1932

Abstract

Dioecy, the presence of male and female flowers on separate individuals, is both widespread and uncommon within flowering plants, with only a few percent of dioecious species spread across most major phylogenetic taxa. It is therefore safe to assume that dioecy evolved independently in these different groups, which allows us to ask questions regarding the molecular and developmental mechanisms underlying these independent transitions to dioecy. We start this review by examining the problem from the standpoint of a genetic engineer trying to develop dioecy, discuss various potential solutions, and compare them to models proposed in the past and based on genetic and evolutionary considerations. Next, we present recent information regarding candidate sex determinants in three species, acquired using newly established genomic approaches. Although such specific information is still scarce, it is slowly becoming apparent that various genes or pathways can be altered to evolve dioecy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040615
2018-04-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040615.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040615&mimeType=html&fmt=ahah

Literature Cited

  1. Adams KL, Wendel JF. 1.  2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8:2135–41 [Google Scholar]
  2. Ainsworth C.2.  2000. Boys and girls come out to play: the molecular biology of dioecious plants. Ann. Bot. 86:2211–21 [Google Scholar]
  3. Ainsworth CC, Lu J, Winfield M, Parker JS. 3.  1999. Sex determination by X:autosome dosage: Rumex acetosa (sorrel). Sex Determination in Plants CC Ainsworth 121–36 Oxford, UK: BIOS Sci [Google Scholar]
  4. Akagi T, Henry IM, Kawai T, Comai L, Tao R. 4.  2016. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 28:122905–15Polyploidy is associated with conversion from genetic to epigenetic sex determination. [Google Scholar]
  5. Akagi T, Henry IM, Tao R, Comai L. 5.  2014. Plant genetics. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346:6209646–50This article compares anonymous sequences (k-mers) between male and female sibs to find Y-encoded genes that are candidate sex determinants. [Google Scholar]
  6. Appelhagen I, Huep G, Lu GH, Strompen G, Weisshaar B, Sagasser M. 6.  2010. Weird fingers: functional analysis of WIP domain proteins. FEBS Lett 584:143116–22 [Google Scholar]
  7. Arce AL, Raineri J, Capella M, Cabello JV, Chan RL. 7.  2011. Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biol 11:42 [Google Scholar]
  8. Ashman TL, Kwok A, Husband BC. 8.  2013. Revisiting the dioecy-polyploidy association: alternate pathways and research opportunities. Cytogenet. Genome Res. 140:2–4241–55 [Google Scholar]
  9. Ashman TL, Tennessen JA, Dalton RM, Govindarajulu R, Koski MH, Liston A. 9.  2015. Multilocus sex determination revealed in two populations of gynodioecious wild strawberry, Fragaria vesca subsp. bracteata. G3 5:122759–73 [Google Scholar]
  10. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP. 10.  et al. 2014. Sex determination: why so many ways of doing it?. PLOS Biol 12:7e1001899 [Google Scholar]
  11. Barnaud A, Lacombe T, Doligez A. 11.  2006. Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor. Appl. Genet. 112:4708–16 [Google Scholar]
  12. Barnaud A, Laucou V, This P, Lacombe T, Doligez A. 12.  2010. Linkage disequilibrium in wild French grapevine, Vitis vinifera L. subsp. silvestris. Heredity 104:5431–37 [Google Scholar]
  13. Barrett SCH.13.  2002. The evolution of plant sexual diversity. Nat. Rev. Genet. 3:4274–84 [Google Scholar]
  14. Basinger JF, Christophel DC. 14.  1985. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. Can. J. Bot. 63:101825–43 [Google Scholar]
  15. Bawa KS.15.  1980. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11:115–39 [Google Scholar]
  16. Bomblies K, Weigel D. 16.  2007. Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8:5382–93 [Google Scholar]
  17. Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H. 17.  et al. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350:6261688–91Quantitative regulation of ethylene synthesis may engender dioecy. [Google Scholar]
  18. Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C. 18.  et al. 2017. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci. Rep 7:45388 [Google Scholar]
  19. Charlesworth B, Charlesworth D. 19.  1978. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112:975–97This article presents a classical evolutionary model of sex determination. [Google Scholar]
  20. Charlesworth D.20.  2013. Plant sex chromosome evolution. J. Exp. Bot. 64:2405–20 [Google Scholar]
  21. Charlesworth D.21.  2016. Plant sex chromosomes. Annu. Rev. Plant Biol. 67:397–420 [Google Scholar]
  22. Charlesworth D, Charlesworth B. 22.  1978. Population genetics of partial male-sterility and the evolution of monoecy and dioecy. Heredity 41:2137–53 [Google Scholar]
  23. Chen H, Sun J, Li S, Cui Q, Zhang H. 23.  et al. 2016. An ACC oxidase gene essential for cucumber carpel development. Mol. Plant. 9:91315–27 [Google Scholar]
  24. Comai L.24.  2005. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6:11836–46 [Google Scholar]
  25. Crossman A, Charlesworth D. 25.  2013. Breakdown of dioecy: models where males acquire cosexual functions. Evolution 68:2426–40 [Google Scholar]
  26. Darwin C.26.  1877. The Different Forms of Flowers on Plants of the Same Species London: John Murray 352 pp.
  27. Deng C-L, Qin R-Y, Wang N-N, Cao Y, Gao J. 27.  et al. 2012. Karyotype of asparagus by physical mapping of 45S and 5S rDNA by FISH. J. Genet. 91:2209–12 [Google Scholar]
  28. Erickson JW, Quintero JJ. 28.  2007. Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila. PLOS Biol 5:12e332 [Google Scholar]
  29. Flagel LE, Wendel JF. 29.  2009. Gene duplication and evolutionary novelty in plants. New Phytol 183:3557–64 [Google Scholar]
  30. Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF. 30.  et al. 2009. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom 10:102 [Google Scholar]
  31. Freeman DC, Doust JL, El-Keblawy A, Miglia KJ, McArthur ED. 31.  1997. Sexual specialization and inbreeding avoidance in the evolution of dioecy. Bot. Rev. 63:165–92 [Google Scholar]
  32. Freeman DC, Harper KT, Charnov EL. 32.  1980. Sex change in plants: old and new observations and new hypotheses. Oecologia 47:2222–32 [Google Scholar]
  33. Freeman DC, Klikoff LG, Harper KT. 33.  1976. Differential resource utilization by the sexes of dioecious plants. Science 193:4253597–99 [Google Scholar]
  34. Glick L, Sabath N, Ashman TL, Goldberg E, Mayrose I. 34.  2016. Polyploidy and sexual system in angiosperms: Is there an association?. Am. J. Bot. 103:71223–35 [Google Scholar]
  35. Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N. 35.  et al. 2017. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71:4898–912 [Google Scholar]
  36. Gregory TR, Mable BK. 36.  2005. Polyploidy in animals. Evol. Genome 171:427–517 [Google Scholar]
  37. Guarente L.37.  1993. Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9:10362–66 [Google Scholar]
  38. Harkess A, Mercati F, Shan HY, Sunseri F, Falavigna A, Leebens-Mack J. 38.  2015. Sex-biased gene expression in dioecious garden asparagus (Asparagus officinalis). New Phytol 207:3883–92 [Google Scholar]
  39. Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst E. 39.  et al. 2017. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat. Commun. 8:11279This article presents evidence for a two-gene model entailing a female suppressor and a male sterility gene. [Google Scholar]
  40. He X, Zhang J. 40.  2005. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:21157–64 [Google Scholar]
  41. Herskowitz I.41.  1987. Functional inactivation of genes by dominant negative mutations. Nature 329:6136219–22 [Google Scholar]
  42. Huang S, Ding J, Deng D, Tang W, Sun H. 42.  et al. 2013. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun 4:2640 [Google Scholar]
  43. Janousek B, Siroky J, Vyskot B. 43.  1996. Epigenetic control of sexual phenotype in a dioecious plant. Melandrium album. Mol. Gen. Genet. 250:4483–90 [Google Scholar]
  44. Jeffrey C.44.  1980. A review of the Cucurbitaceae. Bot. J. Linn. Soc. 81:3233–47 [Google Scholar]
  45. Kaessmann H.45.  2010. Origins, evolution, and phenotypic impact of new genes. Genome Res 20:101313–26 [Google Scholar]
  46. Käfer J, Marais GAB, Pannell JR. 46.  2017. On the rarity of dioecy in flowering plants. Mol. Ecol. 26:51225–41 [Google Scholar]
  47. Kazama Y, Ishii K, Aonuma W, Ikeda T, Kawamoto H. 47.  et al. 2016. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 6:18917 [Google Scholar]
  48. Knopf RR, Trebitsh T. 48.  2006. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47:91217–28 [Google Scholar]
  49. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H. 49.  et al. 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. PNAS 104:41424–29 [Google Scholar]
  50. Komatsuda T, Tanno K. 50.  2004. Comparative high resolution map of the six-rowed spike locus 1 (vrs1) in several populations of barley, Hordeum vulgare L. Hereditas 141:168–73 [Google Scholar]
  51. Lazarte JE, Palser BF. 51.  1979. Morphology, vascular anatomy and embryology of pistillate and staminate flowers of Asparagus officinalis. Am. J. Bot 66:7753–64 [Google Scholar]
  52. Lewis D.52.  1942. The evolution of sex in flowering plants. Biol. Rev. Camb. Philos. Soc. 17:146–67 [Google Scholar]
  53. Li H-L.53.  1952. A taxonomic review of the genus Actinidia. J. Arnold Arbor 33:11–61 [Google Scholar]
  54. Li Q, Liu B. 54.  2017. Genetic regulation of maize flower development and sex determination. Planta 245:11–14 [Google Scholar]
  55. Li Z, Huang S, Liu S, Pan J, Zhang Z. 55.  et al. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:41381–85 [Google Scholar]
  56. Liston A, Cronn R, Ashman TL. 56.  2014. Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. Am. J. Bot. 101:101686–99 [Google Scholar]
  57. Lynch M, Conery JS. 57.  2000. The evolutionary fate and consequences of duplicate genes. Science 290:54941151–55 [Google Scholar]
  58. Mable BK.58.  2004. “Why polyploidy is rarer in animals than in plants”: myths and mechanisms. Biol. J. Linn. Soc. Lond. 82:453–66 [Google Scholar]
  59. Malepszy S, Niemirowicz-Szczytt K. 59.  1991. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci 80:139–47 [Google Scholar]
  60. Manzano S, Megías Z, Martínez C, García A, Aguado E. 60.  et al. 2017. Overexpression of a flower-specific aerolysin-like protein from the dioecious plant Rumex acetosa alters flower development and induces male sterility in transgenic tobacco. Plant J 89:158–72 [Google Scholar]
  61. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R. 61.  et al. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:72671135–38 [Google Scholar]
  62. Matsunaga S, Kawano S. 62.  2001. Sex determination by sex chromosomes in dioecious plants. Plant Biol 3:05481–88 [Google Scholar]
  63. Miller JS, Venable DL. 63.  2000. Polyploidy and the evolution of gender dimorphism in plants. Science 289:54882335–38 [Google Scholar]
  64. Ming R, Bendahmane A, Renner SS. 64.  2011. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 62:485–514 [Google Scholar]
  65. Muller HJ.65.  1925. Why polyploidy is rarer in animals than in plants. Am. Nat. 59:663346–53 [Google Scholar]
  66. Murase K, Shigenobu S, Fujii S, Ueda K, Murata T. 66.  et al. 2017. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes Cells 22:1115–23 [Google Scholar]
  67. Nagata T, Hasebe M, Toriba T, Taneda H, Crane PR. 67.  2016. Sex conversion in Ginkgo biloba (Ginkgoaceae). J. Jpn. Bot. 91:120–27 [Google Scholar]
  68. Njuguna W, Liston A, Cronn R, Ashman T-L, Bassil N. 68.  2013. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing. Mol. Phylogenet. Evol. 66:117–29 [Google Scholar]
  69. Ohno S, Wolf U, Atkin NB. 69.  1968. Evolution from fish to mammals by gene duplication. Hereditas 59:1169–87 [Google Scholar]
  70. Ono T.70.  1930. Further investigations on the cytology of Rumex. VI-VIII. Bot. Mag. Tokyo. 44:168–76 [Google Scholar]
  71. Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ. 71.  et al. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:3141–47 [Google Scholar]
  72. Parker JS, Clark MS. 72.  1991. Dosage sex-chromosome systems in plants. Plant Sci 80:179–92 [Google Scholar]
  73. Parkhurst SM, Meneely PM. 73.  1994. Sex determination and dosage compensation: lessons from flies and worms. Science 264:5161924–32 [Google Scholar]
  74. Picq S, Santoni S, Lacombe T, Latreille M, Weber A. 74.  et al. 2014. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229 [Google Scholar]
  75. Quinn AE, Sarre SD, Ezaz T, Marshall Graves JA, Georges A. 75.  2011. Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol. Lett. 7:3443–48 [Google Scholar]
  76. Renner SS.76.  2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101:101588–96 [Google Scholar]
  77. Renner SS.77.  2016. Pathways for making unisexual flowers and unisexual plants: moving beyond the “two mutations linked on one chromosome” model. Am. J. Bot. 103:4587–89 [Google Scholar]
  78. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A. 78.  et al. 2013. The fate of duplicated genes in a polyploid plant genome. Plant J 73:1143–53 [Google Scholar]
  79. Rowlands DG.79.  1964. Self-incompatibility in sexually propagated cultivated plants. Euphytica 13:2157–62 [Google Scholar]
  80. Sakuma S, Pourkheirandish M, Hensel G, Kumlehn J, Stein N. 80.  et al. 2013. Divergence of expression pattern contributed to neofunctionalization of duplicated HD-Zip I transcription factor in barley. New Phytol 197:3939–48 [Google Scholar]
  81. Seal AG, Ferguson AR, de Silva HN, Zhang J-L. 81.  2012. The effect of 2n gametes on sex ratios in Actinidia. Sex. Plant Reprod 25:3197–203 [Google Scholar]
  82. Soza VL, Haworth KL, Di Stilio VS. 82.  2013. Timing and consequences of recurrent polyploidy in meadow-rues (Thalictrum, Ranunculaceae). Mol. Biol. Evol. 30:81940–54 [Google Scholar]
  83. Testolin R, Cipriani G, Costa G. 83.  1995. Sex segregation ratio and gender expression in the genus Actinidia. Sex. Plant Reprod 8:3129–32 [Google Scholar]
  84. This P, Lacombe T, Thomas MR. 84.  2006. Historical origins and genetic diversity of wine grapes. Trends Genet 22:9511–19 [Google Scholar]
  85. Trebitsh T, Staub JE, O'Neill SD. 85.  1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:3987–95 [Google Scholar]
  86. Tsugama D, Matsuyama K, Ide M, Hayashi M, Fujino K, Masuda K. 86.  2017. A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci. Rep 7:41497 [Google Scholar]
  87. VanBuren R, Wai CM, Zhang J, Han J, Arro J. 87.  et al. 2016. Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biol 17:1230 [Google Scholar]
  88. VanBuren R, Zeng F, Chen C, Zhang J, Wai CM. 88.  et al. 2015. Origin and domestication of papaya Yh chromosome. Genome Res 25:4524–33 [Google Scholar]
  89. Veitia RA, Bottani S, Birchler JA. 89.  2013. Gene dosage effects: nonlinearities, genetic interactions, and dosage compensation. Trends Genet 29:7385–93 [Google Scholar]
  90. Wang J, Na JK, Yu Q, Gschwend AR, Han J. 90.  et al. 2012. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. PNAS 109:3413710–15 [Google Scholar]
  91. Westergaard M.91.  1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9:217–81 [Google Scholar]
  92. Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM. 92.  et al. 2013. From many, one: genetic control of prolificacy during maize domestication. PLOS Genet 9:6e1003604 [Google Scholar]
  93. Wilson WG, Harder LD. 93.  2003. Reproductive uncertainty and the relative competitiveness of simultaneous hermaphroditism versus dioecy. Am. Nat. 162:2220–41 [Google Scholar]
  94. Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H. 94.  2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:6608–19 [Google Scholar]
  95. Zhang Z, Mao L, Chen H, Bu F, Li G. 95.  et al. 2015. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 27:61595–1604 [Google Scholar]
  96. Zuo J, Chua NH. 96.  2000. Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11:2146–51 [Google Scholar]
  97. Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K. 97.  2018. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell In press
/content/journals/10.1146/annurev-arplant-042817-040615
Loading
/content/journals/10.1146/annurev-arplant-042817-040615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error