1932

Abstract

Human behavior is shaped by social learning to an extent that is unrivaled in the natural world. What neurobiological changes have occurred in human evolutionary history that have enabled this remarkable cultural capacity? Human brain anatomy and function have evolved to be highly responsive to experience from the environment, especially the milieu of social interactions. Numerous aspects of human brain development show evidence of specialization leading to increased plasticity. These include the timing of brain growth relative to birth, rates of synaptogenesis and myelination, and shifts in gene expression and epigenetic modifications. Some of these evolutionary changes in human brain plasticity are also evident in fossil hominins and from analyses of ancient DNA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-102215-100009
2017-10-23
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anthro/46/1/annurev-anthro-102215-100009.html?itemId=/content/journals/10.1146/annurev-anthro-102215-100009&mimeType=html&fmt=ahah

Literature Cited

  1. Aiello LC, Wheeler P. 1995. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36:2199–221 [Google Scholar]
  2. Antón SC. 1997. Developmental age and taxonomic affinity of the Mojokerto child, Java, Indonesia. Am. J. Phys. Anthropol. 102:4497–514 [Google Scholar]
  3. Antón SC. 2002. Evolutionary significance of cranial variation in Asian Homo erectus. Am. J. Phys. Anthropol. 118:4301–23 [Google Scholar]
  4. Antón SC. 2003. Natural history of Homo erectus. . Am. J. Phys. Anthropol. 122:S37126–70 [Google Scholar]
  5. Babbitt CC, Fedrigo O, Pfefferle AD, Boyle AP, Horvath JE. et al. 2010. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain. Genome Biol. Evol. 2:67–79 [Google Scholar]
  6. Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM. et al. 2010. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage 49:32045–52 [Google Scholar]
  7. Barton RA, Venditti C. 2013. Human frontal lobes are not relatively large. PNAS 110:229001–6 [Google Scholar]
  8. Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA. et al. 2013. A volumetric comparison of the insular cortex and its subregions in primates. J. Hum. Evol. 64:4263–79 [Google Scholar]
  9. Bauernfeind AL, Reyzer ML, Caprioli RM, Ely JJ, Babbitt CC. et al. 2015. High spatial resolution proteomic comparison of the brain in humans and chimpanzees. J. Comp. Neurol. 523:142043–61 [Google Scholar]
  10. Bianchi S, Stimpson CD, Duka T, Larsen MD, Janssen WGM. et al. 2013. Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. PNAS 110:Suppl. 210395–401 [Google Scholar]
  11. Birney E, Pritchard JK. 2014. Archaic humans: Four makes a party. Nature 505:748132–34 [Google Scholar]
  12. Boyd R, Richerson PJ, Henrich J. 2011. The cultural niche: why social learning is essential for human adaptation. PNAS 108:Suppl. 210918–25 [Google Scholar]
  13. Bruner E, De La Cuétara JM, Holloway R. 2011. A bivariate approach to the variation of the parietal curvature in the genus Homo. . Anat. Rec. 294:1548–56 [Google Scholar]
  14. Brunet M, Guy F, Pilbeam D, Mackaye HT, Likius A. et al. 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:6894145–51 [Google Scholar]
  15. Buckner RL, Krienen FM. 2013. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17:648–65 [Google Scholar]
  16. Bufill E, Agustí J, Blesa R. 2011. Human neoteny revisited: the case of synaptic plasticity. Am. J. Hum. Biol. 23:729–39 [Google Scholar]
  17. Bufill E, Blesa R, Augustí J. 2013. Alzheimer's disease: an evolutionary approach. J. Anthropol. Sci. 91:135–57 [Google Scholar]
  18. Burkart JM, Allon O, Amici F, Fichtel C, Finkenwirth C. et al. 2014. The evolutionary origin of human hyper-cooperation. Nat. Commun. 5:4747 [Google Scholar]
  19. Cáceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L. et al. 2003. Elevated gene expression levels distinguish human from non-human primate brains. PNAS 100:13030–35 [Google Scholar]
  20. Cáceres M, Suwyn C, Maddox M, Thomas JW, Preuss TM. 2007. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. Cereb. Cortex 17:2312–21 [Google Scholar]
  21. Charrier C, Joshi K, Coutinho-Budd J, Kim J-E, Lambert N. et al. 2012. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:4923–35 [Google Scholar]
  22. Charvet CJ, Hof PR, Raghanti MA, Van Der Kouwe AJ, Sherwood CC, Takahashi E. 2017. Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates. J. Comp. Neurol. 525:51075–93 [Google Scholar]
  23. Cofran Z, DeSilva JM. 2015. A neonatal perspective on Homo erectus brain growth. J. Hum. Evol. 81:41–47 [Google Scholar]
  24. Coqueugniot H, Hublin J-J, Veillon F, Houët F, Jacob T. 2004. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431:7006299–302 [Google Scholar]
  25. de Graaf-Peters VB, Hadders-Algra M. 2006. Ontogeny of the human central nervous system: What is happening when?. Early Hum. Dev. 82:4257–66 [Google Scholar]
  26. Deacon TW. 1997. The Symbolic Species: The Co-Evolution of Language and the Brain New York: Norton
  27. Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA. et al. 2012. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149:912–22 [Google Scholar]
  28. DeSilva JM. 2011. A shift toward birthing relatively large infants early in human evolution. PNAS 108:31022–27 [Google Scholar]
  29. Dettmer AM, Kaburu SS, Simpson EA, Paukner A, Sclafani V. et al. 2016. Neonatal face-to-face interactions promote later social behaviour in infant rhesus monkeys. Nat. Commun. 7:11940 [Google Scholar]
  30. Dongen SV. 2006. Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 19:1727–43 [Google Scholar]
  31. Dubois J, Benders M, Cachia A, Lazeyras F, Ha-Vinh Leuchter R. et al. 2008. Mapping the early cortical folding process in the preterm newborn brain. Cereb. Cortex 18:61444–54 [Google Scholar]
  32. Dunsworth HM, Warrener AG, Deacon T, Ellison PT, Pontzer H. 2012. Metabolic hypothesis for human altriciality. PNAS 109:3815212–16 [Google Scholar]
  33. Edelman G. 1987. Neural Darwinism. The Theory of Neuronal Group Selection New York: Basic Books
  34. Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J. et al. 2006. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 288A:126–35 [Google Scholar]
  35. Enard W. 2011. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr. Opin. Neurobiol. 21:415–24 [Google Scholar]
  36. Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T. et al. 2009. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137:961–71 [Google Scholar]
  37. Fields RD. 2015. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16:12756–67 [Google Scholar]
  38. Finlay BL, Uchiyama R. 2015. Developmental mechanisms channeling cortical evolution. Trends Neurosci 38:69–76 [Google Scholar]
  39. Fisher SE, Scharff C. 2009. FOXP2 as a molecular window into speech and language. Trends Genet 25:4166–77 [Google Scholar]
  40. Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H. et al. 2015. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cereb. Cortex 25:126–34 [Google Scholar]
  41. Fu X, Giavalisco P, Liu X, Catchpole G, Fu N. et al. 2011. Rapid metabolic evolution in human prefrontal cortex. PNAS 108:6181–86 [Google Scholar]
  42. Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA. et al. 2014. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344:6183523–27 [Google Scholar]
  43. Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. 2015. Relaxed genetic control of cortical organization in human brains compared with chimpanzees. PNAS 112:4814799–804 [Google Scholar]
  44. Gómez-Robles A, Hopkins WD, Sherwood CC. 2013. Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc. R. Soc. B 280:176120130575 [Google Scholar]
  45. Gómez-Robles A, Hopkins WD, Sherwood CC. 2014. Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans. Nat. Commun. 5:4469 [Google Scholar]
  46. Gómez-Robles A, Hopkins WD, Schapiro SJ, Sherwood CC. 2016. The heritability of chimpanzee and human brain asymmetry. Proc. R. Soc. B 283:184520161319 [Google Scholar]
  47. Gómez-Robles A, Smaers JB, Sherwood CC. 2017. The evolution of human altriciality and brain plasticity in comparative context. Am. J. Phys. Anthropol. 161:197 [Google Scholar]
  48. Gould SJ. 1977. Ontogeny and Phylogeny Cambridge, MA: Harvard Univ. Press
  49. Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin J-J. 2012. A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62:2300–313 [Google Scholar]
  50. Gunz P, Neubauer S, Maureille B, Hublin J-J. 2010. Brain development after birth differs between Neanderthals and modern humans. Curr. Biol. 20:21R921–22 [Google Scholar]
  51. Halley AC. 2017. Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proc. Biol. Sci. B 284:185420170219 [Google Scholar]
  52. Han S, Ma Y. 2015. A culture-behavior-brain loop model of human development. Trends Cogn. Sci. 19:666–76 [Google Scholar]
  53. Hare B. 2011. From hominoid to hominid mind: What changed and why?. Annu. Rev. Anthropol. 40:293–309 [Google Scholar]
  54. Harmand S, Lewis JE, Feibel CS, Lepre CJ, Prat S. et al. 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521:7552310–15 [Google Scholar]
  55. Hawkes K. 2003. Grandmothers and the evolution of human longevity. Am. J. Hum. Biol. 15:380–400 [Google Scholar]
  56. Hecht EE, Gutman DA, Bradley BA, Preuss TM, Stout D. 2015. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage 108:124–37 [Google Scholar]
  57. Herculano-Houzel S. 2012. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. PNAS 109:Suppl. 110661–68 [Google Scholar]
  58. Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D. 2010. Similar patterns of cortical expansion during human development and evolution. PNAS 107:2913135–40 [Google Scholar]
  59. Holloway RL. 1968. The evolution of the primate brain: some aspects of quantitative relations. Brain Res 7:2121–72 [Google Scholar]
  60. Holloway RL, Broadfield DC, Yuan MS. 2004. The Human Fossil Record 3 Brain Endocasts: The Paleoneurological Evidence Hoboken, NJ: Wiley-Liss
  61. Hrdy SB. 2011. Mother and Others: The Evolutionary Origins of Mutual Understanding Cambridge, MA: Belknap Press
  62. Hrvoj-Mihic B, Bienvenu T, Stefanacci L, Muotri AR, Semendeferi K. 2013. Evolution, development, and plasticity of the human brain: from molecules to bones. Front. Hum. Neurosci. 7:707 [Google Scholar]
  63. Hublin J-J, Neubauer S, Gunz P. 2015. Brain ontogeny and life history in Pleistocene hominins. Philos. Trans. R. Soc. B 370:166320140062 [Google Scholar]
  64. Huffman OF, Zaim Y, Kappelman J, Ruez DR Jr., de Vos J. et al. 2006. Relocation of the 1936 Mojokerto skull discovery site near Perning, East Java. J. Hum. Evol. 50:4431–51 [Google Scholar]
  65. Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP. et al. 1998. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann. Neurol. 43:2224–35 [Google Scholar]
  66. Huttenlocher PR. 1984. Synapse elimination and plasticity in developing human cerebral cortex. Am. J. Ment. Defic. 88:5488–96 [Google Scholar]
  67. Huttenlocher PR, Dabholkar AS. 1997. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387:2167–78 [Google Scholar]
  68. Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H. 1982. Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development. Neurosci. Lett. 33:3247–52 [Google Scholar]
  69. Isler K, van Schaik CP. 2009. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57:4392–400 [Google Scholar]
  70. Isler K, Van Schaik CP. 2014. How humans evolved large brains: comparative evidence. Evol. Anthropol. 23:65–75 [Google Scholar]
  71. Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13:484–92 [Google Scholar]
  72. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M. et al. 2005. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309:1850–54 [Google Scholar]
  73. Konner M. 2011. The Evolution of Childhood: Relationships, Emotion, Mind Cambridge, MA: Belknap Press
  74. Kostović I, Judaš M, Radoš M, Hrabač P. 2002. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex 12:5536–44 [Google Scholar]
  75. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE. et al. 2007. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr. Biol. 17:1908–12 [Google Scholar]
  76. Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O. et al. 2014. Metabolic costs and evolutionary implications of human brain development. PNAS 111:13010–15 [Google Scholar]
  77. Leigh SR. 2006. Brain ontogeny and life history in Homo erectus. . J. Hum. Evol. 50:1104–8 [Google Scholar]
  78. Leonard WR, Robertson ML. 1994. Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. Am. J. Hum. Biol. 6:177–88 [Google Scholar]
  79. Levitt P. 2003. Structural and functional maturation of the developing primate brain. J. Pediatr. 143:4 Suppl.35–45 [Google Scholar]
  80. Liu X, Han D, Somel M, Jiang X, Hu H. et al. 2016. Disruption of an evolutionarily novel synaptic expression pattern in autism. PLOS Biol 14:e1002558 [Google Scholar]
  81. Liu X, Somel M, Tang L, Yan Z, Jiang X. et al. 2012. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 22:611–22 [Google Scholar]
  82. Locke JL, Bogin B. 2006. Language and life history: a new perspective on the development and evolution of human language. Behav. Brain Sci. 29:3259–80; discussion 280–325 [Google Scholar]
  83. Lossi L, Merighi A. 2003. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol. 69:5287–312 [Google Scholar]
  84. Maricic T, Günther V, Georgiev O, Gehre S, Ćurlin M. et al. 2013. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol. Biol. Evol. 30:4844–52 [Google Scholar]
  85. Marques-Bonet T, Ryder OA, Eichler EE. 2009. Sequencing primate genomes: What have we learned?. Annu. Rev. Genom. Hum. Genet. 10:355–86 [Google Scholar]
  86. Mars RB, Passingham RE, Neubert F-X, Verhagen L, Sallet J. 2017. Evolutionary specializations of human association cortex. Evolution of Nervous Systems J Kaas, TM Preuss 185–205 Cambridge, MA: Acad. Press/Elsevier. , 2nd ed.. [Google Scholar]
  87. McFarlin SC, Barks SK, Tocheri MW, Massey JS, Eriksen AB. et al. 2013. Early brain growth cessation in wild Virunga mountain gorillas (Gorilla beringei beringei). Am. J. Primatol. 75:450–63 [Google Scholar]
  88. McLaughlin KA, Sheridan MA, Nelson CA. 2017. Neglect as a violation of species-expectant experience: neurodevelopmental consequences. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2017.02.1096
  89. Mendizabal I, Shi L, Keller TE, Konopka G, Preuss TM. et al. 2016. Comparative methylome analyses identify epigenetic regulatory loci of human brain evolution. Mol. Biol. Evol. 33:2947–59 [Google Scholar]
  90. Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B. et al. 2014. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505:403–6 [Google Scholar]
  91. Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F. et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338:6104222–26 [Google Scholar]
  92. Meyer M, Arsuaga J-L, de Filippo C, Nagel S, Aximu-Petri A. et al. 2016. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504–7 [Google Scholar]
  93. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB. et al. 2012. Prolonged myelination in human neocortical evolution. PNAS 109:16480–85 [Google Scholar]
  94. Mitani JC, Call J, Kappeler PM, Palombit RA, Silk JB. 2012. The Evolution of Primate Societies Chicago: Univ. Chicago Press
  95. Morwood MJ, O'Sullivan P, Susanto EE, Aziz F. 2003. Revised age for Mojokerto 1, an early Homo erectus cranium from East Java, Indonesia. Aust. Archaeol. 57:1–4 [Google Scholar]
  96. Muntané G, Horvath JE, Hof PR, Ely JJ, Hopkins WD. et al. 2015. Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission. Cereb. Cortex 25:1596–607 [Google Scholar]
  97. O'Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM. 2012. Evolution of genetic and genomic features unique to the human lineage. Nat. Rev. Genet. 13:12853–66 [Google Scholar]
  98. O'Connell CA, DeSilva JM. 2013. Mojokerto revisited: evidence for an intermediate pattern of brain growth in Homo erectus. . J. Hum. Evol. 65:2156–61 [Google Scholar]
  99. Orlando L, Willerslev E. 2014. An epigenetic window into the past?. Science 345:6196511–12 [Google Scholar]
  100. Palmer AR, Strobeck C. 2003. Fluctuating asymmetry analyses revisited. Developmental Instability. Causes and Consequences M Polak 279–319 Oxford, UK: Oxford Univ. Press [Google Scholar]
  101. Passingham RE, Smaers JB. 2014. Is the prefrontal cortex especially enlarged in the human brain? Allometric relations and remapping factors. Brain Behav. Evol. 84:2156–66 [Google Scholar]
  102. Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HBM. et al. 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS 108:3213281–86 [Google Scholar]
  103. Phillips KA, Sherwood CC. 2008. Cortical development in brown capuchin monkeys: a structural MRI study. Neuroimage 43:4657–64 [Google Scholar]
  104. Pigliucci M. 2005. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20:9481–86 [Google Scholar]
  105. Platt ML, Seyfarth RM, Cheney DL. 2016. Adaptations for social cognition in the primate brain. Philos. Trans. R. Soc. B 371:168720150096 [Google Scholar]
  106. Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CPE. 2016. Brain development is similar in Neanderthals and modern humans. Curr. Biol. 26:14R665–66 [Google Scholar]
  107. Pontzer H, Brown MH, Raichlen DA, Dunsworth H, Hare B. et al. 2016. Metabolic acceleration and the evolution of human brain size and life history. Nature 533:390–92 [Google Scholar]
  108. Portmann A. 1969. Biologische Fragmente Zu Einer Lehre Vom Menschen Basel, Switz.: Benno Schwabe
  109. Preuss TM. 2011. The human brain: rewired and running hot. Ann. N. Y. Acad. Sci. 1225:Suppl. 1E182–91 [Google Scholar]
  110. Preuss TM, Cáceres M, Oldham MC, Geschwind DH. 2004. Human brain evolution: insights from microarrays. Nat. Rev. Genet. 5:850–60 [Google Scholar]
  111. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S. et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:748143–49 [Google Scholar]
  112. Rakic P, Bourgeois J, Eckenhoff M, Zecevic N, Goldman-Rakic P. 1986. Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:4747232–35 [Google Scholar]
  113. Reich D, Green RE, Kircher M, Krause J, Patterson N. et al. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:73271053–60 [Google Scholar]
  114. Richerson P, Baldini R, Bell AV, Demps K, Frost K. et al. 2016. Cultural group selection plays an essential role in explaining human cooperation: a sketch of the evidence. Behav. Brain Sci. 39:e30 [Google Scholar]
  115. Rilling JK. 2006. Human and nonhuman primate brains: Are they allometrically scaled versions of the same design?. Evol. Anthropol. 15:265–77 [Google Scholar]
  116. Rilling JK. 2008. Neuroscientific approaches and applications within anthropology. Am. J. Phys. Anthropol. 137(Suppl. 47):2–32 [Google Scholar]
  117. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T. et al. 2008. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11:426–28 [Google Scholar]
  118. Rilling JK, Seligman RA. 2002. A quantitative morphometric comparative analysis of the primate temporal lobe. J. Hum. Evol. 42:5505–33 [Google Scholar]
  119. Robbins MM, Ando C, Fawcett KA, Grueter CC, Hedwig D. et al. 2016. Behavioral variation in gorillas: evidence of potential cultural traits. PLOS ONE 11:9e0160483 [Google Scholar]
  120. Rosenberg KR. 1992. The evolution of modern human childbirth. Am. J. Phys. Anthropol. 35:S1589–124 [Google Scholar]
  121. Russell JL, Lyn H, Schaeffer JA, Hopkins WD. 2011. The role of socio-communicative rearing environments in the development of social and physical cognition in apes. Dev. Sci. 14:1459–70 [Google Scholar]
  122. Sacher GA, Staffeldt EF. 1974. Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. Am. Nat. 108:963593–615 [Google Scholar]
  123. Sakai T, Matsui M, Mikami A, Malkova L, Hamada Y. et al. 2012. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proc. R. Soc. B 280:175320122398 [Google Scholar]
  124. Sawyer S, Renaud G, Viola B, Hublin J-J, Gansauge M-T. et al. 2015. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. PNAS 112:5115696–700 [Google Scholar]
  125. Schnack HG, van Haren NE, Brouwer RM, Evans A, Durston S. et al. 2015. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb. Cortex 25:1608–17 [Google Scholar]
  126. Schneider E, El Hajj N, Haaf T. 2014. Epigenetic information from ancient DNA provides new insights into human evolution. Brain. Behav. Evol. 84:3169–71 [Google Scholar]
  127. Schoenemann PT. 2006. Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol. 35:379–406 [Google Scholar]
  128. Schoenemann PT, Sheehan MJ, Glotzer LD. 2005. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8:2242–52 [Google Scholar]
  129. Schuppli C, Isler K, van Schaik CP. 2012. How to explain the unusually late age at skill competence among humans. J. Hum. Evol. 63:6843–50 [Google Scholar]
  130. Semendeferi K, Lu A, Schenker N, Damasio H. 2002. Humans and great apes share a large frontal cortex. Nat. Neurosci. 5:3272–76 [Google Scholar]
  131. Senut B, Pickford M, Gommery D, Mein P, Cheboi K, Coppens Y. 2001. First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus Acad. Sci. - Ser. IIA - Earth Planet. Sci. 332:2137–44 [Google Scholar]
  132. Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R. et al. 2006. Intellectual ability and cortical development in children and adolescents. Nature 440:676–79 [Google Scholar]
  133. Sherwood CC, Gordon AD, Allen JS, Phillips KA, Erwin JM. et al. 2011. Aging of the cerebral cortex differs between humans and chimpanzees. PNAS 108:13029–34 [Google Scholar]
  134. Sherwood CC, Subiaul F, Zawidzki TW. 2008. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212:4426–54 [Google Scholar]
  135. Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC. 2017. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr. Biol. 27:5714–20 [Google Scholar]
  136. Smith TM, Tafforeau P, Reid DJ, Pouech J, Lazzari V. et al. 2010. Dental evidence for ontogenetic differences between modern humans and Neanderthals. PNAS 107:4920923–28 [Google Scholar]
  137. Somel M, Franz H, Yan Z, Lorenc A, Guo S. et al. 2009. Transcriptional neoteny in the human brain. PNAS 106:5743–48 [Google Scholar]
  138. Somel M, Liu X, Khaitovich P. 2013. Human brain evolution: transcripts, metabolites and their regulators. Nat. Rev. Neurosci. 14:112–27 [Google Scholar]
  139. Sotiras A, Toledo JB, Gur RE, Gur RC, Satterthwaite TD, Davatzikos C. 2017. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion. PNAS 114:3527–32 [Google Scholar]
  140. Sterner KN, Weckle A, Chugani HT, Tarca AL, Sherwood CC. et al. 2012. Dynamic gene expression in the human cerebral cortex distinguishes children from adults. PLOS ONE 7:e37714 [Google Scholar]
  141. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M. et al. 2010. Diversity of human copy number variation and multicopy genes. Science 330:641–46 [Google Scholar]
  142. Swisher CC III, Curtis GH, Jacob T, Getty AG, Suprijo A, Widiasmoro. 1994. Age of the earliest known hominids in Java, Indonesia. Science 263:51501118–21 [Google Scholar]
  143. Tau GZ, Peterson BS. 2009. Normal development of brain circuits. Neuropsychopharmacology 35:1147–68 [Google Scholar]
  144. Teffer K, Semendeferi K. 2012. Human prefrontal cortex: evolution, development, and pathology. Prog. Brain Res. 195:191–218 [Google Scholar]
  145. Tomasello M. 2009. The Cultural Origins of Human Cognition Cambridge, MA: Harvard Univ. Press
  146. Travis K, Ford K, Jacobs B. 2005. Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev. Neurosci. 27:5277–87 [Google Scholar]
  147. Trevathan WR, Rosenberg KR. 2016. Human evolution and the helpless infant.. Costly and Cute: Helpless Infants and Human Evolution, WR Trevathan, KR Rosenberg 1–28 Albuquerque: Univ. N. M. Press [Google Scholar]
  148. Uddin M, Wildman DE, Liu G, Xu W, Johnson RM. et al. 2004. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. PNAS 101:2957–62 [Google Scholar]
  149. Vallender EJ, Mekel-Bobrov N, Lahn BT. 2008. Genetic basis of human brain evolution. Trends Neurosci 31:637–44 [Google Scholar]
  150. van Schaik CP, Ancrenaz M, Borgen G, Galdikas B, Knott CD. et al. 2003. Orangutan cultures and the evolution of material culture. Science 299:102–5 [Google Scholar]
  151. Verendeev A, Sherwood CC. 2017. Human brain evolution. Curr. Opin. Behav. Sci. 16:41–45 [Google Scholar]
  152. Villmoare B, Kimbel WH, Seyoum C, Campisano CJ, DiMaggio EN. et al. 2015. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347:1352–55 [Google Scholar]
  153. Webb SJ, Monk CS, Nelson CA. 2001. Mechanisms of postnatal neurobiological development: implications for human development. Dev. Neuropsychol. 19:2147–71 [Google Scholar]
  154. White T, Su S, Schmidt M, Kao C-Y, Sapiro G. 2010. The development of gyrification in childhood and adolescence. Brain Cogn 72:136–45 [Google Scholar]
  155. White TD, Suwa G, Asfaw B. 1994. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371:6495306–12 [Google Scholar]
  156. Whiten A, Goodall J, McGrew WC, Nishida T, Reynolds V. et al. 1999. Cultures in chimpanzees. Nature 399:682–85 [Google Scholar]
  157. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL. 2013. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33:7368–83 [Google Scholar]
  158. Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV. 2012. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am. J. Hum. Genet. 91:455–65 [Google Scholar]
  159. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LTY. et al. 2013. Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–81 [Google Scholar]
/content/journals/10.1146/annurev-anthro-102215-100009
Loading
/content/journals/10.1146/annurev-anthro-102215-100009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error