1932

Abstract

Cannabidiol (CBD) is a non-psychotropic phytocannabinoid of the plant L. CBD is increasingly being explored as an alternative to conventional therapies to treat health disorders in dogs and cats. Mechanisms of action of CBD have been investigated mostly in rodents and in vitro and include modulation of CB1, CB2, 5-HT, GPR, and opioid receptors. In companion animals, CBD appears to have good bioavailability and safety profile with few side effects at physiological doses. Some dog studies have found CBD to improve clinical signs associated with osteoarthritis, pruritus, and epilepsy. However, further studies are needed to conclude a therapeutic action of CBD for each of these conditions, as well as for decreasing anxiety and aggression in dogs and cats. Herein, we summarize the available scientific evidence associated with the mechanisms of action of CBD, including pharmacokinetics, safety, regulation, and efficacy in ameliorating various health conditions in dogs and cats.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-081122-070236
2023-02-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/animal/11/1/annurev-animal-081122-070236.html?itemId=/content/journals/10.1146/annurev-animal-081122-070236&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Technavio 2019. CBD oil market by product and geography—forecast and analysis 2020–2024 Rep. Technavio, Tor https://www.technavio.com/report/cbd-oil-market-industry-analysis
  2. 2.
    Kogan LR, Hellyer PW, Robinson NG. 2016. Consumers’ perceptions of hemp products for animals. AHVMA J. 42:34048
    [Google Scholar]
  3. 3.
    Wallace JE, Kogan LR, Carr ECJ, Hellyer PW. 2020. Publisher correction to: Motivations and expectations for using cannabis products to treat pain in humans and dogs: a mixed methods study. J. Cannabis Res. 2:40
    [Google Scholar]
  4. 4.
    Marinotti O, Sarill M. 2020. Differentiating full-spectrum hemp extracts from CBD isolates: implications for policy, safety and science. J. Diet. Suppl. 17:551726
    [Google Scholar]
  5. 5.
    Brenneisen R 2007. Chemistry and analysis of phytocannabinoids and other Cannabis constituents. Marijuana and the Cannabinoids MA Elsohly 1749. Totowa, NJ: Humana
    [Google Scholar]
  6. 6.
    De Briyne N, Holmes D, Sandler I, Stiles E, Szymanski D et al. 2021. Cannabis, cannabidiol oils and tetrahydrocannabinol—What do veterinarians need to know?. Animals 11:3892
    [Google Scholar]
  7. 7.
    Hartsel JA, Boyar K, Pham A, Silver RJ 2019. Cannabis in veterinary medicine: cannabinoid therapies for animals. Neutraceuticals in Veterinary Medicine RC Gupta, A Srivastava, R Lall 12155. Cham, Switz.: Springer
    [Google Scholar]
  8. 8.
    Nasrin S, Watson CJW, Perez-Paramo YX, Lazarus P 2021. Cannabinoid metabolites as inhibitors of major hepatic CYP450 enzymes, with implications for cannabis-drug interactions. Drug Metab. Dispos. 49:12107080
    [Google Scholar]
  9. 9.
    Yu CHJ, Rupasinghe VHP. 2021. Cannabidiol-based natural health products for companion animals: recent advances in the management of anxiety, pain, and inflammation. Res. Vet. Sci. 2:140516
    [Google Scholar]
  10. 10.
    US Food Drug Adm 2021. Warning letters and test results for cannabidiol-related products https://www.fda.gov/news-events/public-health-focus/warning-letters-and-test-results-cannabidiol-related-products
  11. 11.
    Wakshlag JJ, Cital S, Eaton SJ, Prussin R, Hudalla C. 2020. Cannabinoid, terpene, and heavy metal analysis of 29 over-the-counter commercial veterinary hemp supplements. Vet. Med. Res. Rep. 11:4555
    [Google Scholar]
  12. 12.
    Bonn-Miller MO, Loflin MJE, Thomas BF, Marcu JP, Hyke T, Vandrey R 2017. Labeling accuracy of cannabidiol extracts sold online. JAMA 318:1717089
    [Google Scholar]
  13. 13.
    Burstein SH, Audette CA, Charalambous A, Doyle SA, Guo Y et al. 1991. Detection of cannabinoid receptors by photoaffinity labelling. Biochem. Biophys. Res. Commun. 176:149297
    [Google Scholar]
  14. 14.
    Makriyannis A. 2014. 2012 division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J. Med. Chem. 57:103891911
    [Google Scholar]
  15. 15.
    Munro S, Thomas KL, Abu-Shaar M. 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:64416165
    [Google Scholar]
  16. 16.
    Scheller A, Kirchhoff F. 2016. Endocannabinoids and heterogeneity of glial cells in brain function. Front. Integr. Neurosci. 10:24
    [Google Scholar]
  17. 17.
    Atwood BK, MacKie K. 2010. CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160:346779
    [Google Scholar]
  18. 18.
    Chen DJ, Gao M, Gao FF, Su QX, Wu J. 2017. Brain cannabinoid receptor 2: expression, function and modulation. Acta Pharmacol. Sin. 38:331216
    [Google Scholar]
  19. 19.
    Mackie K. 2006. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46:10122
    [Google Scholar]
  20. 20.
    Blessing EM, Steenkamp MM, Manzanares J, Marmar CR. 2015. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics 12:482536
    [Google Scholar]
  21. 21.
    Devane WA, Hanuš L, Breuer A, Pertwee RG, Stevenson LA et al. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:5090194649
    [Google Scholar]
  22. 22.
    Mechoulam R, Fride E, Di Marzo V. 1998. Endocannabinoids. Eur. J. Pharmacol. 359:118
    [Google Scholar]
  23. 23.
    Giuffrida A, Beltramo M, Piomelli D. 2001. Mechanisms of endocannabinoid inactivation: biochemistry and pharmacology. J. Pharmacol. Exp. Ther. 298:1714
    [Google Scholar]
  24. 24.
    Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89:130980
    [Google Scholar]
  25. 25.
    Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76:17081
    [Google Scholar]
  26. 26.
    Hanuš LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G. 2016. Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 33:135792
    [Google Scholar]
  27. 27.
    Capriotti AL, Cannazza G, Catani M, Cavaliere C, Cavazzini A et al. 2021. Recent applications of mass spectrometry for the characterization of cannabis and hemp phytocannabinoids: from targeted to untargeted analysis. J. Chromatogr. A 1655:462492
    [Google Scholar]
  28. 28.
    Marsh DT, Smid SD. 2021. Cannabis phytochemicals: a review of phytocannabinoid chemistry and bioactivity as neuroprotective agents. Aust. J. Chem. 74:6388404
    [Google Scholar]
  29. 29.
    VanDolah HJ, Bauer BA, Mauck KF. 2019. Clinicians’ guide to cannabidiol and hemp oils. Mayo Clin. Proc. 94:9184051
    [Google Scholar]
  30. 30.
    Schultz OE, Haffner G. 1960. Zur frage der biosynthese der cannabinole. Arch. Pharm. 293:118
    [Google Scholar]
  31. 31.
    Greb A, Puschner B. 2018. Cannabinoid treats as adjunctive therapy for pets: gaps in our knowledge. Toxicol. Commun. 2:11014
    [Google Scholar]
  32. 32.
    Kogan L, Schoenfeld-Tacher R, Hellyer P, Rishniw M. 2019. US veterinarians’ knowledge, experience, and perception regarding the use of cannabidiol for canine medical conditions. Front. Vet. Sci. 5:338
    [Google Scholar]
  33. 33.
    Tomsič K, Rakinić K, Seliškar A. 2022. Slovenian pet owners’ experience, attitudes, and predictors regarding cannabinoid use in dogs and cats. Front. Vet. Sci. 8:796673
    [Google Scholar]
  34. 34.
    Corsato Alvarenga I, MacQuiddy B, Duerr F, H. Elam L, McGrath S 2022. Assessment of CBD use in pets according to a national survey in the United States. J. Small Anim. Pract. Manuscript submitted
    [Google Scholar]
  35. 35.
    Grigg EK, Kogan LR, van Haaften K, Kolus C. 2019. Cat owners’ perceptions of psychoactive medications, supplements and pheromones for the treatment of feline behavior problems. J. Feline Med. Surg. 21:109029
    [Google Scholar]
  36. 36.
    Mota-Rojas D, Mariti C, Zdeinert A, Riggio G, Mora-Medina P et al. 2021. Anthropomorphism and its adverse effects on the distress and welfare of companion animals. Animals 11:113263
    [Google Scholar]
  37. 37.
    van Haaften KA, Grigg EK, Kolus C, Hart L, Kogan LR. 2020. A survey of dog owners’ perceptions on the use of psychoactive medications and alternatives for the treatment of canine behavior problems. J. Vet. Behav. 35:2733
    [Google Scholar]
  38. 38.
    Bhamra SK, Desai A, Imani-Berendjestanki P, Horgan M. 2021. The emerging role of cannabidiol (CBD) products: a survey exploring the public's use and perceptions of CBD. Phytother. Res. 35:10573440
    [Google Scholar]
  39. 39.
    Fitzgerald KT, Bronstein AC, Newquist KL. 2013. Marijuana poisoning. Top. Companion Anim. Med. 28:1812
    [Google Scholar]
  40. 40.
    Meola SD, Tearney CC, Haas SA, Hackett TB, Mazzaferro EM. 2012. Evaluation of trends in marijuana toxicosis in dogs living in a state with legalized medical marijuana: 125 dogs (2005–2010). J. Vet. Emerg. Crit. Care 22:669096
    [Google Scholar]
  41. 41.
    Thompson GR, Rosenkrantz H, Schaeppi UH, Braude MC. 1973. Comparison of acute oral toxicity of cannabinoids in rats, dogs and monkeys. Toxicol. Appl. Pharmacol. 25:336372
    [Google Scholar]
  42. 42.
    Ndong C, O'Donnell D, Ahmad S, Groblewski T 2011. Cloning and pharmacological characterization of the dog cannabinoid CB2 receptor. Eur. J. Pharmacol. 669:1–32431
    [Google Scholar]
  43. 43.
    Chillistone S, Hardman JG. 2017. Factors affecting drug absorption and distribution. Anaesth. Intensive Care Med. 18:733539
    [Google Scholar]
  44. 44.
    Bartner LR, McGrath S, Rao S, Hyatt LK, Wittenburg LA. 2018. Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs. Can. J. Vet. Res. 82:317883
    [Google Scholar]
  45. 45.
    Wakshlag JJ, Schwark WS, Deabold KA, Talsma BN, Cital S et al. 2020. Pharmacokinetics of cannabidiol, cannabidiolic acid, Δ9-tetrahydrocannabinol, tetrahydrocannabinolic acid and related metabolites in canine serum after dosing with three oral forms of hemp extract. Front. Vet. Sci. 7:505
    [Google Scholar]
  46. 46.
    Łebkowska-Wieruszewska B, Stefanelli F, Chericoni S, Owen H, Poapolathep A et al. 2019. Pharmacokinetics of Bedrocan®, a cannabis oil extract, in fasting and fed dogs: an explorative study. Res. Vet. Sci. 123:2628
    [Google Scholar]
  47. 47.
    Vaughn D, Kulpa J, Paulionis L. 2020. Preliminary investigation of the safety of escalating cannabinoid doses in healthy dogs. Front. Vet. Sci. 7:51
    [Google Scholar]
  48. 48.
    Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. 2019. Cannabidiol (CBD) use in psychiatric disorders: a systematic review. Neurotoxicology 74:28298
    [Google Scholar]
  49. 49.
    Gamble L-J, Boesch JM, Frye CW, Schwark WS, Mann S et al. 2018. Pharmacokinetics, safety, and clinical efficacy of cannabidiol treatment in osteoarthritic dogs. Front. Vet. Sci. 5:165
    [Google Scholar]
  50. 50.
    McGrath S, Bartner LR, Rao S, Kogan LR, Hellyer PW. 2018. A report of adverse effects associated with the administration of cannabidiol in healthy dogs. J. Am. Holist. Vet. Med. Assoc. 52:3438
    [Google Scholar]
  51. 51.
    Vaughn DM, Paulionis LJ, Kulpa JE. 2021. Randomized, placebo-controlled, 28-day safety and pharmacokinetics evaluation of repeated oral cannabidiol administration in healthy dogs. Am. J. Vet. Res. 82:540516
    [Google Scholar]
  52. 52.
    Sharma U, Pal D, Prasad R 2014. Alkaline phosphatase: an overview. Indian J. Clin. Biochem. 29:326978
    [Google Scholar]
  53. 53.
    Fernandez NJ, Kidney BA. 2007. Alkaline phosphatase: beyond the liver. Vet. Clin. Pathol. 36:322333
    [Google Scholar]
  54. 54.
    Deabold KA, Schwark WS, Wolf L, Wakshlag JJ. 2019. Single-dose pharmacokinetics and preliminary safety assessment with use of CBD-rich hemp nutraceutical in healthy dogs and cats. Animals 9:10832
    [Google Scholar]
  55. 55.
    Kulpa JE, Paulionis LJ, Eglit GML, Vaughn DM. 2021. Safety and tolerability of escalating cannabinoid doses in healthy cats. J. Feline Med. Surg. 23:12116275
    [Google Scholar]
  56. 56.
    Klein TW. 2005. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5:540011
    [Google Scholar]
  57. 57.
    Turcotte C, Blanchet MR, Laviolette M, Flamand N. 2016. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 73:23444970
    [Google Scholar]
  58. 58.
    Komorowska-Müller JA, Schmöle AC. 2021. CB2 receptor in microglia: the guardian of self-control. Int. J. Mol. Sci. 22:119
    [Google Scholar]
  59. 59.
    Henshaw FR, Dewsbury LS, Lim CK, Steiner GZ. 2021. The effects of cannabinoids on pro-and anti-inflammatory cytokines: a systematic review of in vivo studies. Cannabis Cannabinoid Res. 6:317795
    [Google Scholar]
  60. 60.
    Atalay S, Jarocka-Karpowicz I, Skrzydlewskas E. 2020. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 9:121
    [Google Scholar]
  61. 61.
    Mejia S, Duerr FM, Griffenhagen G, McGrath S. 2021. Evaluation of the effect of cannabidiol on naturally occurring osteoarthritis-associated pain: a pilot study in dogs. J. Am. Anim. Hosp. Assoc. 57:28190
    [Google Scholar]
  62. 62.
    Conzemius MG, Evans RB. 2012. Caregiver placebo effect for dogs with lameness from osteoarthritis. J. Am. Vet. Med. Assoc. 241:10131419
    [Google Scholar]
  63. 63.
    Verrico CD, Wesson S, Konduri V, Hofferek CJ, Vazquez-Perez J et al. 2020. Study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 161:92191202
    [Google Scholar]
  64. 64.
    Brioschi FA, Di Cesare F, Gioeni D, Rabbogliatti V, Ferrari F et al. 2020. Oral transmucosal cannabidiol oil formulation as part of a multimodal analgesic regimen: effects on pain relief and quality of life improvement in dogs affected by spontaneous osteoarthritis. Animals 10:91505
    [Google Scholar]
  65. 65.
    Morris EM, Kitts-Morgan SE, Spangler DM, Gebert J, Vanzant ES et al. 2021. Feeding cannabidiol (CBD)-containing treats did not affect canine daily voluntary activity. Front. Vet. Sci. 8:645667
    [Google Scholar]
  66. 66.
    Wong LS, Wu T, Lee CH. 2017. Inflammatory and noninflammatory itch: implications in pathophysiology-directed treatments. Int. J. Mol. Sci. 18:71485
    [Google Scholar]
  67. 67.
    Campora L, Miragliotta V, Ricci E, Cristino L, di Marzo V et al. 2012. Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis. Am. J. Vet. Res. 73:798895
    [Google Scholar]
  68. 68.
    Gugliandolo E, Licata P, Peritore AF, Siracusa R, D'Amico R et al. 2021. Effect of cannabidiol (CBD) on canine inflammatory response: an ex vivo study on LPS stimulated whole blood. Vet. Sci. 8:9185
    [Google Scholar]
  69. 69.
    Kozela E, Pietr M, Juknat A, Rimmerman N, Levy R, Vogel Z. 2010. Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-κB and interferon-β/STAT proinflammatory pathways in BV-2 microglial cells. J. Biol. Chem. 285:3161626
    [Google Scholar]
  70. 70.
    Massimini M, Dalle Vedove E, Bachetti B, Di Pierro F, Ribecco C et al. 2021. Polyphenols and cannabidiol modulate transcriptional regulation of Th1/Th2 inflammatory genes related to canine atopic dermatitis. Front. Vet. Sci. 8:606197
    [Google Scholar]
  71. 71.
    Yeisley DJ, Arabiyat AS, Hahn MS. 2021. Cannabidiol-driven alterations to inflammatory protein landscape of lipopolysaccharide-activated macrophages in vitro may be mediated by autophagy and oxidative stress. Cannabis Cannabinoid Res. 6:325363
    [Google Scholar]
  72. 72.
    Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L et al. 2007. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. 293:161019
    [Google Scholar]
  73. 73.
    Weiss L, Zeira M, Reich S, Slavin S, Raz I et al. 2008. Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54:124449
    [Google Scholar]
  74. 74.
    Weiss L, Zeira M, Reich S, Har-Noy M, Mechoulam R et al. 2006. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39:214351
    [Google Scholar]
  75. 75.
    Li H, Kong W, Chambers CR, Yu D, Ganea D et al. 2018. The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice. Cell. Immunol. 329:19
    [Google Scholar]
  76. 76.
    Qi X, Lin W, Wu Y, Li Q, Zhou X et al. 2022. CBD promotes oral ulcer healing via inhibiting CMPK2-mediated inflammasome. J. Dent. Res. 101:220615
    [Google Scholar]
  77. 77.
    Huang Y, Wan T, Pang N, Zhou Y, Jiang X et al. 2019. Cannabidiol protects livers against nonalcoholic steatohepatitis induced by high-fat high cholesterol diet via regulating NF-κB and NLRP3 inflammasome pathway. J. Cell. Physiol. 234:112122434
    [Google Scholar]
  78. 78.
    Morissette F, Mongeau-Pérusse V, Rizkallah E, Thébault P, Lepage S et al. 2021. Exploring cannabidiol effects on inflammatory markers in individuals with cocaine use disorder: a randomized controlled trial. Neuropsychopharmacology 46:210111
    [Google Scholar]
  79. 79.
    Hobbs JM, Vazquez AR, Remijan ND, Trotter RE, McMillan TV et al. 2020. Evaluation of pharmacokinetics and acute anti-inflammatory potential of two oral cannabidiol preparations in healthy adults. Phytother. Res. 34:71696703
    [Google Scholar]
  80. 80.
    de Almeida DL, Devi LA. 2020. Diversity of molecular targets and signaling pathways for CBD. Pharmacol. Res. Perspect. 8:6e00682
    [Google Scholar]
  81. 81.
    Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C et al. 2007. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13:13537
    [Google Scholar]
  82. 82.
    Kathmann M, Flau K, Redmer A, Tränkle C, Schlicker E. 2006. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 372:535461
    [Google Scholar]
  83. 83.
    Vaysse P, Gardner E, Zukin R 1987. Modulation of rat brain opioid receptors by cannabinoids. J. Pharmacol. Exp. Ther. 241:253439
    [Google Scholar]
  84. 84.
    Meng ID, Manning BH, Martin WJ, Fields HL. 1998. An analgesia circuit activated by cannabinoids. Nature 395:670038183
    [Google Scholar]
  85. 85.
    Kearsley-Fleet L, O'Neill DG, Volk HA, Church DB, Brodbelt DC 2013. Prevalence and risk factors for canine epilepsy of unknown origin in the UK. Vet. Rec. 172:13338
    [Google Scholar]
  86. 86.
    Fisher RS, Van Emde Boas W, Blume W, Elger C, Genton P et al. 2005. Response: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:447072
    [Google Scholar]
  87. 87.
    Sekar K, Pack A. 2019. Epidiolex as adjunct therapy for treatment of refractory epilepsy: a comprehensive review with a focus on adverse effects. F1000Research 8:234
    [Google Scholar]
  88. 88.
    Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N 2020. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: from behavior and mechanisms to clinical insights. Neurosci. Biobehav. Rev. 111:16682
    [Google Scholar]
  89. 89.
    Whalley BJ, Lin H, Bell L, Hill T, Patel A et al. 2019. Species-specific susceptibility to cannabis-induced convulsions. Br. J. Pharmacol. 176:10150623
    [Google Scholar]
  90. 90.
    Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B. 2009. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J. Neurosci. 29:7205363
    [Google Scholar]
  91. 91.
    Van Der Stelt M, Trevisani M, Vellani V, De Petrocellis L, Moriello AS et al. 2005. Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 24:17302637
    [Google Scholar]
  92. 92.
    Mao K, You C, Lei D, Zhang H. 2015. High dosage of cannabidiol (CBD) alleviates pentylenetetrazole-induced epilepsy in rats by exerting an anticonvulsive effect. Int. J. Clin. Exp. Med. 8:6882027
    [Google Scholar]
  93. 93.
    Morrow L, Belshaw Z. 2020. Does the addition of cannabidiol alongside current drug treatments reduce pain in dogs with osteoarthritis?. Vet. Rec. 186:1549394
    [Google Scholar]
  94. 94.
    Mogi C, Fukuyama T. 2019. Cannabidiol as a potential anti-epileptic dietary supplement in dogs with suspected epilepsy: three case reports. Pet Behav. Sci. 7:71116
    [Google Scholar]
  95. 95.
    Garcia GA, Kube S, Carrera-Justiz S, Tittle D, Wakshlag JJ. 2022. Safety and efficacy of cannabidiol-cannabidiolic acid rich hemp extract in the treatment of refractory epileptic seizures in dogs. Front. Vet. Sci. 9:939966
    [Google Scholar]
  96. 96.
    McGrath S, Bartner L, Rao S, Packer R, Gustafson D. 2019. Randomized blinded controlled clinical trial to assess the effect of oral cannabidiol administration in addition to conventional antiepileptic treatment on seizure frequency in dogs with intractable idiopathic epilepsy. Journey Am. Vet. Med. Assoc. 254:1113018
    [Google Scholar]
  97. 97.
    Berk BA, Packer RMA, Law TH, Volk HA. 2018. Investigating owner use of dietary supplements in dogs with idiopathic epilepsy. Res. Vet. Sci. 119:27684
    [Google Scholar]
  98. 98.
    Mills DS, Mueller HW, McPeake K, Engel O. 2020. Development and psychometric validation of the Lincoln Canine Anxiety Scale. Front. Vet. Sci. 7:171
    [Google Scholar]
  99. 99.
    Hsu Y, Serpell JA. 2003. Development and validation of a questionnaire for measuring behavior and temperament traits in pet dogs. J. Am. Vet. Med. Assoc. 223:91293300
    [Google Scholar]
  100. 100.
    Anderson KH, Yao Y, Perry PJ, Albright JD, Houpt KA. 2022. Case distribution, sources, and breeds of dogs presenting to a veterinary behavior clinic in the United States from 1997 to 2017. Animals 12:5576
    [Google Scholar]
  101. 101.
    Kogan LR, Hellyer PW, Silcox S, Schoenfeld-Tacher R. 2019. Canadian dog owners’ use and perceptions of cannabis products. Can. Vet. J. 60:774955
    [Google Scholar]
  102. 102.
    Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G et al. 2002. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:689753034
    [Google Scholar]
  103. 103.
    Celada P, Bortolozzi A, Artigas F. 2013. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27:970316
    [Google Scholar]
  104. 104.
    Campos AC, Fogaça MV, Sonego AB, Guimarães FS. 2016. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 112:11927
    [Google Scholar]
  105. 105.
    van den Berg L, Versteeg SA, van Oost BA. 2003. Isolation and characterization of the canine serotonin receptor IA gene (htr1A). J. Hered. 94:14956
    [Google Scholar]
  106. 106.
    Campos AC, Guimarães FS. 2009. Evidence for a potential role for TRPV1 receptors in the dorsolateral periaqueductal gray in the attenuation of the anxiolytic effects of cannabinoids. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 33:8151721
    [Google Scholar]
  107. 107.
    Mezey É, Tóth ZE, Cortright DN, Arzubi MK, Krause JE et al. 2000. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. PNAS 97:7365560
    [Google Scholar]
  108. 108.
    Guimarães FS, Chiaretti TM, Graeff FG, Zuardi AW. 1990. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 100:455859
    [Google Scholar]
  109. 109.
    Onaivi ES, Green MR, Martin BR. 1990. Pharmacological characterization of cannabinoids in plus maze. Pharmacology 253:310029
    [Google Scholar]
  110. 110.
    Andrade AK, Renda B, Murray JE 2019. Cannabinoids, interoception, and anxiety. Pharmacol. Biochem. Behav. 180:6073
    [Google Scholar]
  111. 111.
    Myers AM, Siegele PB, Foss JD, Tuma RF, Ward SJ. 2018. Single and combined effects of plant-derived and synthetic cannabinoids on cognition and cannabinoid associated withdrawal signs in mice. Br. J. Pharmacol. 176:10155267
    [Google Scholar]
  112. 112.
    ElBatsh MM, Assareh N, Marsden CA, Kendall DA. 2012. Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacology 221:223947
    [Google Scholar]
  113. 113.
    Assareh N, Gururajan A, Zhou C, Luo JL, Kevin RC, Arnold JC 2020. Cannabidiol disrupts conditioned fear expression and cannabidiolic acid reduces trauma-induced anxiety-related behaviour in mice. Behav. Pharmacol. 31:659196
    [Google Scholar]
  114. 114.
    Bahji A, Meyyappan AC, Hawken ER. 2020. Efficacy and acceptability of cannabinoids for anxiety disorders in adults: a systematic review & meta-analysis. J. Psychiatr. Res. 129:25764
    [Google Scholar]
  115. 115.
    Bergamaschi MM, Queiroz RHC, Chagas MHN, De Oliveira DCG, De Martinis BS et al. 2011. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology 36:6121926
    [Google Scholar]
  116. 116.
    Crippa JAS, Nogueira Derenusson G, Borduqui Ferrari T, Wichert-Ana L, Duran FLS et al. 2011. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J. Psychopharmacol. 25:112130
    [Google Scholar]
  117. 117.
    White CM. 2019. A review of human studies assessing cannabidiol's (CBD) therapeutic actions and potential. J. Clin. Pharmacol. 59:792334
    [Google Scholar]
  118. 118.
    Corsetti S, Borruso S, Malandrucco L, Spallucci V, Maragliano L et al. 2021. Cannabis sativa L. may reduce aggressive behaviour towards humans in shelter dogs. Sci. Rep. 11:2773
    [Google Scholar]
  119. 119.
    Morris EM, Kitts-Morgan SE, Spangler DM, McLeod KR, Costa JHC, Harmon DL. 2020. The impact of feeding cannabidiol (CBD) containing treats on canine response to a noise-induced fear response test. Front. Vet. Sci. 7:569565
    [Google Scholar]
  120. 120.
    Draeger AL, Thomas EP, Jones KA, Davis AJ, Porr CAS. 2021. The effects of pelleted cannabidiol supplementation on heart rate and reaction scores in horses. J. Vet. Behav. 46:97100
    [Google Scholar]
  121. 121.
    Ferber SG, Namdar D, Hen-Shoval D, Eger G, Koltai H et al. 2020. The “entourage effect”: terpenes coupled with cannabinoids for the treatment of mood disorders and anxiety disorders. Curr. Neuropharmacol. 18:28796
    [Google Scholar]
  122. 122.
    Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S 2014. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav. 135:11924
    [Google Scholar]
  123. 123.
    Cardoso de Almeida AA, Fonseca de Carvalho RBF, Almeida Silva O, Pergentino de Sousa D, Mendes de Freitas R. 2014. Potential antioxidant and anxiolytic effects of (+)-limonene epoxide in mice after marble-burying test. Pharmacol. Biochem. Behav. 118:6978
    [Google Scholar]
  124. 124.
    Lima NGPB, De Sousa DP, Pimenta FCF, Alves MF, De Souza FS et al. 2013. Anxiolytic-like activity and GC-MS analysis of (R)-(+)-limonene fragrance, a natural compound found in foods and plants. Pharmacol. Biochem. Behav. 103:345054
    [Google Scholar]
  125. 125.
    Satou T, Kasuya H, Maeda K, Koike K. 2014. Daily inhalation of α-pinene in mice: effects on behavior and organ accumulation. Phytother. Res. 28:9128487
    [Google Scholar]
  126. 126.
    Inkol JM, Hocker SE, Mutsaers AJ. 2021. Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells. PLOS ONE 16:8e0255591
    [Google Scholar]
  127. 127.
    Romano B, Borrelli F, Pagano E, Cascio MG, Pertwee RG, Izzo AA. 2014. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine 21:563139
    [Google Scholar]
  128. 128.
    Ramer R, Merkord J, Rohde H, Hinz B. 2010. Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem. Pharmacol. 79:795566
    [Google Scholar]
  129. 129.
    Gross C, Ramirez DA, McGrath S, Gustafson DL. 2021. Cannabidiol induces apoptosis and perturbs mitochondrial function in human and canine glioma cells. Front. Pharmacol. 12:725136
    [Google Scholar]
  130. 130.
    Henry JG, Shoemaker G, Prieto JM, Hannon MB, Wakshlag JJ. 2021. The effect of cannabidiol on canine neoplastic cell proliferation and mitogen-activated protein kinase activation during autophagy and apoptosis. Vet. Comp. Oncol. 19:225365
    [Google Scholar]
/content/journals/10.1146/annurev-animal-081122-070236
Loading

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error