google Scholar]
  47. Coyle C, Wheelhouse N, Jacques M, Longbottom D, Svoboda P. 46.  et al. 2016. Ovine trophoblasts express cathelicidin host defence peptide in response to infection. J. Reprod. Immunol. 117:10–16 [Google Scholar]
  48. Wu H, Zhang G, Minton JE, Ross CR, Blecha F. 47.  2000. Regulation of cathelicidin gene expression: induction by lipopolysaccharide, interleukin-6, retinoic acid, and Salmonella enterica serovar typhimurium infection. Infect. Immun. 68:5552–58 [Google Scholar]
  49. Gombart AF, Borregaard N, Koeffler HP. 48.  2005. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–77 [Google Scholar]
  50. Wheelwright M, Kim EW, Inkeles MS, De Leon A, Pellegrini M. 49.  et al. 2014. All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2. J. Immunol. 192:2280–90 [Google Scholar]
  51. Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A. 50.  et al. 2013. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210:1117–24 [Google Scholar]
  52. Di Y, Cheng W, Chang J, Yin Q, Lu M. 51.  et al. 2014. Artificial synthesis of swine hepcidin gene and expression in Pichia pastoris. . Prep. Biochem. Biotechnol. 44:795–804 [Google Scholar]
  53. Lou DQ, Nicolas G, Lesbordes JC, Viatte L, Grimber G. 52.  et al. 2004. Functional differences between hepcidin 1 and 2 in transgenic mice. Blood 103:2816–21 [Google Scholar]
  54. Kim SC, Lee HJ, Joo JH, Yoon JH, Choi JY. 53.  2012. Vitamin A deficiency induces fluid hyposecretion from the airway submucosal glands of mice. J. Nutr. 142:739–43 [Google Scholar]
  55. Wu S, Zhang YG, Lu R, Xia Y, Zhou D. 54.  et al. 2015. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082–94 [Google Scholar]
  56. Nagy L, Szanto A, Szatmari I, Szeles L. 55.  2012. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol. Rev. 92:739–89 [Google Scholar]
  57. Austenaa LM, Carlsen H, Hollung K, Blomhoff HK, Blomhoff R. 56.  2009. Retinoic acid dampens LPS-induced NF-κB activity: results from human monoblasts and in vivo imaging of NF-κB reporter mice. J. Nutr. Biochem. 20:726–34 [Google Scholar]
  58. Chen Q, Ma Y, Ross AC. 57.  2002. Opposing cytokine-specific effects of all trans-retinoic acid on the activation and expression of signal transducer and activator of transcription (STAT)-1 in THP-1 cells. Immunology 107:199–208 [Google Scholar]
  59. Na SY, Kang BY, Chung SW, Han SJ, Ma X. 58.  et al. 1999. Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFκB. J. Biol. Chem. 274:7674–80 [Google Scholar]
  60. Wu S, Liao AP, Xia Y, Li YC, Li JD. 59.  et al. 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-κB activity in intestine. Am. J. Pathol. 177:686–97 [Google Scholar]
  61. Dong X, Lutz W, Schroeder TM, Bachman LA, Westendorf JJ. 60.  et al. 2005. Regulation of relB in dendritic cells by means of modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. PNAS 102:16007–12 [Google Scholar]
  62. Hansdottir S, Monick MM, Lovan N, Powers L, Gerke A, Hunninghake GW. 61.  2010. Vitamin D decreases respiratory syncytial virus induction of NF-κB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J. Immunol. 184:965–74 [Google Scholar]
  63. Chen Y, Kong J, Sun T, Li G, Szeto FL. 62.  et al. 2011. 1,25-Dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation. Arch. Biochem. Biophys. 507:241–47 [Google Scholar]
  64. Dawson H, Solano-Aguilar G, Beal M, Beshah E, Vangimalla V. 63.  et al. 2009. Localized Th1-, Th2-, T regulatory cell-, and inflammation-associated hepatic and pulmonary immune responses in Ascaris suum-infected swine are increased by retinoic acid. Infect. Immun. 77:2576–87 [Google Scholar]
  65. Riek AE, Oh J, Darwech I, Moynihan CE, Bruchas RR, Bernal-Mizrachi C. 64.  2014. 25(OH) vitamin D suppresses macrophage adhesion and migration by downregulation of ER stress and scavenger receptor A1 in type 2 diabetes. J. Steroid Biochem. Mol. Biol. 144:Pt. A172–79 [Google Scholar]
  66. Li P, Xu X, Cao E, Yu B, Li W. 65.  et al. 2014. Vitamin D deficiency causes defective resistance to Aspergillus fumigatus in mice via aggravated and sustained inflammation. PLOS ONE 9:e99805 [Google Scholar]
  67. Sordillo LM, Hicks CR, Wilson R, Maddox J. 66.  1993. Effects of selenium status on bovine mononuclear cell function. Zentralbl Veterinarmed. A 40:615–23 [Google Scholar]
  68. Nelson SM, Shay AE, James JL, Carlson BA, Urban JF Jr., Prabhu KS. 67.  2016. Selenoprotein expression in macrophages is critical for optimal clearance of parasitic helminth Nippostrongylus brasiliensis. . J. Biol. Chem. 291:2787–98 [Google Scholar]
  69. Gandhi UH, Kaushal N, Ravindra KC, Hegde S, Nelson SM. 68.  et al. 2011. Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR) γ. J. Biol. Chem. 286:27471–82 [Google Scholar]
  70. Vunta H, Davis F, Palempalli UD, Bhat D, Arner RJ. 69.  et al. 2007. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12,14-prostaglandin J2 in macrophages. J. Biol. Chem. 282:17964–73 [Google Scholar]
  71. Mattmiller SA, Carlson BA, Gandy JC, Sordillo LM. 70.  2014. Reduced macrophage selenoprotein expression alters oxidized lipid metabolite biosynthesis from arachidonic and linoleic acid. J. Nutr. Biochem. 25:647–54 [Google Scholar]
  72. Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K. 71.  et al. 2011. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 186:2127–37 [Google Scholar]
  73. Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK. 72.  et al. 2015. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J. Clin. Investig. 125:2646–60 [Google Scholar]
  74. Narayan V, Ravindra KC, Liao C, Kaushal N, Carlson BA, Prabhu KS. 73.  2015. Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J. Nutr. Biochem. 26:138–45 [Google Scholar]
  75. Kaushal N, Kudva AK, Patterson AD, Chiaro C, Kennett MJ. 74.  et al. 2014. Crucial role of macrophage selenoproteins in experimental colitis. J. Immunol. 193:3683–92 [Google Scholar]
  76. Moriguchi S, Muraga M. 75.  2000. Vitamin E and immunity. Vitam. Horm. 59:305–36 [Google Scholar]
  77. Ng LT, Ko HJ. 76.  2012. Comparative effects of tocotrienol-rich fraction, α-tocopherol and α-tocopheryl acetate on inflammatory mediators and nuclear factor kappa B expression in mouse peritoneal macrophages. Food Chem 134:920–25 [Google Scholar]
  78. Wu D, Hayek MG, Meydani S. 77.  2001. Vitamin E and macrophage cyclooxygenase regulation in the aged. J. Nutr. 131:382S–88S [Google Scholar]
  79. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. 78.  2014. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–116 [Google Scholar]
  80. Boyne R, Arthur JR. 79.  1986. The response of selenium-deficient mice to Candida albicans infection. J. Nutr. 116:816–22 [Google Scholar]
  81. Serfass RE, Ganther HE. 80.  1975. Defective microbicidal activity in glutathione peroxidase-deficient neutrophils of selenium-deficient rats. Nature 255:640–41 [Google Scholar]
  82. Petersson KH, Burr DB, Gomez-Chiarri M, Petersson-Wolfe CS. 81.  2010. The influence of vitamin E on immune function and response to vaccination in older horses. J. Anim. Sci. 88:2950–58 [Google Scholar]
  83. Mala S, Kovaru F, Misurova L, Pavlata L, Dvorak R, Ciz M. 82.  2009. Influence of selenium on innate immune response in kids. Folia Microbiol 54:545–48 [Google Scholar]
  84. Cobanova K, Faix S, Placha I, Mihalikova K, Varadyova Z. 83.  et al. 2017. Effects of different dietary selenium sources on antioxidant status and blood phagocytic activity in sheep. Biol. Trace Elem. Res. 175:339–46 [Google Scholar]
  85. Leal ML, de Camargo EV, Ross DH, Molento MB, Lopes ST, da Rocha JB. 84.  2010. Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. . Vet. Res. Commun. 34:549–55 [Google Scholar]
  86. de Camargo EV, Lopes ST, Costa MM, Paim F, Barbosa CS, Leal ML. 85.  2010. Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. J. Anim. Physiol. Anim. Nutr. 94:e1–6 [Google Scholar]
  87. Hall JA, Vorachek WR, Stewart WC, Gorman ME, Mosher WD. 86.  et al. 2013. Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLOS ONE 8:e82572 [Google Scholar]
  88. Hugejiletu H, Bobe G, Vorachek WR, Gorman ME, Mosher WD. 87.  et al. 2013. Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep. Biol. Trace Elem. Res. 154:28–44 [Google Scholar]
  89. Bou Ghanem EN, Clark S, Du X, Wu D, Camilli A. 88.  et al. 2015. The α-tocopherol form of vitamin E reverses age-associated susceptibility to Streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. J. Immunol. 194:1090–99 [Google Scholar]
  90. Kanno T, Utsumi T, Kobuchi H, Takehara Y, Akiyama J. 89.  et al. 1995. Inhibition of stimulus-specific neutrophil superoxide generation by α-tocopherol. Free Radic. Res. 22:431–40 [Google Scholar]
  91. Martínez-Pérez JM, Robles-Pérez D, Benavides J, Morán L, Andrés S. 90.  et al. 2014. Effect of dietary supplementation with flaxseed oil or vitamin E on sheep experimentally infected with Fasciola hepatica. . Res. Vet. Sci. 97:71–79 [Google Scholar]
  92. MacGlaflin CE, Zajac AM, Rego KA, Petersson KH. 91.  2011. Effect of vitamin E supplementation on naturally acquired parasitic infection in lambs. Vet. Parasitol. 175:300–5 [Google Scholar]
  93. Jacobson C, Bell K, Forshaw D, Besier B. 92.  2009. Association between nematode larvae and “low worm egg count diarrhoea” in sheep in Western Australia. Vet. Parasitol. 165:66–73 [Google Scholar]
  94. Hooper KJ, Bobe G, Vorachek WR, Bishop-Stewart JK, Mosher WD. 93.  et al. 2014. Effect of selenium yeast supplementation on naturally acquired parasitic infection in ewes. Biol. Trace Elem. Res. 161:308–17 [Google Scholar]
  95. Lu H, Xin Y, Tang Y, Shao G. 94.  2012. Zinc suppressed the airway inflammation in asthmatic rats: effects of zinc on generation of eotaxin, MCP-1, IL-8, IL-4, and IFN-γ. Biol. Trace Elem. Res. 150:314–21 [Google Scholar]
  96. Mackler B, Person R, Ochs H, Finch CA. 95.  1984. Iron deficiency in the rat: effects on neutrophil activation and metabolism. Pediatr. Res. 18:549–51 [Google Scholar]
  97. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP. 96.  et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49 [Google Scholar]
  98. Bowman TA, Goonewardene M, Pasatiempo AMG, Ross AC, Taylor CE. 97.  1990. Vitamin A deficiency decreases natural killer cell activity and interferon production in rats. J. Nutr. 120:1264–73 [Google Scholar]
  99. Meeker HC, Eskew ML, Scheuchenzuber W, Scholz RW, Zarkower A. 98.  1985. Antioxidant effects on cell-mediated immunity. J. Leukoc. Biol. 38:451–58 [Google Scholar]
  100. Moriguchi S, Kobayashi N, Kishino Y. 99.  1989. Effects of vitamin E deficiency on the functions of splenic lymphocytes and alveolar macrophages. J. Nutr. Sci. Vitaminol. 35:419–30 [Google Scholar]
  101. Moriguchi S, Kobayashi N, Kishino Y. 100.  1990. High dietary intakes of vitamin E and cellular immune functions in rats. J. Nutr. 120:1096–102 [Google Scholar]
  102. Petrie HT, Klassen LW, Klassen PS, O'Dell JR, Kay HD. 101.  1989. Selenium and the immune response: 2. Enhancement of murine cytotoxic T-lymphocyte and natural killer cell cytotoxicity in vivo. J. Leukoc. Biol. 45:215–20 [Google Scholar]
  103. Ozturk G, Erbas D, Imir T, Bor NM. 102.  1994. Decreased natural killer (NK) cell activity in zinc-deficient rats. Gen. Pharmacol. 25:1499–503 [Google Scholar]
  104. Lockwood JF, Sherman AR. 103.  1988. Spleen natural killer cells from iron-deficient rat pups manifest an altered ability to be stimulated by interferon. J. Nutr. 118:1558–63 [Google Scholar]
  105. Bonaccorsi-Riani E, Danger R, Lozano JJ, Martinez-Picola M, Kodela E. 104.  et al. 2015. Iron deficiency impairs intra-hepatic lymphocyte mediated immune response. PLOS ONE 10:e0136106 [Google Scholar]
  106. Spear AT, Sherman AR. 105.  1992. Iron deficiency alters DMBA-induced tumor burden and natural killer cell cytotoxicity in rats. J. Nutr. 122:46–55 [Google Scholar]
  107. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N. 106.  et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432–37 [Google Scholar]
  108. van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R. 107.  et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:123–27 [Google Scholar]
  109. Chen J, Waddell A, Lin YD, Cantorna MT. 108.  2015. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol 8:618–26 [Google Scholar]
  110. Geissmann F, Revy P, Brousse N, Lepelletier Y, Folli C. 109.  et al. 2003. Retinoids regulate survival and antigen presentation by immature dendritic cells. J. Exp. Med. 198:623–34 [Google Scholar]
  111. Saurer L, McCullough KC, Summerfield A. 110.  2007. In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179:3504–14 [Google Scholar]
  112. Cassani B, Villablanca EJ, Quintana FJ, Love PE, Lacy-Hulbert A. 111.  et al. 2011. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141:2109–18 [Google Scholar]
  113. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA. 112.  et al. 2011. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471:220–24 [Google Scholar]
  114. Vlasova AN, Chattha KS, Kandasamy S, Siegismund CS, Saif LJ. 113.  2013. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. J. Immunol. 190:4742–53 [Google Scholar]
  115. Chen X, Tu C, Qin T, Zhu L, Yin Y, Yang Q. 114.  2016. Retinoic acid facilitates inactivated transmissible gastroenteritis virus induction of CD8+ T-cell migration to the porcine gut. Sci. Rep. 6:24152 [Google Scholar]
  116. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. 115.  2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–38 [Google Scholar]
  117. Mora JR, Iwata M, Eksteen B, Song SY, Junt T. 116.  et al. 2006. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–60 [Google Scholar]
  118. Sigmundsdottir H, Butcher EC. 117.  2008. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9:981–87 [Google Scholar]
  119. Broadhurst MJ, Leung JM, Lim KC, Girgis NM, Gundra UM. 118.  et al. 2012. Upregulation of retinal dehydrogenase 2 in alternatively activated macrophages during retinoid-dependent type-2 immunity to helminth infection in mice. PLOS Pathog 8:e1002883 [Google Scholar]
  120. Spiegl N, Didichenko S, McCaffery P, Langen H, Dahinden CA. 119.  2008. Human basophils activated by mast cell-derived IL-3 express retinaldehyde dehydrogenase-II and produce the immunoregulatory mediator retinoic acid. Blood 112:3762–71 [Google Scholar]
  121. Kapetanovic R, Fairbairn L, Beraldi D, Sester DP, Archibald AL. 120.  et al. 2012. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J. Immunol. 188:3382–94 [Google Scholar]
  122. Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D. 121.  et al. 2012. Availability of 25-hydroxyvitamin D3 to APCs controls the balance between regulatory and inflammatory T cell responses. J. Immunol. 189:5155–64 [Google Scholar]
  123. Ooi JH, McDaniel KL, Weaver V, Cantorna MT. 122.  2014. Murine CD8+ T cells but not macrophages express the vitamin D 1α-hydroxylase. J. Nutr. Biochem. 25:58–65 [Google Scholar]
  124. Sheridan PA, Beck MA. 123.  2009. The dendritic and T cell responses to herpes simplex virus-1 are modulated by dietary vitamin E. Free Radic. Biol. Med. 46:1581–88 [Google Scholar]
  125. Abdala-Valencia H, Berdnikovs S, Soveg FW, Cook-Mills JM. 124.  2014. α-Tocopherol supplementation of allergic female mice inhibits development of CD11c+CD11b+ dendritic cells in utero and allergic inflammation in neonates. Am. J. Physiol. Lung Cell. Mol. Physiol. 307:L482–96 [Google Scholar]
  126. Wu CH, Huang TC, Lin BF. 125.  2017. Folate deficiency affects dendritic cell function and subsequent T helper cell differentiation. J. Nutr. Biochem. 41:65–72 [Google Scholar]
  127. Rafferty T, Norval M, El-Ghorr A, Beckett G, Arthur J. 126.  et al. 2003. Dietary selenium levels determine epidermal Langerhans cell numbers in mice. Biol. Trace Elem. Res. 92:161–72 [Google Scholar]
  128. Ross AC. 127.  2012. Vitamin A and retinoic acid in T cell-related immunity. Am. J. Clin. Nutr. 96:1166S–72S [Google Scholar]
  129. Bhaumik S, Giffon T, Bolinger D, Kirkman R, Lewis DB. 128.  et al. 2013. Retinoic acid hypersensitivity promotes peripheral tolerance in recent thymic emigrants. J. Immunol. 190:2603–13 [Google Scholar]
  130. Dawson H, Collins G, Pyle R, Key M, Taub DD. 129.  2008. The retinoic acid receptor-α mediates human T-cell activation and Th2 cytokine production. BMC Immunol 9:1–16 [Google Scholar]
  131. Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G. 130.  et al. 2012. TGF-β and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13:587–95 [Google Scholar]
  132. Hall JA, Cannons JL, Grainger JR, Dos Santos LM, Hand TW. 131.  et al. 2011. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:435–47 [Google Scholar]
  133. Larange A, Cheroutre H. 132.  2016. Retinoic acid and retinoic acid receptors as pleiotropic modulators of the immune system. Annu. Rev. Immunol. 34:369–94 [Google Scholar]
  134. Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R. 133.  et al. 2011. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. Nat. Immunol. 12:1086–95 [Google Scholar]
  135. Chew BP, Park JS, Wong TS, Kim HW, Weng BB. 134.  et al. 2000. Dietary β-carotene stimulates cell-mediated and humoral immune response in dogs. J. Nutr. 130:1910–13 [Google Scholar]
  136. Massimino S, Kearns RJ, Loos KM, Burr J, Park JS. 135.  et al. 2003. Effects of age and dietary β-carotene on immunological variables in dogs. J. Vet. Intern. Med. 17:835–42 [Google Scholar]
  137. Cantorna MT, Snyder L, Lin YD, Yang L. 136.  2015. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7:3011–21 [Google Scholar]
  138. Yu S, Zhao J, Cantorna MT. 137.  2011. Invariant NKT cell defects in vitamin D receptor knockout mice prevents experimental lung inflammation. J. Immunol. 187:4907–12 [Google Scholar]
  139. Wittke A, Weaver V, Mahon BD, August A, Cantorna MT. 138.  2004. Vitamin D receptor-deficient mice fail to develop experimental allergic asthma. J. Immunol. 173:3432–36 [Google Scholar]
  140. Mahon BD, Wittke A, Weaver V, Cantorna MT. 139.  2003. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J. Cell. Biochem. 89:922–32 [Google Scholar]
  141. Staeva-Vieira TP, Freedman LP. 140.  2002. 1,25-Dihydroxyvitamin D3 inhibits IFN-γ and IL-4 levels during in vitro polarization of primary murine CD4+ T cells. J. Immunol. 168:1181–89 [Google Scholar]
  142. Ryz NR, Patterson SJ, Zhang Y, Ma C, Huang T. 141.  et al. 2012. Active vitamin D (1,25-dihydroxyvitamin D3) increases host susceptibility to Citrobacter rodentium by suppressing mucosal Th17 responses. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G1299–311 [Google Scholar]
  143. Dawson HD, Ross AC. 142.  1999. Chronic marginal vitamin A status affects the distribution and function of T cells and natural T cells in aging Lewis rats. J. Nutr. 129:1782–90 [Google Scholar]
  144. Chang HK, Hou WS. 143.  2015. Retinoic acid modulates interferon-γ production by hepatic natural killer T cells via phosphatase 2A and the extracellular signal-regulated kinase pathway. J. Interferon Cytokine Res. 35:200–12 [Google Scholar]
  145. Pighetti GM, Eskew ML, Reddy CC, Sordillo LM. 144.  1998. Selenium and vitamin E deficiency impair transferrin receptor internalization but not IL-2, IL-2 receptor, or transferrin receptor expression. J. Leukoc. Biol. 63:131–37 [Google Scholar]
  146. Wu D, Meydani SN. 145.  2008. Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J. Leukoc. Biol. 84:900–14 [Google Scholar]
  147. Marko MG, Ahmed T, Bunnell SC, Wu D, Chung H. 146.  et al. 2007. Age-associated decline in effective immune synapse formation of CD4+ T cells is reversed by vitamin E supplementation. J. Immunol. 178:1443–49 [Google Scholar]
  148. Fragou S, Balaskas C, Fegeros K, Politis I. 147.  2006. Effect of vitamin E supplementation on lymphocyte distribution in gut-associated lymphoid tissues obtained from weaned piglets. J. Vet. Med. A Physiol. Pathol. Clin. Med. 53:327–33 [Google Scholar]
  149. Bonnette ED, Kornegay ET, Lindemann MD, Hammerberg C. 148.  1990. Humoral and cell-mediated immune response and performance of weaned pigs fed four supplemental vitamin E levels and housed at two nursery temperatures. J. Anim. Sci. 68:1337–45 [Google Scholar]
  150. Otomaru K, Saito S, Endo K, Kohiruimaki M, Ohtsuka H. 149.  2015. Effect of supplemental vitamin E on the peripheral blood leukocyte population in Japanese Black calves. J. Vet. Med. Sci. 77:985–88 [Google Scholar]
  151. O'Brien T, Thomas DG, Morel PC, Rutherfurd-Markwick KJ. 150.  2015. Moderate dietary supplementation with vitamin E enhances lymphocyte functionality in the adult cat. Res. Vet. Sci. 99:63–69 [Google Scholar]
  152. Meadows DN, Bahous RH, Best AF, Rozen R. 151.  2015. High dietary folate in mice alters immune response and reduces survival after malarial infection. PLOS ONE 10:e0143738 [Google Scholar]
  153. Field CJ, Van Aerde A, Drager KL, Goruk S, Basu T. 152.  2006. Dietary folate improves age-related decreases in lymphocyte function. J. Nutr. Biochem. 17:37–44 [Google Scholar]
  154. Hoffmann FW, Hashimoto AC, Shafer LA, Dow S, Berry MJ, Hoffmann PR. 153.  2010. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J. Nutr. 140:1155–61 [Google Scholar]
  155. Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshev VN. 154.  et al. 2008. Selenoproteins mediate T cell immunity through an antioxidant mechanism. J. Biol. Chem. 283:20181–85 [Google Scholar]
  156. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. 155.  1992. Regulation of cellular immune responses by selenium. Biol. Trace Elem. Res. 33:23–35 [Google Scholar]
  157. Smith AD, Cheung L, Beshah E, Shea-Donohue T, Urban JF Jr.. 156.  2013. Selenium status alters the immune response and expulsion of adult Heligmosomoides bakeri worms in mice. Infect. Immun. 81:2546–53 [Google Scholar]
  158. Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. 157.  2015. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212:555–68 [Google Scholar]
  159. Omara FO, Blakley BR. 158.  1994. The effects of iron deficiency and iron overload on cell-mediated immunity in the mouse. Br. J. Nutr. 72:899–909 [Google Scholar]
  160. Kuvibidila SR, Kitchens D, Baliga BS. 159.  1999. In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. J. Cell. Biochem. 74:468–78 [Google Scholar]
  161. Brummer M, Hayes S, Adams AA, Horohov DW, Dawson KA, Lawrence LM. 160.  2013. The effect of selenium supplementation on vaccination response and immune function in adult horses. J. Anim. Sci. 91:3702–15 [Google Scholar]
  162. Ren F, Chen X, Hesketh J, Gan F, Huang K. 161.  2012. Selenium promotes T-cell response to TCR-stimulation and ConA, but not PHA in primary porcine splenocytes. PLOS ONE 7:e35375 [Google Scholar]
  163. Jie Z, Liang Y, Yi P, Tang H, Soong L. 162.  et al. 2017. Retinoic acid regulates immune responses by promoting IL-22 and modulating S100 proteins in viral hepatitis. J. Immunol. 198:3448–60 [Google Scholar]
  164. Raverdeau M, Breen CJ, Misiak A, Mills KH. 163.  2016. Retinoic acid suppresses IL-17 production and pathogenic activity of γδ T cells in CNS autoimmunity. Immunol. Cell Biol. 94:763–73 [Google Scholar]
  165. Chen L, Cencioni MT, Angelini DF, Borsellino G, Battistini L, Brosnan CF. 164.  2005. Transcriptional profiling of γδ T cells identifies a role for vitamin D in the immunoregulation of the Vγ9Vδ2 response to phosphate-containing ligands. J. Immunol. 174:6144–52 [Google Scholar]
  166. McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. 165.  2013. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology 139:227–44 [Google Scholar]
  167. Duriancik DM, Lackey DE, Hoag KA. 166.  2010. Vitamin A as a regulator of antigen presenting cells. J. Nutr. 140:1395–99 [Google Scholar]
  168. Pasatiempo AM, Kinoshita M, Taylor CE, Ross AC. 167.  1990. Antibody production in vitamin A-depleted rats is impaired after immunization with bacterial polysaccharide or protein antigens. FASEB J 4:2518–27 [Google Scholar]
  169. Kandasamy S, Chattha KS, Vlasova AN, Saif LJ. 168.  2014. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeq®) in a neonatal gnotobiotic pig model. Vaccine 32:816–24 [Google Scholar]
  170. Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC. 169.  et al. 2013. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am. J. Vet. Res. 74:1353–62 [Google Scholar]
  171. James J, Weaver V, Cantorna MT. 170.  2017. Control of circulating IgE by the vitamin D receptor in vivo involves B cell intrinsic and extrinsic mechanisms. J. Immunol. 198:1164–71 [Google Scholar]
  172. Heine G, Tabeling C, Hartmann B, González Calera CR, Kühl AA. 171.  et al. 2014. 25-Hydroxvitamin D3 promotes the long-term effect of specific immunotherapy in a murine allergy model. J. Immunol. 193:1017–23 [Google Scholar]
  173. Carvalho LSC, Camargos ERS, Almeida CT, Gouveía Peluzio MdoC, Alvarez-Leite JI. 172.  et al. 2006. Vitamin E deficiency enhances pathology in acute Trypanosoma cruzi-infected rats. Trans. R. Soc. Trop. Med. Hyg. 100:1025–31 [Google Scholar]
  174. Wang L, Xu X, Su G, Shi B, Shan A. 173.  2017. High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. J. Dairy Res. 84:8–13 [Google Scholar]
  175. Reddy PG, Morrill JL, Minocha HC, Stevenson JS. 174.  1987. Vitamin E is immunostimulatory in calves. J. Dairy Sci. 70:993–99 [Google Scholar]
  176. Bondo T, Jensen SK. 175.  2011. Administration of RRR-α-tocopherol to pregnant mares stimulates maternal IgG and IgM production in colostrum and enhances vitamin E and IgM status in foals. J. Anim. Physiol. Anim. Nutr. 95:214–22 [Google Scholar]
  177. Thorson JF, Karren BJ, Bauer ML, Cavinder CA, Coverdale JA, Hammer CJ. 176.  2010. Effect of selenium supplementation and plane of nutrition on mares and their foals: foaling data. J. Anim. Sci. 88:982–90 [Google Scholar]
  178. Shokrollahi B, Mansouri M, Amanlou H. 177.  2013. The effect of enriched milk with selenium and vitamin E on growth rate, hematology, some blood biochemical factors, and immunoglobulins of newborn goat kids. Biol. Trace Elem. Res. 153:184–90 [Google Scholar]
  179. Stewart WC, Bobe G, Vorachek WR, Stang BV, Pirelli GJ. 178.  et al. 2013. Organic and inorganic selenium: IV. Passive transfer of immunoglobulin from ewe to lamb. J. Anim. Sci. 91:1791–800 [Google Scholar]
  180. Hammer CJ, Thorson JF, Meyer AM, Redmer DA, Luther JS. 179.  et al. 2011. Effects of maternal selenium supply and plane of nutrition during gestation on passive transfer of immunity and health in neonatal lambs. J. Anim. Sci. 89:3690–98 [Google Scholar]
  181. King LE, Osati-Ashtiani F, Fraker PJ. 180.  1995. Depletion of cells of the B lineage in the bone marrow of zinc-deficient mice. Immunology 85:69–73 [Google Scholar]
  182. Gruber K, Rink L. 181.  2013. The role of zinc in immunity and inflammation. Diet, Immunity and Inflammation P Calder, P Yaqoob 123–56 Philadelphia, PA: Woodhead [Google Scholar]
  183. Restori KH, McDaniel KL, Wray AE, Cantorna MT, Ross AC. 182.  2014. Streptococcus pneumoniae-induced pneumonia and Citrobacter rodentium-induced gut infection differentially alter vitamin A concentrations in the lung and liver of mice. J. Nutr. 144:392–98 [Google Scholar]
  184. McDaniel KL, Restori KH, Dodds JW, Kennett MJ, Ross AC, Cantorna MT. 183.  2015. Vitamin A-deficient hosts become nonsymptomatic reservoirs of Escherichia coli-like enteric infections. Infect. Immun. 83:2984–91 [Google Scholar]
  185. Yang Y, Yuan Y, Tao Y, Wang W. 184.  2011. Effects of vitamin A deficiency on mucosal immunity and response to intestinal infection in rats. Nutrition 27:227–32 [Google Scholar]
  186. Kozakova H, Hanson LA, Stepankova R, Kahu H, Dahlgren UI, Wiedermann U. 185.  2003. Vitamin A deficiency leads to severe functional disturbance of the intestinal epithelium enzymes associated with diarrhoea and increased bacterial translocation in gnotobiotic rats. Microbes Infect 5:405–11 [Google Scholar]
  187. Cabrera G, Fernandez-Brando RJ, Abrey-Recalde MJ, Baschkier A, Pinto A. 186.  et al. 2014. Retinoid levels influence enterohemorrhagic Escherichia coli infection and Shiga toxin 2 susceptibility in mice. Infect. Immun. 82:3948–57 [Google Scholar]
  188. Osanai M, Nishikiori N, Murata M, Chiba H, Kojima T, Sawada N. 187.  2007. Cellular retinoic acid bioavailability determines epithelial integrity: role of retinoic acid receptor α agonists in colitis. Mol. Pharmacol. 71:250–58 [Google Scholar]
  189. Nauss KM, Phua CC, Ambrogi L, Newberne PM. 188.  1985. Immunological changes during progressive stages of vitamin A deficiency in the rat. J. Nutr. 115:909–18 [Google Scholar]
  190. Ahmed F, Jones DB, Jackson AA. 189.  1991. Effect of vitamin A deficiency on the immune response to epizootic diarrhoea of infant mice (EDIM) rotavirus infection in mice. Br. J. Nutr. 65:475–85 [Google Scholar]
  191. Watson RR, Yahya MD, Darban HR, Prabhala RH. 190.  1988. Enhanced survival by vitamin A supplementation during a retrovirus infection causing murine AIDS. Life Sci 43:xiii–xviii [Google Scholar]
  192. Gangopadhyay NN, Moldoveanu Z, Stephensen CB. 191.  1996. Vitamin A deficiency has different effects on immunoglobulin A production and transport during influenza A infection in BALB/c mice. J. Nutr. 126:2960–67 [Google Scholar]
  193. Zhao Y, Yu B, Mao X, He J, Huang Z. 192.  et al. 2014. Dietary vitamin D supplementation attenuates immune responses of pigs challenged with rotavirus potentially through the retinoic acid-inducible gene I signalling pathway. Br. J. Nutr. 112:381–89 [Google Scholar]
  194. Hurst RJ, Else KJ. 193.  2012. Retinoic acid signalling in gastrointestinal parasite infections: lessons from mouse models. Parasite Immunol 34:351–59 [Google Scholar]
  195. Storey DM. 194.  1982. Vitamin A deficiency and the development of Litomosoides carinii (Nematoda, Filarioidea) in cotton rats. Z. Parasitenkd. 67:309–15 [Google Scholar]
  196. Ryz NR, Lochner A, Bhullar K, Ma C, Huang T. 195.  et al. 2015. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G730–42 [Google Scholar]
  197. Reeme AE, Robinson RT. 196.  2016. Dietary vitamin D3 suppresses pulmonary immunopathology associated with late-stage tuberculosis in C3HeB/FeJ mice. J. Immunol. 196:1293–304 [Google Scholar]
  198. Titmarsh H, Gow AG, Kilpatrick S, Sinclair J, Hill T. 197.  et al. 2015. Association of vitamin D status and clinical outcome in dogs with a chronic enteropathy. J. Vet. Intern. Med. 29:1473–78 [Google Scholar]
  199. Titmarsh HF, Gow AG, Kilpatrick S, Cartwright JA, Milne EM. 198.  et al. 2015. Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy. PLOS ONE 10:e0137377 [Google Scholar]
  200. Titmarsh H, Kilpatrick S, Sinclair J, Boag A, Bode EF. 199.  et al. 2015. Vitamin D status predicts 30 day mortality in hospitalised cats. PLOS ONE 10:e0125997 [Google Scholar]
  201. Titmarsh HF, Cartwright JA, Kilpatrick S, Gaylor D, Milne EM. 200.  et al. 2017. Relationship between vitamin D status and leukocytes in hospitalised cats. J. Feline Med. Surg. 19:364–69 [Google Scholar]
  202. Strand TA, Briles DE, Gjessing HK, Maage A, Bhan MK, Sommerfelt H. 201.  2001. Pneumococcal pulmonary infection, septicaemia and survival in young zinc-depleted mice. Br. J. Nutr. 86:301–6 [Google Scholar]
  203. Bolick DT, Kolling GL, Moore JH 2nd, de Oliveira LA, Tung K. 202.  et al. 2014. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 5:618–27 [Google Scholar]
  204. Fenwick PK, Aggett PJ, Macdonald D, Huber C, Wakelin D. 203.  1990. Zinc deficiency and zinc repletion: effect on the response of rats to infection with Trichinella spiralis. . Am. J. Clin. Nutr. 52:166–72 [Google Scholar]
  205. Koski KG, Scott ME. 204.  2001. Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annu. Rev. Nutr. 21:297–321 [Google Scholar]
  206. Scott ME, Koski KG. 205.  2000. Zinc deficiency impairs immune responses against parasitic nematode infections at intestinal and systemic sites. J. Nutr. 130:1412S–20S [Google Scholar]
  207. Morrey JD, Sidwell RW, Noble RL, Barnett BB, Mahoney AW. 206.  1984. Effects of folic acid malnutrition on rotaviral infection in mice. Proc. Soc. Exp. Biol. Med. 176:77–83 [Google Scholar]
  208. Puschmann M, Ganzoni AM. 207.  1977. Increased resistance of iron-deficient mice to salmonella infection. Infect. Immun. 17:663–64 [Google Scholar]
  209. Lepper AW, Jarrett RG, Lewis VM. 208.  1988. The effect of different levels of iron intake on the multiplication of Mycobacterium paratuberculosis in C57 and C3H mice. Vet. Microbiol. 16:369–83 [Google Scholar]
  210. Duncombe VM, Bolin TD, Davis A, Kelly JD. 209.  1979. The effect of iron and protein deficiency on the development of acquired resistance to reinfection with Nippostrongylus brasiliensis in rats. Am. J. Clin. Nutr. 32:553–58 [Google Scholar]
  211. Beck MA, Nelson HK, Shi Q, Van Dael P, Schiffrin EJ. 210.  et al. 2001. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J 15:1481–83 [Google Scholar]
  212. Li W, Beck MA. 211.  2007. Selenium deficiency induced an altered immune response and increased survival following influenza A/Puerto Rico/8/34 infection. Exp. Biol. Med. 232:412–19 [Google Scholar]
  213. Wang C, Wang H, Luo J, Hu Y, Wei L. 212.  et al. 2009. Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol 10:55 [Google Scholar]
  214. Au Yeung KJ, Smith A, Zhao A, Madden KB, Elfrey J. 213.  et al. 2005. Impact of vitamin E or selenium deficiency on nematode-induced alterations in murine intestinal function. Exp. Parasitol. 109:201–8 [Google Scholar]
/content/journals/10.1146/annurev-animal-022516-022914
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error