1932

Abstract

Repeatedly and recently evolved sympatric morphs exhibiting consistent phenotypic differences provide natural experimental replicates of speciation. Because such morphs are observed frequently in Salmonidae, this clade provides a rare opportunity to uncover the genomic mechanisms underpinning speciation. Such insight is also critical for conserving salmonid diversity, the loss of which could have significant ecological and economic consequences. Our review suggests that genetic differentiation among sympatric morphs is largely nonparallel apart from a few key genes that may be critical for consistently driving morph differentiation. We discuss alternative levels of parallelism likely underlying consistent morph differentiation and identify several factors that may temper this incipient speciation between sympatric morphs, including glacial history and contemporary selective pressures. Our synthesis demonstrates that salmonids are useful for studying speciation and poses additional research questions to be answered by future study of this family.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-051021-080709
2022-02-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-051021-080709.html?itemId=/content/journals/10.1146/annurev-animal-051021-080709&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Elmer KR, Meyer A. 2011. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26:6298–306
    [Google Scholar]
  2. 2. 
    Marques DA, Meier JI, Seehausen O. 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34:6531–44
    [Google Scholar]
  3. 3. 
    Kozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. 2015. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64:3505–24
    [Google Scholar]
  4. 4. 
    Blount ZD, Lenski RE, Losos JB. 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:6415eaam5979
    [Google Scholar]
  5. 5. 
    Gould S. 1989. Wonderful Life: The Burgess Shale and the Nature of History New York: W.W. Norton
    [Google Scholar]
  6. 6. 
    Hewitt G. 2000. The genetic legacy of the quaternary ice ages. Nature 405:6789907–13
    [Google Scholar]
  7. 7. 
    Rundle HD, Nosil P. 2005. Ecological speciation. Ecol. Lett. 8:3336–52
    [Google Scholar]
  8. 8. 
    Schluter D. 1996. Ecological speciation in postglacial fishes. Philos. Trans. R. Soc. B 351:1341807–14
    [Google Scholar]
  9. 9. 
    Taylor EB. 1999. Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev. Fish Biol. Fish. 9:4299–324
    [Google Scholar]
  10. 10. 
    Behnke RJ. 1972. The systematics of salmonid fishes of recently glaciated lakes. J. Fish. Board Can. 29:6639–71
    [Google Scholar]
  11. 11. 
    Macqueen DJ, Johnston IA. 2014. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc. R. Soc. B 281:177820132881
    [Google Scholar]
  12. 12. 
    Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW et al. 2014. Genomics and the origin of species. Nat. Rev. Genet. 15:3176–92
    [Google Scholar]
  13. 13. 
    Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L et al. 2017. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genom. 18:484
    [Google Scholar]
  14. 14. 
    Mayr E. 1947. Ecological factors in speciation. Evolution 1:4263–88
    [Google Scholar]
  15. 15. 
    Hudson AG, Vonlanthen P, Müller R, Seehausen O. 2007. Review: the geography of speciation and adaptive radiation in coregonines. Adv. Limnol. 60:111–46
    [Google Scholar]
  16. 16. 
    Mehner T, Pohlmann K, Elkin C, Monaghan MT, Nitz B, Freyhof J. 2010. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae). BMC Evol. Biol. 10:85
    [Google Scholar]
  17. 17. 
    Doenz CJ, Bittner D, Vonlanthen P, Wagner CE, Seehausen O. 2018. Rapid buildup of sympatric species diversity in Alpine whitefish. Ecol. Evol. 8:189398–412
    [Google Scholar]
  18. 18. 
    Säisä M, Rönn J, Aho T, Björklund M, Pasanen P, Koljonen ML. 2008. Genetic differentiation among European whitefish ecotypes based on microsatellite data. Hereditas 145:269–83
    [Google Scholar]
  19. 19. 
    Jeukens J, Bittner D, Knudsen R, Bernatchez L. 2009. Candidate genes and adaptive radiation: insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Mol. Biol. Evol. 26:1155–66
    [Google Scholar]
  20. 20. 
    Østbye K, Hagen Hassve M, Peris Tamayo AM, Hagenlund M, Vogler T, Præbel K 2020.. “ And if you gaze long into an abyss, the abyss gazes also into thee”: four morphs of Arctic charr adapting to a depth gradient in Lake Tinnsjøen. Evol. Appl. 13:61240–61
    [Google Scholar]
  21. 21. 
    Turgeon J, Bernatchez L. 2003. Reticulate evolution and phenotypic diversity in North American ciscoes, Coregonus ssp. (Teleostei: Salmonidae): implications for the conservation of an evolutionary legacy. Conserv. Genet. 4:67–81
    [Google Scholar]
  22. 22. 
    Ackiss AS, Larson WA, Stott W. 2020. Genotyping-by-sequencing illuminates high levels of divergence among sympatric forms of coregonines in the Laurentian Great Lakes. Evol. Appl. 13:51037–54
    [Google Scholar]
  23. 23. 
    Bernatchez L, Vuorinen JA, Bodaly RA, Dodson JJ. 1996. Genetic evidence for reproductive isolation and multiple origins of sympatric trophic ecotypes of whitefish (Coregonus). Evolution 50:2624–35
    [Google Scholar]
  24. 24. 
    Vuorinen JA, Bodaly RA, Reist JD, Luczynski M. 1998. Phylogeny of five Prosopium species with comparisons with other Coregonine fishes based on isozyme electrophoresis. J. Fish Biol. 53:5917–27
    [Google Scholar]
  25. 25. 
    Gowell CP, Quinn TP, Taylor EB. 2012. Coexistence and origin of trophic ecotypes of pygmy whitefish, Prosopium coulterii, in a south-western Alaskan lake. J. Evol. Biol. 25:122432–48
    [Google Scholar]
  26. 26. 
    Heath DD, Bettles CM, Jamieson S, Stasiak I, Docker MF. 2008. Genetic differentiation among sympatric migratory and resident life history forms of rainbow trout in British Columbia. Trans. Am. Fish. Soc. 137:41268–77
    [Google Scholar]
  27. 27. 
    Veale AJ, Russello MA. 2017a. Genomic changes associated with reproductive and migratory ecotypes in sockeye salmon (Oncorhynchus nerka). Genome Biol. Evol. 9:102921–39
    [Google Scholar]
  28. 28. 
    Arostegui MC, Quinn TP, Seeb LW, Seeb JE, McKinney GJ. 2019. Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. Mol. Ecol. 28:61412–27
    [Google Scholar]
  29. 29. 
    Fillatre EK, Etherton P, Heath DD. 2003. Bimodal run distribution in a northern population of sockeye salmon (Oncorhynchus nerka): life history and genetic analysis on a temporal scale. Mol. Ecol. 12:71793–805
    [Google Scholar]
  30. 30. 
    Varnavskaya NV, Wood CC, Everett RJ. 1994. Genetic variation in sockeye salmon. Can. J. Fish. Aquat. Sci. 51:S1132–46
    [Google Scholar]
  31. 31. 
    Prince DJ, O'Rourke SM, Thompson TQ, Ali OA, Lyman HS et al. 2017. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3:8e1603198
    [Google Scholar]
  32. 32. 
    Limborg MT, Waples RK, Seeb JE, Seeb LW. 2014. Temporally isolated lineages of pink salmon reveal unique signatures of selection on distinct pools of standing genetic variation. J. Hered. 105:6835–45
    [Google Scholar]
  33. 33. 
    Wellband KW, Heath DD. 2013. The relative contribution of drift and selection to transcriptional divergence among Babine Lake tributary populations of juvenile rainbow trout. J. Evol. Biol. 26:112497–508
    [Google Scholar]
  34. 34. 
    Grummer JA, Whitlock MC, Schulte PM, Taylor EB. 2021. Growth genes are implicated in the evolutionary divergence of sympatric piscivorous and insectivorous rainbow trout (Oncorhynchus mykiss). BMC Ecol. Evol. 21:63
    [Google Scholar]
  35. 35. 
    Adams BK, Cote D, Hutchings JA. 2016. A genetic comparison of sympatric anadromous and resident Atlantic salmon. Ecol. Freshw. Fish 25:2307–17
    [Google Scholar]
  36. 36. 
    Giger T, Excoffier L, Day PJR, Champigneulle A, Hansen MM et al. 2006. Life history shapes gene expression in salmonids. Curr. Biol. 16:8281–82
    [Google Scholar]
  37. 37. 
    Lemopoulos A, Uusi-Heikkilä S, Huusko A, Vasemägi A, Vainikka A. 2018. Comparison of migratory and resident populations of brown trout reveals candidate genes for migration tendency. Genome Biol. Evol. 10:61493–503
    [Google Scholar]
  38. 38. 
    Tessier N, Bernatchez L, Wright JM. 1997. Population structure and impact of supportive breeding inferred from mitochondrial and microsatellite DNA analyses in land-locked Atlantic salmon Salmo salar L. Mol. Ecol. 6:8735–50
    [Google Scholar]
  39. 39. 
    O'Malley KG, Cross TF, Bailie D, Carlsson J, Coughlan JP et al. 2014. Circadian clock gene (OtsClock1b) variation and time of ocean return in Atlantic salmon Salmo salar. Fish. Manag. Ecol. 21:82–87
    [Google Scholar]
  40. 40. 
    Verspoor E, Coulson MW, Greer RB, Knox D. 2019. Unique sympatric quartet of limnetic, benthic, profundal and piscivorous brown trout populations resolved by 3D sampling and focused molecular marker selection. Freshw. Biol. 64:121–37
    [Google Scholar]
  41. 41. 
    Duguid RA, Ferguson A, Prodöhl P. 2006. Reproductive isolation and genetic differentiation of ferox trout from sympatric brown trout in Loch Awe and Loch Laggan, Scotland. J. Fish Biol. 69:Suppl. A89–114
    [Google Scholar]
  42. 42. 
    Ferguson A, Taggart JB. 1991. Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biol. J. Linn. Soc. 43:3221–37
    [Google Scholar]
  43. 43. 
    Gratton P, Allegrucci G, Gandolfi A, Sbordoni V. 2013. Genetic differentiation and hybridization in two naturally occurring sympatric trout Salmo spp. forms from a small karstic lake. J. Fish Biol. 82:2637–57
    [Google Scholar]
  44. 44. 
    Andersson A, Jansson E, Wennerström L, Chiriboga F, Arnyasi M et al. 2017. Complex genetic diversity patterns of cryptic, sympatric brown trout (Salmo trutta) populations in tiny mountain lakes. Conserv. Genet. 18:51213–27
    [Google Scholar]
  45. 45. 
    Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N et al. 2003. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish 12:1–59
    [Google Scholar]
  46. 46. 
    Ferguson A, Reed TE, Cross TF, McGinnity P, Prodöhl PA. 2019. Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. J. Fish Biol. 95:3692–718
    [Google Scholar]
  47. 47. 
    Salisbury SJ, Booker C, McCracken GR, Knight T, Keefe D et al. 2018. Genetic divergence among and within arctic char (Salvelinus alpinus) populations inhabiting landlocked and sea-accessible sites in Labrador. Canada. Can. J. Fish. Aquat. Sci. 75:81256–69
    [Google Scholar]
  48. 48. 
    Thériault V, Bernatchez L, Dodson JJ. 2007. Mating system and individual reproductive success of sympatric anadromous and resident brook charr, Salvelinus fontinalis, under natural conditions. Behav. Ecol. Sociobiol. 62:51–65
    [Google Scholar]
  49. 49. 
    Kissinger BC, Harris LN, Swainson D, Anderson WG, Docker MF, Reist JD. 2018. Fine-scale population structure in lake trout (Salvelinus namaycush) influenced by life history variation in the Husky Lakes drainage basin, Northwest Territories, Canada. Can. J. Fish. Aquat. Sci. 75:71070–81
    [Google Scholar]
  50. 50. 
    Præbel K, Couton M, Knudsen R, Amundsen PA. 2016. Genetic consequences of allopatric and sympatric divergence in Arctic charr (Salvelinus alpinus (L.)) from Fjellfrøsvatn as inferred by microsatellite markers. Hydrobiologia 783:257–67
    [Google Scholar]
  51. 51. 
    Corrigan LJ, Lucas MC, Winfield IJ, Hoelzel AR. 2011. Environmental factors associated with genetic and phenotypic divergence among sympatric populations of Arctic charr (Salvelinus alpinus). J. Evol. Biol. 24:91906–17
    [Google Scholar]
  52. 52. 
    Fraser DJ, Lippé C, Bernatchez L. 2004. Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol. Ecol. 13:67–80
    [Google Scholar]
  53. 53. 
    Gordeeva NV, Alekseyev SS, Matveev AN, Samusenok VP. 2014. Parallel evolutionary divergence in arctic char Salvelinus alpines complex from Transbaikalia: variation in differentiation degree and segregation of genetic diversity among sympatric forms. Can. J. Fish. Aquat. Sci. 72:196–115
    [Google Scholar]
  54. 54. 
    Doenz CJ, Krähenbühl AK, Walker J, Seehausen O, Brodersen J. 2019. Ecological opportunity shapes a large Arctic charr species radiation. Proc. R. Soc. B 286:191320191992
    [Google Scholar]
  55. 55. 
    Guðbrandsson J, Kapralova KH, Franzdóttir SR, Bergsveinsdóttir ÞM, Hafstað V et al. 2019. Extensive genetic differentiation between recently evolved sympatric Arctic charr morphs. Ecol. Evol. 9:1910964–83
    [Google Scholar]
  56. 56. 
    Perreault-Payette A, Muir AM, Goetz F, Perrier C, Normandeau E et al. 2017. Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Mol. Ecol. 26:61477–97
    [Google Scholar]
  57. 57. 
    Esin EV, Bocharova ES, Borisova EA, Markevich GN. 2020. Interaction among morphological, trophic and genetic groups in the rapidly radiating Salvelinus fishes from Lake Kronotskoe. Evol. Ecol. 34:611–32
    [Google Scholar]
  58. 58. 
    Marin K, Coon A, Carson R, Debes PV, Fraser DJ. 2016. Striking phenotypic variation yet low genetic differentiation in sympatric lake trout (Salvelinus namaycush). PLOS ONE 11:930162325
    [Google Scholar]
  59. 59. 
    May-McNally SL, Quinn TP, Taylor EB. 2015. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation. Ecol. Evol. 5:153031–45
    [Google Scholar]
  60. 60. 
    Muir AM, Hansen MJ, Bronte CR, Krueger CC. 2016. If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush?. Fish Fish. 17:41194–207
    [Google Scholar]
  61. 61. 
    Markevich GN, Esin EV. 2018. Evolution of the charrs, genus Salvelinus (Salmonidae). 2. Sympatric inner-lake diversification (ecological peculiarities and evolutionary mechanisms illustrated by different groups of fish). J. Ichthyol. 58:3333–52
    [Google Scholar]
  62. 62. 
    Salisbury SJ, McCracken GR, Perry R, Keefe D, Layton KKS et al. 2020. Limited genetic parallelism underlies recent. repeated incipient speciation in geographically proximate populations of an Arctic fish. Salvelinus alpinus. Mol. Ecol. 29:224280–94
    [Google Scholar]
  63. 63. 
    Dion-Côté AM, Renaut S, Normandeau E, Bernatchez L. 2014. RNA-seq reveals transcriptomic shock involving transposable elements reactivation in hybrids of young lake whitefish species. Mol. Biol. Evol. 31:51188–99
    [Google Scholar]
  64. 64. 
    Dion-Coté AM, Symonová R, Ráb P, Bernatchez L. 2015. Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proc. R. Soc. B 282:180220142862
    [Google Scholar]
  65. 65. 
    Dion-Côté AM, Symonová R, Lamaze FC, Pelikánová Š, Ráb P, Bernatchez L 2017. Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation. Mol. Ecol. 26:178–92
    [Google Scholar]
  66. 66. 
    Mavarez J, Audet C, Bernatchez L. 2009. Major disruption of gene expression in hybrids between young sympatric anadromous and resident populations of brook charr (Salvelinus fontinalis Mitchill). J. Evol. Biol. 22:81708–20
    [Google Scholar]
  67. 67. 
    Harris LN, Chavarie L, Bajno R, Howland KL, Wiley SH et al. 2015. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake. Heredity 114:94–106
    [Google Scholar]
  68. 68. 
    Hudson AG, Vonlanthen P, Seehausen O. 2011. Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc. R. Soc. B 278:170258–66
    [Google Scholar]
  69. 69. 
    Taylor EB, Bentzen P. 1993. Evidence for multiple origins and sympatric divergence of trophic ecotypes of smelt (Osmerus) in Northeastern North America. Evolution 47:3813–32
    [Google Scholar]
  70. 70. 
    Rundle HD, Nagel L, Boughman JW, Schluter D. 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287:5451306–8
    [Google Scholar]
  71. 71. 
    Elias A, McLaughlin R, Mackereth R, Wilson C, Nichols KM 2018. Population structure and genomic variation of ecological life history diversity in wild-caught Lake Superior brook trout, Salvelinus fontinalis. J. Great Lakes Res. 44:61373–82
    [Google Scholar]
  72. 72. 
    Limborg MT, Larson WA, Shedd K, Seeb LW, Seeb JE. 2018. Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population. Conserv. Genet. Resour. 10:2169–71
    [Google Scholar]
  73. 73. 
    Dynes J, Magnan P, Bernatchez L, Rodríguez MA. 1999. Genetic and morphological variation between two forms of lacustrine brook charr. J. Fish Biol. 54:5955–72
    [Google Scholar]
  74. 74. 
    Proulx R, Magnan P. 2004. Contribution of phenotypic plasticity and heredity to the trophic polymorphism of lacustrine brook charr (Salvelinus fontinalis M.). Evol. Ecol. Res. 6:4503–22
    [Google Scholar]
  75. 75. 
    Jorde PE, Andersson A, Ryman N, Laikre L. 2018. Are we underestimating the occurrence of sympatric populations?. Mol. Ecol. 27:204011–25
    [Google Scholar]
  76. 76. 
    Frazer KK, Russello MA. 2013. Lack of parallel genetic patterns underlying the repeated ecological divergence of beach and stream-spawning kokanee salmon. J. Evol. Biol. 26:122606–21
    [Google Scholar]
  77. 77. 
    Schluter D, Nagel LM. 1995. Parallel speciation by natural selection. Am. Nat. 146:2292–301
    [Google Scholar]
  78. 78. 
    Stankowski S, Ravinet M. 2021. Defining the speciation continuum. Evolution 75:61256–73
    [Google Scholar]
  79. 79. 
    Skúlason S, Snorrason SS, Jonsson B 1999. Sympatric morphs, populations and speciation in freshwater fish with emphasis on Arctic charr. Evolution of Biological Diversity E Magurran, RM May 70–92 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  80. 80. 
    Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP et al. 2010. Population diversity and the portfolio effect in an exploited species. Nature 465:7298609–12
    [Google Scholar]
  81. 81. 
    Micheletti SJ, Hess JE, Zendt JS, Narum SR. 2018. Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead. BMC Evol. Biol. 18:140
    [Google Scholar]
  82. 82. 
    Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA et al. 2019. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. 3:121731–42
    [Google Scholar]
  83. 83. 
    Hecht BC, Campbell NR, Holecek DE, Narum SR. 2013. Genome-wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Mol. Ecol. 22:113061–76
    [Google Scholar]
  84. 84. 
    Hale MC, Thrower FP, Berntson EA, Miller MR, Nichols KM. 2013. Evaluating adaptive divergence between migratory and nonmigratory ecotypes of a salmonid fish, Oncorhynchus mykiss. G3 3:81273–85
    [Google Scholar]
  85. 85. 
    Jacobs A, Carruthers M, Yurchenko A, Gordeeva NV, Alekseyev SS et al. 2020. Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLOS Genet. 16:4e1008658
    [Google Scholar]
  86. 86. 
    Renaut S, Maillet N, Normandeau E, Sauvage C, Derome N et al. 2012. Genome-wide patterns of divergence during speciation: the lake whitefish case study. Philos. Trans. R. Soc. B 367:1587354–63
    [Google Scholar]
  87. 87. 
    Feulner PGD, Seehausen O. 2019. Genomic insights into the vulnerability of sympatric whitefish species flocks. Mol. Ecol. 28:3615–29
    [Google Scholar]
  88. 88. 
    Landry L, Vincent WF, Bernatchez L. 2007. Parallel evolution of lake whitefish dwarf ecotypes in association with limnological features of their adaptive landscape. J. Evol. Biol. 20:3971–84
    [Google Scholar]
  89. 89. 
    Hendry AP, Day T. 2005. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14:4901–16
    [Google Scholar]
  90. 90. 
    Hendry A, Bohlin T, Jonnson B, Berg O 2004. To sea or not to sea? Anadromy versus non-anadromy in salmonids. Evolution Illuminated: Salmon and Their Relatives A Hendry, S Stearns 92–125 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  91. 91. 
    Prodöhl PA, Ferguson A, Bradley CR, Ade R, Roberts C et al. 2019. Impacts of acidification on brown trout Salmo trutta populations and the contribution of stocking to population recovery and genetic diversity. J. Fish Biol. 95:3719–42
    [Google Scholar]
  92. 92. 
    Auld HL, Noakes DLG, Banks MA. 2019. Advancing mate choice studies in salmonids. Rev. Fish Biol. Fish. 29:2249–76
    [Google Scholar]
  93. 93. 
    Bell MA, Andrews CA. 1997. Evolutionary consequences of postglacial colonization of fresh water by primitively anadromous fishes. Evolutionary Ecology of Freshwater Animals B Streit, T Städler, C Lively 323–63 Basel, Switz: Springer
    [Google Scholar]
  94. 94. 
    Lee KM, Coop G. 2019. Population genomics perspectives on convergent adaptation. Philos. Trans. R. Soc. B 374:177720180236
    [Google Scholar]
  95. 95. 
    Weinstein SY, Thrower FP, Nichols KM, Hale MC. 2019. A large-scale chromosomal inversion is not associated with life history development in rainbow trout from Southeast Alaska. PLOS ONE 14:9e0223018
    [Google Scholar]
  96. 96. 
    Kelson SJ, Miller MR, Thompson TQ, O'Rourke SM, Carlson SM. 2019. Do genomics and sex predict migration in a partially migratory salmonid fish. Oncorhynchus mykiss?. Can. J. Fish. Aquat. Sci. 76:112080–88
    [Google Scholar]
  97. 97. 
    Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. 2019. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol. Ecol. 28:92254–71
    [Google Scholar]
  98. 98. 
    Wolf JBW, Ellegren H. 2017. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18:287–100
    [Google Scholar]
  99. 99. 
    Therkildsen NO, Wilder AP, Conover DO, Munch SB, Baumann H, Palumbi SR. 2019. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365:6452487–90
    [Google Scholar]
  100. 100. 
    Nichols KM, Kozfkay CC, Narum SR. 2016. Genomic signatures among Oncorhynchus nerka ecotypes to inform conservation and management of endangered sockeye salmon. Evol. Appl. 9:101285–300
    [Google Scholar]
  101. 101. 
    Larson WA, Limborg MT, McKinney GJ, Schindler DE, Seeb JE, Seeb LW. 2017. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol. Ecol. 26:2554–70
    [Google Scholar]
  102. 102. 
    Veale AJ, Russello MA. 2017b. An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Sci. Rep. 7:1747
    [Google Scholar]
  103. 103. 
    Nichols KM, Edo AF, Wheeler PA, Thorgaard GH. 2008. The genetic basis of smoltification-related traits in Oncorhynchus mykiss. Genetics 179:31559–75
    [Google Scholar]
  104. 104. 
    Bernatchez L, Renaut S, Whiteley AR, Derome N, Jeukens J et al. 2010. On the origin of species: insights from the ecological genomics of lake whitefish. Philos. Trans. R. Soc. B 365:15471783–800
    [Google Scholar]
  105. 105. 
    Derome N, Duchesne P, Bernatchez L. 2006. Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchill) ecotypes. Mol. Ecol. 15:51239–49
    [Google Scholar]
  106. 106. 
    St-Cyr J, Derome N, Bernatchez L. 2008. The transcriptomics of life-history trade-offs in whitefish species pairs (Coregonus sp.). Mol. Ecol. 17:71850–70
    [Google Scholar]
  107. 107. 
    Campbell D, Bernatchez L. 2004. Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol. Biol. Evol. 21:5945–56
    [Google Scholar]
  108. 108. 
    Whiteley AR, Derome N, Rogers SM, St-Cyr J, Laroche J et al. 2008. The phenomics and expression quantitative trait locus mapping of brain transcriptomes regulating adaptive divergence in lake whitefish species pairs (Coregonus sp. Genetics 180:1147–64
    [Google Scholar]
  109. 109. 
    Derome N, Bougas B, Rogers SM, Whiteley AR, Labbe A et al. 2008. Pervasive sex-linked effects on transcription regulation as revealed by expression quantitative trait loci mapping in lake whitefish species pairs (Coregonus sp. Salmonidae. Genetics 179:41903–17
    [Google Scholar]
  110. 110. 
    Rougeux C, Gagnaire P-A, Praebel K, Seehausen O, Bernatchez L. 2019. Polygenic selection drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic sister species complex. Mol. Ecol. 28:194388–403
    [Google Scholar]
  111. 111. 
    Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB. 2015. Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evol. Appl. 8:5423–41
    [Google Scholar]
  112. 112. 
    Østbye K, Bernatchez L, Næsje TF, Himberg KJM, Hindar K. 2005. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol. Ecol. 14:144371–87
    [Google Scholar]
  113. 113. 
    Moore JS, Bajno R, Reist JD, Taylor EB. 2015. Post-glacial recolonization of the North American Arctic by Arctic char (Salvelinus alpinus): genetic evidence of multiple northern refugia and hybridization between glacial lineages. J. Biogeogr. 42:112089–100
    [Google Scholar]
  114. 114. 
    Danzmann RG, Morgan RP, Jones MW, Bernatchez L, Ihssen PE. 1998. A major sextet of mitochondrial DNA phylogenetic assemblages extant in eastern North American brook trout (Salvelinus fontinalis): distribution and postglacial dispersal patterns. Can. J. Zool. 76:71300–18
    [Google Scholar]
  115. 115. 
    Wilson C, Mandrak N. 2003. History and evolution of lake trout in Shield lakes: past and future challenges. Boreal Shield Watersheds: Lake Trout Ecosystems in a Changing Environment JM Gunn, RJ Steedmar, RA Ryder 21–35 Boca Raton, FL: Lewis Publ.
    [Google Scholar]
  116. 116. 
    Taylor EB, Foote CJ, Wood CC. 1996. Molecular genetic evidence for parallel life-history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchus nerka. Evolution 50:401–16
    [Google Scholar]
  117. 117. 
    McCusker MR, Parkinson E, Taylor EB. 2000. Mitochondrial DNA variation in rainbow trout (Oncorhynchus mykiss) across its native range: testing biogeographical hypotheses and their relevance to conservation. Mol. Ecol. 9:122089–108
    [Google Scholar]
  118. 118. 
    Hecht BC, Matala AP, Hess JE, Narum SR. 2015. Environmental adaptation in Chinook salmon (Oncorhynchus tshawytscha) throughout their North American range. Mol. Ecol. 24:225573–95
    [Google Scholar]
  119. 119. 
    Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:2351–79
    [Google Scholar]
  120. 120. 
    Nilsson J, Gross R, Asplund T, Dove O, Jansson H et al. 2001. Matrilinear phylogeography of Atlantic salmon (Salmo salar L.) in Europe and postglacial colonization of the Baltic Sea area. Mol. Ecol. 10:89–102
    [Google Scholar]
  121. 121. 
    Pigeon D, Chouinard A, Bernatchez L. 1997. Multiple modes of speciation involved in the parallel evolution of sympatric morphotypes of lake whitefish (Coregonus clupeaformis, Salmonidae). Evolution 51:196–205
    [Google Scholar]
  122. 122. 
    Turgeon J, Bernatchez L. 2001. Mitochondrial DNA phylogeography of lake cisco (Coregonus artedi): evidence supporting extensive secondary contacts between two glacial races. Mol. Ecol. 10:4987–1001
    [Google Scholar]
  123. 123. 
    Gomez-Uchida D, Dunphy KP, O'Connell MF, Ruzzante DE 2008. Genetic divergence between sympatric Arctic charr Salvelinus alpinus morphs in Gander Lake, Newfoundland: Roles of migration, mutation and unequal effective population sizes. J. Fish Biol. 73:82040–57
    [Google Scholar]
  124. 124. 
    Salisbury SJ, McCracken GR, Keefe D, Perry R, Ruzzante DE 2019. Extensive secondary contact among three glacial lineages of Arctic Char (Salvelinus alpinus) in Labrador and Newfoundland. Ecol. Evol. 9:42031–45
    [Google Scholar]
  125. 125. 
    Kess T, Dempson JB, Lehnert SJ, Layton KKS, Einfeldt A et al. 2021. Genomic basis of deep-water adaptation in Arctic Charr (Salvelinus alpinus) morphs. Mol. Ecol. 30:4415–32
    [Google Scholar]
  126. 126. 
    Rougeux C, Bernatchez L, Gagnaire P-A. 2017. Modeling the multiple facets of speciation-with-gene-flow toward inferring the divergence history of lake whitefish species pairs (Coregonus clupeaformis). Genome Biol. Evol. 9:82057–74
    [Google Scholar]
  127. 127. 
    Rougeux C, Gagnaire P-A, Bernatchez L. 2019. Model-based demographic inference of introgression history in European whitefish species pairs. J. Evol. Biol. 32:8806–17
    [Google Scholar]
  128. 128. 
    Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ. 2007. Exceptional among-lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade. Proc. R. Soc. B 274:2915–23
    [Google Scholar]
  129. 129. 
    Seehausen O. 2013. Conditions when hybridization might predispose populations for adaptive radiation. J. Evol. Biol. 26:279–81
    [Google Scholar]
  130. 130. 
    Verspoor E, Hammar J. 1991. Introgressive hybridization in fishes: the biochemical evidence. J. Fish Biol. 39:309–34
    [Google Scholar]
  131. 131. 
    Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R et al. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:7385357–62
    [Google Scholar]
  132. 132. 
    Hudson AG, Vonlanthen P, Bezault E, Seehausen O. 2013. Genomic signatures of relaxed disruptive selection associated with speciation reversal in whitefish. BMC Evol. Biol. 13:108
    [Google Scholar]
  133. 133. 
    Gow JL, Peichel CL, Taylor EB. 2006. Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species. Mol. Ecol. 15:3739–52
    [Google Scholar]
  134. 134. 
    Bhat S, Amundsen PA, Knudsen R, Gjelland , Fevolden SE et al. 2014. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. PLOS ONE 9:3e91208
    [Google Scholar]
  135. 135. 
    Baillie SM, Muir AM, Scribner K, Bentzen P, Krueger CC. 2016. Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013. J. Great Lakes Res. 42:2204–16
    [Google Scholar]
  136. 136. 
    Noakes MA, Reimer T, Phillips RB. 2003. Genotypic characterization of an MHC class II locus in lake trout (Salvelinus namaycush) from Lake Superior by single-stranded conformational polymorphism analysis and reference strand-mediated conformational analysis. Mar. Biotechnol. 5:3270–78
    [Google Scholar]
  137. 137. 
    Baillie SM, Hemstock RR, Muir AM, Krueger CC, Bentzen P. 2018. Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout. Immunogenetics 70:53–66
    [Google Scholar]
  138. 138. 
    Tessier N, Bernatchez L. 1999. Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol. Ecol. 8:169–79
    [Google Scholar]
  139. 139. 
    Dalziel AC, Rogers SM, Schulte PM. 2009. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18:244997–5017
    [Google Scholar]
  140. 140. 
    Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM et al. 2019. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol. Rev. 94:1786–808
    [Google Scholar]
  141. 141. 
    Scott WB, Crossman EJ. 1973. Freshwater fishes of Canada Bull. 184 Fish. Res. Board Can. Ottawa:
  142. 142. 
    Delgado ML, Górski K, Habit E, Ruzzante DE. 2019. The effects of diadromy and its loss on genomic divergence: the case of amphidromous Galaxias maculatus populations. Mol. Ecol. 28:245217–31
    [Google Scholar]
  143. 143. 
    Delgado ML, Manosalva A, Urbina MA, Habit E, Link O, Ruzzante DE. 2020. Genomic basis of the loss of diadromy in Galaxias maculatus: insights from reciprocal transplant experiments. Mol. Ecol. 29:244857–70
    [Google Scholar]
  144. 144. 
    Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE et al. 2019. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363:642281–84
    [Google Scholar]
  145. 145. 
    Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM et al. 2016. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol. Ecol. 25:81785–800
    [Google Scholar]
  146. 146. 
    Laporte M, Le Luyer J, Rougeux C, Dion-Côté A-M, Krick M, Bernatchez L 2019. DNA methylation reprogramming, TE derepression, and postzygotic isolation of nascent animal species. Sci. Adv. 5:10eaaw1644
    [Google Scholar]
  147. 147. 
    Jacobs A, Elmer KR. 2021. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol. Ecol. 30:204955–69
    [Google Scholar]
  148. 148. 
    Dalziel AC, Laporte M, Guderley H, Bernatchez L. 2018. Do differences in the activities of carbohydrate metabolism enzymes between Lake Whitefish ecotypes match predictions from transcriptomic studies?. Comp. Biochem. Physiol. B 224:138–49
    [Google Scholar]
  149. 149. 
    Papakostas S, Vasemägi A, Vähä J-P, Himberg M, Peil L, Primmer CR. 2012. A proteomics approach reveals divergent molecular responses to salinity in populations of European whitefish (Coregonus lavaretus). Mol. Ecol. 21:143516–30
    [Google Scholar]
  150. 150. 
    Renaut S, Nolte AW, Rogers SM, Derome N, Bernatchez L. 2011. SNP signatures of selection on standing genetic variation and their association with adaptive phenotypes along gradients of ecological speciation in lake whitefish species pairs (Coregonus spp.). Mol. Ecol. 20:3545–59
    [Google Scholar]
  151. 151. 
    Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. 2007. UniProtKB/Swiss-Prot.. Plant Bioinformatics D Edwards 89–112 Methods Mol. Biol. 406 Totawa, NJ: Humana
    [Google Scholar]
/content/journals/10.1146/annurev-animal-051021-080709
Loading
/content/journals/10.1146/annurev-animal-051021-080709
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error