1932

Abstract

The diterpenoids are classically defined by their composition—four isoprenyl units (20 carbons)—and are generally derived from [,,]-geranylgeranyl diphosphate (GGPP). Such metabolism seems to be ancient and has been extensively diversified, with ∼12,000 diterpenoid natural products known. Particularly notable are the gibberellin phytohormones, whose requisite biosynthesis has provided a genetic reservoir that gave rise to not only a large superfamily of ∼7,000 diterpenoids but also, to some degree, all plant terpenoid natural products. This review focuses on the diterpenoids, particularly the defining biosynthetic characteristics of the major superfamilies defined by the cyclization and/or rearrangement of GGPP catalyzed by diterpene synthases/cyclases, although it also includes some discussion of the important subsequent elaboration in the few cases where sufficient molecular genetic information is available. It additionally addresses the array of biological activity providing the selective pressures that drive the observed gene family expansion and diversification, along with biosynthetic gene clustering.

Associated Article

There are media items related to this article:
To Gibberellins and Beyond! Surveying the Evolution of (Di)Terpenoid Metabolism: Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-035705
2014-04-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-035705.html?itemId=/content/journals/10.1146/annurev-arplant-050213-035705&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA. 1.  et al. 2013. The tomato cis-prenyltransferase gene family. Plant J. 73:640–52 [Google Scholar]
  2. Anterola A, Shanle E, Mansouri K, Schuette S, Renzaglia K. 2.  2009. Gibberellin precursor is involved in spore germination in the moss Physcomitrella patens. Planta 229:1003–7 [Google Scholar]
  3. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M. 3.  et al. 2011. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–63 [Google Scholar]
  4. Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS. 4.  et al. 1995. Cloning and characterization of the maize An1 gene. Plant Cell 7:75–84 [Google Scholar]
  5. Bomke C, Tudzynski B. 5.  2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–93 [Google Scholar]
  6. Caniard A, Zerbe P, Legrand S, Cohade A, Valot N. 6.  et al. 2012. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol. 12:119 [Google Scholar]
  7. Cao R, Zhang Y, Mann FM, Huang C, Mukkamala D. 7.  et al. 2010. Diterpene cyclases and the nature of the isoprene fold. Proteins 78:2417–32 [Google Scholar]
  8. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP. 8.  1977. Chemical activation of host defence mechanisms as a basis for crop protection. Nature 267:511–13 [Google Scholar]
  9. Cartwright DW, Langcake P, Pryce RJ, Leworthy DP, Ride JP. 9.  1981. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20:535–37 [Google Scholar]
  10. Chen F, Tholl D, Bohlmann J, Pichersky E. 10.  2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66:212–29 [Google Scholar]
  11. Christianson DW. 11.  2006. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106:3412–42 [Google Scholar]
  12. Christianson DW. 12.  2008. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 12:141–50 [Google Scholar]
  13. Criswell J, Potter K, Shephard F, Beale MB, Peters RJ. 13.  2012. A single residue change leads to a hydroxylated product from the class II diterpene cyclization catalyzed by abietadiene synthase. Org. Lett. 14:5828–31 [Google Scholar]
  14. Degenhardt J, Kollner TG, Gershenzon J. 14.  2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–37 [Google Scholar]
  15. Falara V, Pichersky E, Kanellis AK. 15.  2010. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes. Plant Physiol. 154:301–10 [Google Scholar]
  16. Gao W, Hillwig ML, Huang L, Cui G, Wang X. 16.  et al. 2009. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org. Lett. 11:5170–73 [Google Scholar]
  17. Gao Y, Honzatko RB, Peters RJ. 17.  2012. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep. 29:1153–75 [Google Scholar]
  18. Guerra-Bubb J, Croteau R, Williams RM. 18.  2012. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat. Prod. Rep. 29:683–96 [Google Scholar]
  19. Gunnewich N, Higashi Y, Feng X, Choi KB, Schmidt J, Kutchan TM. 19.  2012. A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate. Phytochemistry 91:93–99 [Google Scholar]
  20. Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L. 20.  et al. 2013. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA 110:12108–13 [Google Scholar]
  21. Hall DE, Zerbe P, Jancsik S, Quesada AL, Dullat H. 21.  et al. 2013. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol. 161:600–16 [Google Scholar]
  22. Hamberger B, Bak S. 22.  2013. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos. Trans. R. Soc. B 368:20120426 [Google Scholar]
  23. Hamberger B, Ohnishi T, Seguin A, Bohlmann J. 23.  2011. Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol. 157:1677–95 [Google Scholar]
  24. Harris LJ, Saparno A, Johnston A, Prisic S, Xu M. 24.  et al. 2005. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase. Plant Mol. Biol. 59:881–94 [Google Scholar]
  25. Hasegawa M, Mitsuhara I, Seo S, Imai T, Koga J. 25.  et al. 2010. Phytoalexin accumulation in the interaction between rice and the blast fungus. Mol. Plant-Microbe Interact. 23:1000–11 [Google Scholar]
  26. Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S. 26.  et al. 2010. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol. 153:1085–97 [Google Scholar]
  27. Hayashi K, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H. 27.  2006. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett. 580:6175–81 [Google Scholar]
  28. Hedden P, Thomas SG. 28.  2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444:11–25 [Google Scholar]
  29. Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ. 29.  2001. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 98:2065–70 [Google Scholar]
  30. Helliwell CA, Poole A, Peacock WJ, Dennis ES. 30.  1999. Arabidposis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol. 119:507–10 [Google Scholar]
  31. Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES. 31.  2001. A plastid envelope location of Arabidopsis ent-kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J. 28:201–8 [Google Scholar]
  32. Herde M, Gartner K, Kollner TG, Fode B, Boland W. 32.  et al. 2008. Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–68 [Google Scholar]
  33. Hillwig ML, Xu M, Toyomasu T, Tiernan MS, Gao W. 33.  et al. 2011. Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J. 68:1051–60 [Google Scholar]
  34. Hirano K, Nakajima M, Asano K, Nishiyama T, Sakakibara H. 34.  et al. 2007. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorffii but not in the bryophyte Physcomitrella patens. Plant Cell 19:3058–79 [Google Scholar]
  35. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. 35.  2004. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 134:370–79 [Google Scholar]
  36. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T. 36.  et al. 2004. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol. Biol. 54:533–47 [Google Scholar]
  37. Kanno Y, Otomo K, Kenmoku H, Mitsuhashi W, Yamane H. 37.  et al. 2006. Characterization of a rice gene family encoding type-A diterpene cyclases. Biosci. Biotechnol. Biochem. 70:1702–10 [Google Scholar]
  38. Kato T, Kabuto C, Sasaki N, Tsunagawa M, Aizawa H. 38.  et al. 1973. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett. 14:3861–64 [Google Scholar]
  39. Kato-Noguchi H, Peters RJ. 39.  2013. The role of momilactones in rice allelopathy. J. Chem. Ecol. 39:175–85 [Google Scholar]
  40. Kawaide H, Hayashi K, Kawanabe R, Sakigi Y, Matsuo A. 40.  et al. 2011. Identification of the single amino acid involved in quenching the ent-kauranyl cation by a water molecule in ent-kaurene synthase of Physcomitrella patens. FEBS J. 278:123–33 [Google Scholar]
  41. Keeling CI, Bohlmann J. 41.  2006. Diterpene resin acids in conifers. Phytochemistry 67:2415–23 [Google Scholar]
  42. Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J. 42.  2010. Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol. 152:1197–208 [Google Scholar]
  43. Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B. 43.  et al. 2011. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol. 11:43 [Google Scholar]
  44. Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F. 44.  et al. 2010. Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71:1466–73 [Google Scholar]
  45. Li G, Kollner TG, Yin Y, Jiang Y, Chen H. 45.  et al. 2012. Nonseed plant Selaginella moellendorffii has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA 109:14711–15 [Google Scholar]
  46. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 46.  1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23:3–25 [Google Scholar]
  47. Mafu S, Hillwig ML, Peters RJ. 47.  2011. A novel labda-7,13E-dien-15-ol-producing bifunctional diterpene synthase from Selaginella moellendorffii. ChemBioChem 12:1984–87 [Google Scholar]
  48. Magome H, Nomura T, Hanada A, Takeda-Kamiya N, Ohnishi T. 48.  et al. 2013. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl. Acad. Sci. USA 110:1947–52 [Google Scholar]
  49. Mann FM, Prisic S, Davenport EK, Determan MK, Coates RM, Peters RJ. 49.  2010. A single residue switch for Mg2+-dependent inhibition characterizes plant class II diterpene cyclases from primary and secondary metabolism. J. Biol. Chem. 285:20558–63 [Google Scholar]
  50. Martin DM, Faldt J, Bohlmann J. 50.  2004. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol. 135:1908–27 [Google Scholar]
  51. Mau CJD, West CA. 51.  1994. Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc. Natl. Acad. Sci. USA 91:8497–501 [Google Scholar]
  52. Miyazaki S, Katsumata T, Natsume M, Kawaide H. 52.  2011. The CYP701B1 of Physcomitrella patens is an ent-kaurene oxidase that resists inhibition by uniconazole-P. FEBS Lett. 585:1879–83 [Google Scholar]
  53. Morrone D, Chambers J, Lowry L, Kim G, Anterola A. 53.  et al. 2009. Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett. 583:475–80 [Google Scholar]
  54. Morrone D, Chen X, Coates RM, Peters RJ. 54.  2010. Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis. Biochem. J. 431:337–44 [Google Scholar]
  55. Morrone D, Hillwig ML, Mead ME, Lowry L, Fulton DB, Peters RJ. 55.  2011. Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals. Biochem. J. 435:589–95 [Google Scholar]
  56. Morrone D, Jin Y, Xu M, Choi S-Y, Coates RM, Peters RJ. 56.  2006. An unexpected diterpene cyclase from rice: functional identification of a stemodene synthase. Arch. Biochem. Biophys. 448:133–40 [Google Scholar]
  57. Morrone D, Xu M, Fulton DB, Determan MK, Peters RJ. 57.  2008. Increasing complexity of a diterpene synthase reaction with a single residue switch. J. Am. Chem. Soc. 130:5400–1 [Google Scholar]
  58. Nelson D, Werck-Reichhart D. 58.  2011. A P450-centric view of plant evolution. Plant J. 66:194–211 [Google Scholar]
  59. Nualkaew N, De-Eknamkul W, Kutchan TM, Zenk MH. 59.  2006. Membrane-bound geranylgeranyl diphosphate phosphatases: purification and characterization from Croton stellatopilosus leaves. Phytochemistry 67:1613–20 [Google Scholar]
  60. Nualkaew N, Guennewich N, Springob K, Klamrak A, De-Eknamkul W, Kutchan TM. 60.  2013. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba. Phytochemistry 91:140–47 [Google Scholar]
  61. Oldfield E, Lin FY. 61.  2012. Terpene biosynthesis: modularity rules. Angew. Chem. Int. Ed. 51:1124–37 [Google Scholar]
  62. Ortiz de Montellano PR. 62.  2010. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev. 110:932–48 [Google Scholar]
  63. Osbourn A. 63.  2010. Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiol. 154:531–35 [Google Scholar]
  64. Peters RJ. 64.  2006. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 67:2307–17 [Google Scholar]
  65. Peters RJ. 65.  2010. Two rings in them all: the labdane-related diterpenoids. Nat. Prod. Rep. 27:1521–30 [Google Scholar]
  66. Peters RJ. 66.  2013. Gibberellin phytohormone metabolism. Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches T Bach, M Rohmer 233–49 New York: Springer [Google Scholar]
  67. Peters RJ, Carter OA, Zhang Y, Matthews BW, Croteau RB. 67.  2003. Bifunctional abietadiene synthase: mutual structural dependence of the active sites for protonation-initiated and ionization-initiated cyclizations. Biochemistry 42:2700–7 [Google Scholar]
  68. Peters RJ, Croteau RB. 68.  2002. Abietadiene synthase catalysis: conserved residues involved in protonation-initiated cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. Biochemistry 41:1836–42 [Google Scholar]
  69. Peters RJ, Croteau RB. 69.  2002. Abietadiene synthase catalysis: mutational analysis of a prenyl diphosphate ionization-initiated cyclization and rearrangement. Proc. Natl. Acad. Sci. USA 99:580–84 [Google Scholar]
  70. Peters RJ, Flory JE, Jetter R, Ravn MM, Lee H-J. 70.  et al. 2000. Abietadiene synthase from grand fir (Abies grandis): characterization and mechanism of action of the “pseudomature” recombinant enzyme. Biochemistry 39:15592–602 [Google Scholar]
  71. Peters RJ, Ravn MM, Coates RM, Croteau RB. 71.  2001. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. J. Am. Chem. Soc. 123:8974–78 [Google Scholar]
  72. Prisic S, Peters RJ. 72.  2007. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol. 144:445–54 [Google Scholar]
  73. Prisic S, Xu J, Coates RM, Peters RJ. 73.  2007. Probing the role of the DXDD motif in class II diterpene cyclases. ChemBioChem 8:869–74 [Google Scholar]
  74. Prisic S, Xu M, Wilderman PR, Peters RJ. 74.  2004. Rice contains two disparate ent-copalyl diphosphate synthases with distinct metabolic functions. Plant Physiol. 136:4228–36 [Google Scholar]
  75. Ravn MM, Coates RM, Flory J, Peters RJ, Croteau R. 75.  2000. Stereochemistry of the cyclization-rearrangement of (+)-copalyl diphosphate to (−)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Org. Lett. 2:573–76 [Google Scholar]
  76. Ravn MM, Coates RM, Jetter R, Croteau R. 76.  1998. Stereospecific intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to (−)-abietadiene catalyzed recombinant cyclase from grand fir (Abies grandis). Chem. Commun. 1998:21–22 [Google Scholar]
  77. Ravn MM, Jin Q, Coates RM. 77.  2000. Synthesis of allylic isoprenoid diphosphates by SN2 displacement of diethyl phosphate. Eur. J. Org. Chem. 2000:1401–10 [Google Scholar]
  78. Ravn MM, Peters RJ, Coates RM, Croteau RB. 78.  2002. Specificity and mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediate. J. Am. Chem. Soc. 124:6998–7006 [Google Scholar]
  79. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A. 79.  et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69 [Google Scholar]
  80. Ro DK, Arimura G, Lau SY, Piers E, Bohlmann J. 80.  2005. Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc. Natl. Acad. Sci. USA 102:8060–65 [Google Scholar]
  81. Ro DK, Bohlmann J. 81.  2006. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 67:1572–78 [Google Scholar]
  82. Roy A, Roberts FG, Wilderman PR, Zhou K, Peters RJ, Coates RM. 82.  2007. 16-Aza-ent-beyerane and 16-aza-ent-trachylobane: potent mechanism based inhibitors of recombinant ent-kaurene synthase from Arabidopsis thaliana. J. Am. Chem. Soc. 129:12453–60 [Google Scholar]
  83. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M. 83.  et al. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134:1642–53 [Google Scholar]
  84. Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N. 84.  et al. 2012. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J. 72:1–17 [Google Scholar]
  85. Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M. 85.  et al. 2012. Towards a biosynthetic route to sclareol and amber odorants. J. Am. Chem. Soc. 134:18900–3 [Google Scholar]
  86. Schepmann HG, Pang J, Matsuda SP. 86.  2001. Cloning and characterization of Ginkgo biloba levopimaradiene synthase, which catalyzes the first committed step in ginkolide biosynthesis. Arch. Biochem. Biophys. 392:263–69 [Google Scholar]
  87. Schmelz EA, Kaplan F, Huffaker A, Dafoe NJ, Vaughan MM. 87.  et al. 2011. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci. USA 108:5455–60 [Google Scholar]
  88. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F. 88.  et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–15 [Google Scholar]
  89. Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T. 89.  et al. 2008. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc. Natl. Acad. Sci. USA 105:14204–9 [Google Scholar]
  90. Shimura K, Okada A, Okada K, Jikumaru Y, Ko K-W. 90.  et al. 2007. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282:34013–18 [Google Scholar]
  91. Silverstone AL, Chang C-W, Krol E, Sun T-P. 91.  1997. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 12:9–19 [Google Scholar]
  92. Smanski MJ, Peterson RM, Huang SX, Shen B. 92.  2012. Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Curr. Opin. Chem. Biol. 16:132–41 [Google Scholar]
  93. Starks CM, Back K, Chappell J, Noel JP. 93.  1997. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–20 [Google Scholar]
  94. Stofer Vogel B, Wildung MR, Vogel G, Croteau R. 94.  1996. Abietadiene synthase from grand fir (Abies grandis). J. Biol. Chem. 271:23262–68 [Google Scholar]
  95. Sugai Y, Ueno Y, Hayashi K, Oogami S, Toyomasu T. 95.  et al. 2011. Enzymatic 13C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii. J. Biol. Chem. 286:42840–47 [Google Scholar]
  96. Sun TP. 96.  2011. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21:R338–45 [Google Scholar]
  97. Sun TP, Kamiya Y. 97.  1994. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6:1509–18 [Google Scholar]
  98. Swaminathan S, Morrone D, Wang Q, Fulton DB, Peters RJ. 98.  2009. CYP76M7 is an ent-cassadiene C11α-hydroxylase defining a second multifunctional diterpenoid biosynthetic gene cluster in rice. Plant Cell 21:3315–25 [Google Scholar]
  99. Takos AM, Rook F. 99.  2012. Why biosynthetic genes for chemical defense compounds cluster. Trends Plant Sci. 17:383–88 [Google Scholar]
  100. Toyomasu T. 100.  2008. Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci. Biotechnol. Biochem. 72:1168–75 [Google Scholar]
  101. Toyomasu T, Usui M, Sugawara C, Otomo K, Hirose Y. 101.  et al. 2014. Reverse-genetic approach to verify physiological roles of rice phytoalexins: characterization of a knockdown mutant of OsCPS4 phytoalexin biosynthetic gene in rice. Physiol. Plant. 150:55–62 [Google Scholar]
  102. Vandermoten S, Haubruge E, Cusson M. 102.  2009. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell. Mol. Life Sci. 66:3685–95 [Google Scholar]
  103. Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ. 103.  et al. 2013. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–25 [Google Scholar]
  104. Vranova E, Coman D, Gruissem W. 104.  2013. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64:665–700 [Google Scholar]
  105. Walker K, Croteau R. 105.  2001. Taxol biosynthetic genes. Phytochemistry 58:1–7 [Google Scholar]
  106. Wang E, Wagner GJ. 106.  2003. Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–91 [Google Scholar]
  107. Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ. 107.  2001. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19:371–74 [Google Scholar]
  108. Wang Q, Hillwig ML, Okada K, Yamazaki K, Wu Y. 108.  et al. 2012. Characterization of CYP76M5–8 indicates metabolic plasticity within a plant biosynthetic gene cluster. J. Biol. Chem. 287:6159–68 [Google Scholar]
  109. Wang Q, Hillwig ML, Peters RJ. 109.  2011. CYP99A3: functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice. Plant J. 65:87–95 [Google Scholar]
  110. Wang Q, Hillwig ML, Wu Y, Peters RJ. 110.  2012. CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol. 158:1418–25 [Google Scholar]
  111. Wegel E, Koumproglou R, Shaw P, Osbourn A. 111.  2009. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21:3926–36 [Google Scholar]
  112. Wilderman PR, Peters RJ. 112.  2007. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J. Am. Chem. Soc. 129:15736–37 [Google Scholar]
  113. Wilderman PR, Xu M, Jin Y, Coates RM, Peters RJ. 113.  2004. Identification of syn-pimara-7,15-diene synthase reveals functional clustering of terpene synthases involved in rice phytoalexin/allelochemical biosynthesis. Plant Physiol. 135:2098–105 [Google Scholar]
  114. Wildung MR, Croteau RB. 114.  1996. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J. Biol. Chem. 271:9201–4 [Google Scholar]
  115. Wu Y, Hillwig ML, Wang Q, Peters RJ. 115.  2011. Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett. 585:3446–51 [Google Scholar]
  116. Wu Y, Wang Q, Hillwig ML, Peters RJ. 116.  2013. Picking sides: distinct roles for CYP76M6 and -8 in rice oryzalexin biosynthesis. Biochem. J. 454:209–16 [Google Scholar]
  117. Wu Y, Zhou K, Toyomasu T, Sugawara C, Oku M. 117.  et al. 2012. Functional characterization of wheat copalyl diphosphate synthases elucidates the early evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:40–46 [Google Scholar]
  118. Xu M, Galhano R, Wiemann P, Bueno E, Tiernan M. 118.  et al. 2012. Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol. 193:570–75 [Google Scholar]
  119. Xu M, Wilderman PR, Morrone D, Xu J, Roy A. 119.  et al. 2007. Functional characterization of the rice kaurene synthase-like gene family. Phytochemistry 68:312–26 [Google Scholar]
  120. Xu M, Wilderman PR, Peters RJ. 120.  2007. Following evolution's lead to a single residue switch for diterpene synthase product outcome. Proc. Natl. Acad. Sci. USA 104:7397–401 [Google Scholar]
  121. Yamaguchi S. 121.  2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59:225–51 [Google Scholar]
  122. Yamaguchi S, Saito T, Abe H, Yamane H, Murofushi N, Kamiya Y. 122.  1996. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.). Plant J. 10:101–11 [Google Scholar]
  123. Yamane H. 123.  2013. Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci. Biotechnol. Biochem. 77:1141–48 [Google Scholar]
  124. Yasumura Y, Crumpton-Taylor M, Fuentes S, Harberd NP. 124.  2007. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr. Biol. 17:1225–30 [Google Scholar]
  125. Zerbe P, Chiang A, Yuen M, Hamberger B, Draper JA. 125.  et al. 2012. Bifunctional cis-abienol synthase from Abies balsamea discovered by transcriptome sequencing and its implications for diterpenoid fragrance production. J. Biol. Chem. 287:12121–31 [Google Scholar]
  126. Zhang Y, Zhang B, Yan D, Dong W, Yang W. 126.  et al. 2011. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J. 67:342–53 [Google Scholar]
  127. Zhou K, Gao Y, Hoy JA, Mann FM, Honzatko RB, Peters RJ. 127.  2012. Insights into diterpene cyclization from the structure of the bifunctional abietadiene synthase. J. Biol. Chem. 287:6840–50 [Google Scholar]
  128. Zhou K, Peters RJ. 128.  2011. Electrostatic effects on (di)terpene synthase product outcome. Chem. Commun. 47:4074–80 [Google Scholar]
  129. Zhou K, Xu M, Tiernan MS, Xie Q, Toyomasu T. 129.  et al. 2012. Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:47–55 [Google Scholar]
  130. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y. 130.  et al. 2006. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–56 [Google Scholar]
  131. Zi J, Peters RJ. 131.  2013. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org. Biomol. Chem. 11:7650–53 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-035705
Loading
/content/journals/10.1146/annurev-arplant-050213-035705
Loading

Data & Media loading...

Supplemental Material

    Bicyclization and ring rearrangement reaction catalyzed by kaurene synthase.

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error