1932

Abstract

The adaptive origins of primates and anthropoid primates are topics of enduring interest to biological anthropologists. A convention in these discussions is to treat the light environment as binary—night is dark, day is light—and to impute corresponding selective pressure on the visual systems and behaviors of primates. In consequence, debate has tended to focus on whether a given trait can be interpreted as evidence of nocturnal or diurnal behavior in the primate fossil record. Such classification elides the variability in light, or the ways that primates internalize light in their environments. Here, we explore the liminality of light by focusing on what it is, its many sources, and its flux under natural conditions. We conclude by focusing on the intensity and spectral properties of twilight, and we review the mounting evidence of its importance as a cue that determines the onset or offset of primate activities as well as the entrainment of circadian rhythms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-010220-075454
2020-10-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anthro/49/1/annurev-anthro-010220-075454.html?itemId=/content/journals/10.1146/annurev-anthro-010220-075454&mimeType=html&fmt=ahah

Literature Cited

  1. Allen AE, Martial FP, Lucas RJ 2019. Form vision from melanopsin in humans. Nat. Commun. 10:2274
    [Google Scholar]
  2. Anhuf D, Rollenbeck R. 2001. Canopy structure of the Rio Surumoni rain forest (Venezuela) and its influence on microclimate. Ecotropica 7:21–32
    [Google Scholar]
  3. Ankel-Simons F, Rasmussen DT. 2008. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137:100–17
    [Google Scholar]
  4. Azéma M. 2015. Animation and graphic narration in the Aurignacian. Palethnology 7:256–79
    [Google Scholar]
  5. Azéma M, Rivère F. 2012. Animation in Palaeolithic art: a pre-echo of cinema. Antiquity 86:316–24
    [Google Scholar]
  6. Behrens RR. 2009. Revisiting Abbott Thayer: non-scientific reflections about camouflage in art, war and zoology. Philos. Trans. R. Soc. B 364:497–501
    [Google Scholar]
  7. Berson DM, Dunn FA, Takao M 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–73
    [Google Scholar]
  8. Brennan R, Jan JE, Lyons CJ 2007. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology. Eye 21:901–8
    [Google Scholar]
  9. Bowmaker JK. 1998. Evolution of colour vision in vertebrates. Eye 12:541–47
    [Google Scholar]
  10. Bowmaker JK. 2008. Evolution of vertebrate visual pigments. Vis. Res. 48:2022–41
    [Google Scholar]
  11. Bowmaker JK, Dartnall HJ. 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298:501–11
    [Google Scholar]
  12. Bowmaker JK, Dartnall HJ, Mollon JD 1980. Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate. Macaca fascicularis. J. Physiol. 298:131–43
    [Google Scholar]
  13. Burton FD. 2009. Fire: The Spark that Ignited Human Evolution Albuquerque: Univ. N.M. Press
  14. Caine N, Osorio D, Mundy NI 2010. A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol. Lett. 6:36–38
    [Google Scholar]
  15. Cartmill M. 1992. New views on primate origins. Evol. Anthropol. 3:105–111
    [Google Scholar]
  16. Carvalho LS, Davies WL, Robinson PR, Hunt DM 2012. Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proc. Biol. Sci. 279:387–93
    [Google Scholar]
  17. Chazdon RL, Fetcher N. 1984. Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J. Ecol. 72:553–64
    [Google Scholar]
  18. Crompton RH. 1995.. “ Visual predation,” habitat structure, and the ancestral primate niche. Creatures of the Dark: The Nocturnal Prosimians L Alterman, GA Doyle, MK Izard 11–30 New York: Plenum
    [Google Scholar]
  19. Cronin TW, Johnsen S, Marshall NJ, Warrant EJ 2014. Visual Ecology Princeton, NJ: Princeton Univ. Press
  20. Dacey DM, Liao H-W, Peterson BB, Robinson FR, Smith VC et al. 2005. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433:749–54
    [Google Scholar]
  21. de Beaune SA. 1987. Lampes et Godets au Paléolithique, Suppl. 23: Gallia Préhistoire Paris: CNRS
    [Google Scholar]
  22. Delluc B, Delluc G. 2009. Eye and vision in Paleolithic art. An Enquiring Mind: Studies in Honor of Alexander Marshack PG Bahn 77–97 Oxford, UK: Oxbow
    [Google Scholar]
  23. Dkhissi-Benyahya O, Rieux C, Hut RA, Cooper HM 2006. Immunohistochemical evidence of a melanopsin cone in human retina. Investig. Ophthalmol. Vis. Sci. 47:1636–41
    [Google Scholar]
  24. Do MTH, Kang SH, Xue T, Zhong H, Liao H-W et al. 2008. Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457:281–87
    [Google Scholar]
  25. Dominoni DM, Halfwerk W, Baird E, Buxton RT, Fernández-Juricic E et al. 2020. Why conservation biology can benefit from sensory ecology. Nat. Ecol. Evol. 4:502–511
    [Google Scholar]
  26. Dominy NJ, Lucas PW. 2001. Ecological importance of trichromatic vision to primates. Nature 410:363–66
    [Google Scholar]
  27. Dominy NJ, Lucas PW. 2004. Significance of color, calories, and climate to the visual ecology of catarrhines. Am. J. Primatol. 62:189–207
    [Google Scholar]
  28. Douglas RH, Jeffery G. 2014. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B 281:20132995
    [Google Scholar]
  29. Dunbar RIM, Gowlett JAJ. 2014. Fireside chat: the impact of fire on hominin socioecology. Lucy to Language: The Benchmark Papers, RIM Dunbar, C Gamble, JAJ Gowlett 277–96 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  30. Dusenbery DB. 1992. Sensory Ecology: How Organisms Acquire and Respond to Information New York: W.H. Freeman
  31. Endler JA. 1993. The color of light in forests and its implications. Ecol. Monogr. 63:1–27
    [Google Scholar]
  32. Erkert HG. 2008. Diurnality and nocturnality in nonhuman primates: comparative chronobiological studies in laboratory and nature. Biol. Rhythm Res. 39:229–67
    [Google Scholar]
  33. Estrada A, Garber PA, Mittermeier RA, Wich S, Gouveia S et al. 2018. Primates in peril: the significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ 6:e4869
    [Google Scholar]
  34. Fain GL, Hardie R, Laughlin S 2010. Phototransduction and the evolution of photoreceptors. Curr. Biol. 20:114–24
    [Google Scholar]
  35. Fannin LD, McGraw WS. 2020. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour. ? Folia Primatol 91:219–27
    [Google Scholar]
  36. Fauset S, Gloor MU, Aidar MPM, Freitas HC, Fyllas NM et al. 2017. Tropical forest light regimes in a human-modified landscape. Ecosphere 8:e02002
    [Google Scholar]
  37. Fernández-Duque E, de la Iglesia H, Erkert HG 2010. Moonstruck primates: owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLOS ONE 5:e12572
    [Google Scholar]
  38. Fernández-Sampedro MA, Invergo BM, Ramon E, Bertranpetit J, Garriga P 2016. Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution. Sci. Rep. 6:21570
    [Google Scholar]
  39. Fosbury R, Koch G, Koch J 2011. Ozone: twilit skies, and (exo-)planet transits. Messenger 143:27–31
    [Google Scholar]
  40. Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW 2014. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176:917–31
    [Google Scholar]
  41. Gaston KJ, Visser ME, Hölker F 2015. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370:20140133
    [Google Scholar]
  42. Gebo DL. 2004. A shrew-sized origin for primates. Am. J. Phys. Anthropol. 125:40–62
    [Google Scholar]
  43. Gebo DL, Chapman CA. 1995. Positional behavior in five sympatric old world monkeys. Am. J. Phys. Anthropol. 97:49–76
    [Google Scholar]
  44. Gowlett JAJ. 2010. Firing up the social brain. Proc. Br. Acad. 158:341–66
    [Google Scholar]
  45. Gursky S. 2003. Lunar philia in a nocturnal primate. Int. J. Primatol. 24:351–67
    [Google Scholar]
  46. Hattar S, Liao HW, Takao M, Berson DM, Yau KW 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70
    [Google Scholar]
  47. Heesy C. 2009. Seeing in stereo: the ecology and evolution of primate binocular vision and stereopsis. Evol. Anthropol. 18:21–35
    [Google Scholar]
  48. Henderson ST. 1977. Daylight and Its Spectrum New York: Wiley. , 2nd ed..
  49. Hiramatsu C, Melin AD, Allen W, Dubuc C, Higham JP 2017. Experimental evidence that primate trichromacy is well suited for detecting primate social colour signals. Proc. R. Soc. B. 284:20162458
    [Google Scholar]
  50. Hulburt EO. 1953. Explanation of the brightness and color of the sky, particularly the twilight sky. J. Opt. Soc. Am. 43:113–18
    [Google Scholar]
  51. Hunt DM, Carvalho LS, Cowing JA, Davies WL 2009. Evolution and spectral tuning of visual pigments in birds and mammals. Philos. Trans. R. Soc. B 364:2941–55
    [Google Scholar]
  52. Jacobs GH. 2013. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—a significant trend in the evolution of mammalian vision. Vis. Neurosci. 30:39–53
    [Google Scholar]
  53. Jacobs GH, Nathans J. 2009. The evolution of primate color vision. Sci. Am. 300:56–63
    [Google Scholar]
  54. Joffe B, Peichl L, Hendrickson A, Leonhardt H, Solovei I 2014. Diurnality and nocturnality in primates: an analysis from the rod photoreceptor nuclei perspective. Evol. Biol. 41:1–11
    [Google Scholar]
  55. Johnsen S. 2012. The Optics of Life: A Biologist's Guide to Light in Nature Princeton, NJ: Princeton Univ. Press
  56. Johnsen S, Kelber A, Warrant E, Sweeney AM, Widder EA et al. 2006. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. Exp. . Biol 209:789–800
    [Google Scholar]
  57. Kamilar JM, Heesy CP, Bradley BJ 2013. Did trichromatic color vision and red hair color coevolve in primates. ? Am. J. Primatol. 75:740–51
    [Google Scholar]
  58. Kawamura S, Melin AD. 2018. Evolution of genes for color vision and the chemical senses in primates. Evolution of the Human Genome I: The Genome and Genes N Saitou 181–216 Tokyo: Springer
    [Google Scholar]
  59. Kefalov V. 2012. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. J. Biol. Chem. 287:1635–41
    [Google Scholar]
  60. Kelber A, Yovanovich C, Olsson P 2017. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B 372:20160065
    [Google Scholar]
  61. Kern HE. 1992. Twilight zeitgebers for daily resetting of circadian pacemakers. Biologic Effects of Light MF Holick, AM Kligman 205–12 Berlin: Walter Gruyter
    [Google Scholar]
  62. Koenig D, Hofer H. 2011. The absolute threshold of cone vision. J. Vis. 11:21
    [Google Scholar]
  63. Kronfeld-Schor N, Dominoni D, de la Iglesia H, Levy O, Herzog ED et al. 2013. Chronobiology by moonlight. Proc. R. Soc. B 280:20123088
    [Google Scholar]
  64. Kryger Z, Galli-Resta L, Jacobs GH, Reese BE 1998. The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci. 15:685–91
    [Google Scholar]
  65. Kyba CCM, Tong KP, Bennie J, Birriel I, Birriel JJ et al. 2015. Worldwide variations in artificial skyglow. Sci. Rep. 5:8409
    [Google Scholar]
  66. Land MF, Nilsson D-E. 2002. Animal Eyes Oxford, UK: Oxford Univ. Press
  67. Lawrence SJ, Lau E, Steutel D, Stopar JD, Wilcox BB, Lucey PG 2003. A new measurement of the absolute spectral reflectance of the moon. Lunar Planet. Sci. 34:1269–70
    [Google Scholar]
  68. Lee RL. 1994. Twilight and daytime colors of the clear sky. Appl. Opt. 33:4629–38
    [Google Scholar]
  69. Lee RL, Hernández-Andrés J. 2003. Measuring and modeling twilight's purple light. Appl. Opt. 42:445–57
    [Google Scholar]
  70. Leibowitz HW, Owens DA. 1991. Can normal outdoor activities be carried out during civil twilight. ? Appl. Opt. 30:3501–3
    [Google Scholar]
  71. Leinert C, Bowyer S, Haikala LK, Hanner MS, Hauser MG et al. 1998. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127:1–99
    [Google Scholar]
  72. LeTallec T, Perret M, Théry M 2013. Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate. PLOS ONE 8:e79250
    [Google Scholar]
  73. LeTallec T, Théry M, Perret M 2015. Effects of light pollution on seasonal estrus and daily rhythms in a nocturnal primate. J. Mammal. 96:438–45
    [Google Scholar]
  74. LeTallec T, Théry M, Perret M 2016. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 97:753–60
    [Google Scholar]
  75. Levine JS, MacNichol EF Jr 1982. Color vision in fishes. Sci. Am. 246:140–49
    [Google Scholar]
  76. Longcore T, Rich C. 2004. Ecological light pollution. Front. Ecol. Environ. 2:191–98
    [Google Scholar]
  77. Lucas PW, Beta T, Darvell BW, Dominy NJ, Essackjee HC et al. 2001. Field kit to characterize physical, chemical and spatial aspects of potential primate foods. Folia Primatol 72:11–25
    [Google Scholar]
  78. Lucas PW, Dominy NJ, Riba-Hernandez P, Stoner KE, Yamashita N et al. 2003. Evolution and function of routine trichromatic vision in primates. Evolution 57:2636–43
    [Google Scholar]
  79. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM et al. 2014. Measuring and using light in the melanopsin age. Trends Neurosci 37:1–9
    [Google Scholar]
  80. Lynch DK, Livingston WC. 2001. Color and Light in Nature Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  81. Lythgoe JN. 1979. The Ecology of Vision Oxford, UK: Oxford Univ. Press
  82. Maor R, Dayan T, Ferguson-Gow H et al. 2017. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1:1889–95
    [Google Scholar]
  83. Martin G. 1990. Birds by Night London: T & AD Poyser
  84. Martin RD, Ross CF. 2005. The evolutionary and ecological context of primate vision. The Primate Visual System: A Comparative Approach J Kremers 1–36 Chichester, UK: Wiley
    [Google Scholar]
  85. McCann JJ. 2006. Ideal illuminants for rod/L-cone color. Proceedings of SPIE 6058: Color Imaging XI: Processing, Hardcopy, and Applications605801 San Jose, CA: SPIE
    [Google Scholar]
  86. McGraw WS, Cooke C, Shultz S 2006. Primate remains from African crowned eagle (Stephanoaetus coronatus) nests in Ivory Coast's Tai Forest: implications for primate predation and early hominid taphonomy in South Africa. Am. J. Phys. Anthropol. 131:151–65
    [Google Scholar]
  87. Melin AD, Fedigan L, Hiramatsu C, Sendall C, Kawamura S 2007. Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins (Cebus capucinus). Anim. Behav. 73:205–14
    [Google Scholar]
  88. Melin AD, Hiramatsu C, Parr NA, Matsushita Y, Kawamura S, Fedigan LM 2014. The behavioral ecology of colour vision: considering fruit conspicuity, detection distance and dietary importance. Int. J. Primatol. 35:258–87
    [Google Scholar]
  89. Melin AD, Matsushita Y, Moritz GL, Dominy NJ, Kawamura S 2013. Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates. Proc. R. Soc. B 280:20130189
    [Google Scholar]
  90. Melin AD, Moritz GL, Fosbury RAE, Kawamura S, Dominy NJ 2012. Why aye-ayes see blue. Am. J. Primatol. 74:185–92
    [Google Scholar]
  91. Melin AD, Wells K, Moritz GL, Kistler L, Orkin JD et al. 2016. Euarchontan opsin variation brings new focus to primate origins. Mol. Biol. Evol. 33:1029–41
    [Google Scholar]
  92. Moreira LAA, Duytschaever G, Higham JP, Melin AD 2019. Platyrrhine color signals: new horizons to pursue. Evol. Anthropol 28:236–48
    [Google Scholar]
  93. Morgan MJ, Adam A, Mollon JD 1992. Dichromats detect colour-camouflaged objects that are not detected by trichomats. Proc. R. Soc. B. 248:291–95
    [Google Scholar]
  94. Moritz GL, Ong PS, Perry GH, Dominy NJ 2017. Functional preservation and variation in the cone opsin genes of nocturnal tarsiers. Philos. Trans. R. Soc. B 372:20160075
    [Google Scholar]
  95. Morshedian A, Fain GL. 2017. The evolution of rod photoreceptors. Philos. Trans. R. Soc. B 372:20160074
    [Google Scholar]
  96. Müller B, Peichl L. 1989. Topography of cones and rods in the tree shrew retina. J. Comp. Neurol. 282:581–94
    [Google Scholar]
  97. Munz FW, McFarland WN. 1973. The significance of spectral position in the rhodopsins of tropical marine fishes. Vis. Res. 13:1829–74
    [Google Scholar]
  98. Osorio D, Smith AC, Vorobyev M, Buchanan-Smith HM 2004. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164:696–708
    [Google Scholar]
  99. Palmer G, Johnsen S. 2015. Downwelling spectral irradiance during evening twilight as a function of the lunar phase. Appl. Opt. 54:B85–92
    [Google Scholar]
  100. Pariente GF. 1974. Influence of light on the activity rhythms of two Malagasy lemurs: Phaner furcifer and Lepilemur mustelinus leucopus. Prosimian Biology RD Martin, GA Doyle, AC Walker 183–98 Pittsburgh, PA: Univ. Pittsburgh Press
    [Google Scholar]
  101. Pariente GF. 1980. Quantitative and qualitative study of the light available in the natural biotope of Malagasy prosimians. Nocturnal Malagasy Primates: Ecology, Physiology and Behaviour P Charles-Dominique, HM Cooper, A Hladik, CM Hladik, E Pages et al.117–34 New York: Academic
    [Google Scholar]
  102. Pastoors A, Weniger G-C. 2011. Cave art in context: methods for the analysis of the spatial organization of cave sites. J. Archaeol. Res. 19:377–400
    [Google Scholar]
  103. Peichl L. 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle. ? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287:1001–12
    [Google Scholar]
  104. Peichl L, Kaiser A, Rakotondraparany F, Dubielzig RR, Goodman SM, Kappeler PM 2019. Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. J. Comp. Neurol. 527:13–37
    [Google Scholar]
  105. Perry GH, Martin RD, Verrelli BC 2007. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. Mol. Biol. Evol. 24:1963–70
    [Google Scholar]
  106. Pessoa DMA, Maia R, Ajuz RCA, De Moraes PZPMR, Spyrides MHC et al. 2014. The adaptive value of primate color vision for predator detection. Am. J. Primatol. 76:721–29
    [Google Scholar]
  107. Pettitt P. 2016. Darkness visible: shadows, art and the ritual experience of caves in Upper Palaeolithic Europe. The Archaeology of Darkness M Dowd, R Hensey 11–23 Oxford, UK: Oxbow
    [Google Scholar]
  108. Pettitt P, Lelushko S, Sakamoto T 2017. Light, human evolution, and the Palaeolithic. The Oxford Handbook of Light in Archaeology C Papadopoulos, H Moyes 1–29 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  109. Pugh EN Jr 2018. The discovery of the ability of rod photoreceptors to signal single photons. J. Gen. Physiol. 150:383–88
    [Google Scholar]
  110. Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD 1998. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vis. Res. 38:3321–27
    [Google Scholar]
  111. Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD 2001. Fruits, foliage and the evolution of primate colour vision. Philos. Trans. R. Soc. B 356:229–83
    [Google Scholar]
  112. Roenneberg T, Foster RG. 1997. Twilight times: light and the circadian system. Photochem. Photobiol. 66:549–61
    [Google Scholar]
  113. Ross CF. 2000. Into the light: the origin of Anthropoidea. Annu. Rev. Anthropol. 29:147–94
    [Google Scholar]
  114. Sanders WJ, Trapani J, Mitani JC 2003. Taphonomic aspects of crowned hawk-eagle predation on monkeys. J. Hum. Evol. 44:87–105
    [Google Scholar]
  115. Schnapf JL, Kraft TW, Nunn BJ, Baylor DA 1988. Spectral sensitivity of primate photoreceptors. Vis. Neurosci. 1:255–61
    [Google Scholar]
  116. Shultz S. 2001. Notes on interactions between monkeys and African crowned eagles in Taï National Park, Ivory Coast. Folia Primatol 72:248–50
    [Google Scholar]
  117. Silcox MT, López-Torres S. 2017. Major questions in the study of primate origins. Annu. Rev. Earth Planet. Sci. 45:113–37
    [Google Scholar]
  118. Smith G, Vingrys AJ, Maddocks JD, Hely CP 1994. Color recognition and discrimination under full-moon light. Appl. Opt. 33:4741–48
    [Google Scholar]
  119. Spitschan M, Aguirre GK, Brainard DH, Sweeney AM 2016. Variation of outdoor illumination as a function of solar elevation and light pollution. Sci. Rep. 6:26756
    [Google Scholar]
  120. Sussman R. 1991. Primate origins and the evolution of angiosperms. Am. J. Primatol. 22:209–23
    [Google Scholar]
  121. Tan Y, Yoder AD, Yamashita N, Li W-H 2005. Evidence from opsin genes rejects nocturnality in ancestral primates. PNAS 102:14712–16
    [Google Scholar]
  122. Thayer AH. 1896. The law which underlies protective coloration. Auk 13:124–29
    [Google Scholar]
  123. Thayer GH. 1909. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer's Discoveries. New York: Macmillan
  124. Thiermann R, Sweeney A, Murugan A 2018. Information content of downwelling skylight for non-imaging visual systems. bioRxiv 40898 9. https://doi.org/10.1101/408989
    [Crossref]
  125. Thomassen B. 2009. The uses and meanings of liminality. Int. Political Anthropol. 2:5–28
    [Google Scholar]
  126. Turner VW. 1967. Betwixt and between: the liminal period in rites de passage. The Forest of Symbols: Aspects of Ndembu Ritual93–111 Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  127. Utiger RD. 1992. Melatonin—the hormone of darkness. New Engl. J. Med. 327:1377–79
    [Google Scholar]
  128. van der Meijden WP, te Lindert BHW, Ramautar JR, Wei Y, Coppens JE et al. 2018. Sustained effects of prior red light on pupil diameter and vigilance during subsequent darkness. Proc. R. Soc. B 285:20180989
    [Google Scholar]
  129. van Gennep A. 1960. 1909. The Rites of Passage Chicago: Univ. Chicago Press
  130. Veilleux CC, Cummings ME. 2012. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215:4085–96
    [Google Scholar]
  131. Veilleux CC, Louis EE, Bolnick DA 2013. Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. Mol. Biol. Evol. 30:1420–37
    [Google Scholar]
  132. Walls GL. 1942. The Vertebrate Eye and Its Adaptive Radiation Bloomfield Hills, MI: Cranbrook Inst. Sci.
  133. Walmsley L, Hanna L, Mouland J, Martial F, West A et al. 2015. Colour as a signal for entraining the mammalian circadian clock. PLOS Biol 13:e1002127
    [Google Scholar]
  134. Wang K, Dickinson RE, Liang S 2009. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 323:1468–70
    [Google Scholar]
  135. Wiessner PW. 2014. Embers of society: firelight talk among the Ju/’hoansi Bushmen. PNAS 111:14027–35
    [Google Scholar]
  136. Williams BA, Kay RF, Kirk EC 2010. New perspectives on anthropoid origins. PNAS 107:4797–804
    [Google Scholar]
  137. Wong KY. 2012. A retinal ganglion cell that can signal irradiance continuously for 10 hours. J. Neurosci. 32:11478–85
    [Google Scholar]
  138. Wyszecki G, Stiles WS. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae New York: Wiley. , 2nd ed..
  139. Yamashita N, Stoner KE, Riba-Hernández P, Dominy NJ, Lucas PW 2005. Light levels used during feeding by primate species with different color vision phenotypes. Behav. Ecol. Sociobiol. 58:618–29
    [Google Scholar]
  140. Yokoyama S. 2002. Molecular evolution of color vision in vertebrates. Gene 300:69–78
    [Google Scholar]
  141. Yokoyama S, Tada T, Zhang H, Britt L 2008. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. PNAS 105:13480–85
    [Google Scholar]
  142. Zelle AJ, Cao D. 2015. Vision under mesopic and scotopic illumination. Front. Psychol. 5:1594
    [Google Scholar]
  143. Zhao H, Rossiter SJ, Teeling EC, Li C, Cotton JA, Zhang S 2009a. The evolution of color vision in nocturnal mammals. PNAS 106:8980–85
    [Google Scholar]
  144. Zhao H, Ru B, Teeling EC, Faulkes CG, Zhang S, Rossiter SJ 2009b. Rhodopsin molecular evolution in mammals inhabiting low light environments. PLOS ONE 4:e8326
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-010220-075454
Loading
/content/journals/10.1146/annurev-anthro-010220-075454
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error