1932

Abstract

Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant–herbivore interactions and discuss how their discovery has structured the current standard model of plant–herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant–herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant–insect interactions should be a future priority.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-095910
2019-04-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-095910.html?itemId=/content/journals/10.1146/annurev-arplant-050718-095910&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW 2015. Cues from chewing insects—the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol. 26:80–86
    [Google Scholar]
  2. 2.  Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B et al. 2017. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356:1386–88
    [Google Scholar]
  3. 3.  Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J et al. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–27
    [Google Scholar]
  4. 4.  Ashton AR 2011. Guanylyl cyclase activity in plants?. PNAS 108:E96
    [Google Scholar]
  5. 5.  Atamian HS, Chaudhary R, Cin VD, Bao E, Girke T, Kaloshian I 2013. In planta expression or delivery of potato aphid Macrosiphum euphorbiae effectors Me10 and Me23 enhances aphid fecundity. Mol. Plant-Microbe Interact. 26:67–74
    [Google Scholar]
  6. 6.  Barth C, Jander G 2006. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J 46:549–62
    [Google Scholar]
  7. 7.  Barton KE, Boege K 2017. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol. Lett. 20:403–11
    [Google Scholar]
  8. 8.  Blanc C, Coluccia F, L'Haridon F, Torres M, Ortiz-Berrocal M et al. 2018. The cuticle mutant eca2 modifies plant defense responses to biotrophic and necrotrophic pathogens and herbivory insects. Mol. Plant-Microbe Interact. 31:344–55
    [Google Scholar]
  9. 9.  Bleeker PM, Mirabella R, Diergaarde PJ, Vandoorn A, Tissier A et al. 2012. Improved herbivore resistance in cultivated tomato with the sesquiterpene biosynthetic pathway from a wild relative. PNAS 109:20124–29
    [Google Scholar]
  10. 10.  Block A, Christensen SA, Hunter CT, Alborn HT 2018. Herbivore-derived fatty-acid amides elicit reactive oxygen species burst in plants. J. Exp. Bot. 69:1235–45
    [Google Scholar]
  11. 11.  Bodenhausen N, Reymond P 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant-Microbe Interact 20:1406–20
    [Google Scholar]
  12. 12.  Bonaventure G, Gfeller A, Proebsting WM, Hörtensteiner S, Chételat A et al. 2007. A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889–98
    [Google Scholar]
  13. 13.  Bont Z, Arce C, Huber M, Huang W, Mestrot A et al. 2017. A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin. J. Chem. Ecol. 43:295–306
    [Google Scholar]
  14. 14.  Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC et al. 2015. Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana. PNAS 112:4032–37
    [Google Scholar]
  15. 15.  Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME 2010. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta 232:719–29
    [Google Scholar]
  16. 16.  Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC et al. 2015. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep. 5:11183
    [Google Scholar]
  17. 17.  Bruessow F, Gouhier-Darimont C, Buchala A, Metraux J-P, Reymond P 2010. Insect eggs suppress plant defence against chewing herbivores. Plant J 62:876–85
    [Google Scholar]
  18. 18.  Brütting C, Schäfer M, Vanková R, Gase K, Baldwin IT, Meldau S 2017. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata. Plant J 89:15–30Demonstrates that cytokinins regulate developmental variation in defense expression.
    [Google Scholar]
  19. 19.  Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:9452–57
    [Google Scholar]
  20. 20.  Chan EKF, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ 2011. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLOS Biol 8:e1001125
    [Google Scholar]
  21. 21.  Chaudhary R, Peng H-C, He J, MacWilliams J, Teixeira M et al. 2018. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. New Phytol 221:1518–28
    [Google Scholar]
  22. 22.  Chauvin A, Caldelari D, Wolfender J-L, Farmer EE 2013. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–75
    [Google Scholar]
  23. 23.  Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. PNAS 102:19237–42
    [Google Scholar]
  24. 24.  Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S et al. 2018. An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nat. Chem. Biol. 14:171–78
    [Google Scholar]
  25. 25.  Choi J, Tanaka K, Cao Y, Qi Y, Qiu J et al. 2014. Identification of a plant receptor for extracellular ATP. Science 343:290–94Identifies DORN1 as the receptor for the extracellular DAMP signal ATP.
    [Google Scholar]
  26. 26.  Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF et al. 2013. Herbivore exploits orally secreted bacteria to suppress plant defenses. PNAS 110:15728–33Shows that bacteria contained in insect OSs can suppress plant defenses.
    [Google Scholar]
  27. 27.  Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101
    [Google Scholar]
  28. 28.  Consales F, Schweizer F, Erb M, Gouhier-Darimont C, Bodenhausen N et al. 2012. Insect oral secretions suppress wound-induced responses in Arabidopsis. J. Exp. Bot 63:727–37
    [Google Scholar]
  29. 29.  Davila Olivas NH, Kruijer W, Gort G, Wijnen CL, van Loon JJA, Dicke M 2017. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. New Phytol 213:838–51
    [Google Scholar]
  30. 30.  De Moraes CM, Mescher MC, Tumlinson JH 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–80
    [Google Scholar]
  31. 31.  de Vos M, Jander G 2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32:1548–60
    [Google Scholar]
  32. 32.  Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A et al. 2009. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. PNAS 106:13213–18
    [Google Scholar]
  33. 33.  Diezel C, von Dahl CC, Gaquerel E, Baldwin IT 2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–86
    [Google Scholar]
  34. 34.  Dinh ST, Baldwin IT, Galis I 2013. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuata plants. Plant Physiol 162:2106–24
    [Google Scholar]
  35. 35.  Dobler S, Dalla S, Wagschal V, Agrawal AA 2012. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. PNAS 109:13040–45
    [Google Scholar]
  36. 36.  Du M, Zhao J, Tzeng DTW, Liu Y, Deng L et al. 2017. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29:1883–906
    [Google Scholar]
  37. 37.  Elzinga DA, de Vos M, Jander G 2014. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol. Plant-Microbe Interact. 27:747–56
    [Google Scholar]
  38. 38.  Engsontia P, Sangket U, Chotigeat W, Satasook C 2014. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J. Mol. Evol. 79:21–39
    [Google Scholar]
  39. 39.  Erb M 2018. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. Curr. Opin. Plant Biol. 44:117–21
    [Google Scholar]
  40. 40.  Erb M, Veyrat N, Robert CAM, Xu H, Frey M et al. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 6:6273
    [Google Scholar]
  41. 41.  Farmer EE 2014. Leaf Defence Oxford, UK: Oxford Univ. Press
  42. 42.  Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V et al. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28:666–75.e5
    [Google Scholar]
  43. 43.  Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–15
    [Google Scholar]
  44. 44.  Fragoso V, Rothe E, Baldwin IT, Kim S-G 2014. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance. New Phytol 202:1335–45
    [Google Scholar]
  45. 45.  Gigolashvili T, Berger B, Flügge U-I 2009. Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. . Phytochem. Rev 8:3–13
    [Google Scholar]
  46. 46.  Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G 2011. Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell 23:3512–32
    [Google Scholar]
  47. 47.  Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE 2009. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem 284:34506–13
    [Google Scholar]
  48. 48.  Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L et al. 2018. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol 28:2452–58.e4
    [Google Scholar]
  49. 49.  Gonzales-Vigil E, Bianchetti CM, Phillips GN, Howe GA 2011. Adaptive evolution of threonine deaminase in plant defense against insect herbivores. PNAS 108:5897–902
    [Google Scholar]
  50. 50.  Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF 2012. Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. PNAS 109:4674–77
    [Google Scholar]
  51. 51.  Gouhier-Darimont C, Schmiesing A, Bonnet C, Lassueur S, Reymond P 2013. Signalling of Arabidopsis thaliana response to Pieris brassicae eggs shares similarities with PAMP-triggered immunity. J. Exp. Bot. 64:665–74
    [Google Scholar]
  52. 52.  Guo J, Xu C, Wu D, Zhao Y, Qiu Y et al. 2018. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat. Genet. 50:297–306
    [Google Scholar]
  53. 53.  Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT 2008. Shared signals—“alarm calls” from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11:24–34
    [Google Scholar]
  54. 54.  Handrick V, Robert CAM, Ahern KR, Zhou S, Machado RAR et al. 2016. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 28:1682–700
    [Google Scholar]
  55. 55.  Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–11
    [Google Scholar]
  56. 56.  Hettenhausen C, Schuman MC, Wu J 2015. MAPK signaling: a key element in plant defense response to insects. Insect Sci 22:157–64
    [Google Scholar]
  57. 57.  Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T et al. 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17:922–31
    [Google Scholar]
  58. 58.  Hildreth SB, Gehman EA, Yang H, Lu R-H, Ritesh KC et al. 2011. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. PNAS 108:18179–84
    [Google Scholar]
  59. 59.  Hilleary R, Gilroy S 2018. Systemic signaling in response to wounding and pathogens. Curr. Opin. Plant Biol. 43:57–62
    [Google Scholar]
  60. 60.  Hillwig MS, Chiozza M, Casteel CL, Lau ST, Hohenstein J et al. 2016. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis. Mol. Plant Pathol 17:225–35
    [Google Scholar]
  61. 61.  Hong G-J, Xue X-Y, Mao Y-B, Wang L-J, Chen X-Y 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–48
    [Google Scholar]
  62. 62.  Howe GA, Jander G 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66
    [Google Scholar]
  63. 63.  Howe GA, Major IT, Koo AJ 2018. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol. 69:387–415
    [Google Scholar]
  64. 64.  Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y 2018. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol 219:1097–11
    [Google Scholar]
  65. 65.  Hu L, Ye M, Li R, Zhang T, Zhou G et al. 2015. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant Physiol 169:2907–21
    [Google Scholar]
  66. 66.  Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D 2013. JAV1 controls jasmonate-regulated plant defense. Mol. Cell 50:504–15
    [Google Scholar]
  67. 67.  Huber M, Epping J, Schulze Gronover C, Fricke J, Aziz Z et al. 2016. A latex metabolite benefits plant fitness under root herbivore attack. PLOS Biol 14:e1002332
    [Google Scholar]
  68. 68.  Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TCJ et al. 2013. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. PNAS 110:5707–12
    [Google Scholar]
  69. 69.  Huffaker A, Ryan CA 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. PNAS 104:10732–36
    [Google Scholar]
  70. 70.  Ji R, Ye W, Chen H, Zeng J, Li H et al. 2017. A salivary endo-β-1,4-glucanase acts as an effector that enables the brown planthopper to feed on rice. Plant Physiol 173:1920–32
    [Google Scholar]
  71. 71.  Johnson R, Narvaez J, An G, Ryan C 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. PNAS 86:9871–75
    [Google Scholar]
  72. 72.  Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD et al. 2007. Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. PNAS 104:12205–10
    [Google Scholar]
  73. 73.  Kang J-H, Wang L, Giri A, Baldwin IT 2006. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–20
    [Google Scholar]
  74. 74.  Katz E, Nisani S, Yadav BS, Woldemariam MG, Shai B et al. 2015. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana. Plant J 82:547–55Provides a mode of action by which defensive secondary metabolites act as within-plant signaling molecules.
    [Google Scholar]
  75. 75.  Kessler A, Baldwin IT 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299–328
    [Google Scholar]
  76. 76.  Kettles GJ, Kaloshian I 2016. The potato aphid salivary effector Me47 is a glutathione-S-transferase involved in modifying plant responses to aphid infestation. Front. Plant Sci. 7:1142
    [Google Scholar]
  77. 77.  Kim S-G, Yon F, Gaquerel E, Gulati J, Baldwin IT 2011. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata. PLOS ONE 6:e26214
    [Google Scholar]
  78. 78.  Kivimäki M, Kärkkäinen K, Gaudeul M, Løe G, Agren J 2007. Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol. Ecol 16:453–62
    [Google Scholar]
  79. 79.  Klauser D, Desurmont GA, Glauser G, Vallat A, Flury P et al. 2015. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. J. Exp. Bot. 66:5327–36
    [Google Scholar]
  80. 80.  Kloth KJ, Busscher-Lange J, Wiegers GL, Kruijer W, Buijs G et al. 2017. SIEVE ELEMENT-LINING CHAPERONE1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 29:2450–64
    [Google Scholar]
  81. 81.  Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R et al. 2009. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J 60:974–82
    [Google Scholar]
  82. 82.  Koo AJK, Gao X, Jones AD, Howe GA 2009. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–86
    [Google Scholar]
  83. 83.  Koutroumpa FA, Monsempes C, François M-C, de Cian A, Royer C et al. 2016. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci. Rep. 6:29620
    [Google Scholar]
  84. 84.  Krempl C, Heidel-Fischer HM, Jiménez-Alemán GH, Reichelt M, Menezes RC et al. 2016. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens. Insect Biochem. Mol. Biol 78:69–77
    [Google Scholar]
  85. 85.  Kumar P, Pandit SS, Steppuhn A, Baldwin IT 2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. PNAS 111:1245–52
    [Google Scholar]
  86. 86.  Kusnierczyk A, Winge P, Jørstad TS, Troczyńska J, Rossiter JT, Bones AM 2008. Towards global understanding of plant defence against aphids—timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–115
    [Google Scholar]
  87. 87.  Lan Z, Krosse S, Achard P, van Dam NM, Bede JC 2014. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory. J. Exp. Bot. 65:571–83
    [Google Scholar]
  88. 88.  Lenglet A, Jaślan D, Toyota M, Mueller M, Müller T et al. 2017. Control of basal jasmonate signalling and defence through modulation of intracellular cation flux capacity. New Phytol 216:1161–69
    [Google Scholar]
  89. 89.  Li D, Heiling S, Baldwin IT, Gaquerel E 2016. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. PNAS 113:E7610–18
    [Google Scholar]
  90. 90.  Li Q, Xie Q-G, Smith-Becker J, Navarre DA, Kaloshian I 2006. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol. Plant-Microbe Interact. 19:655–64
    [Google Scholar]
  91. 91.  Li R, Llorca LC, Schuman MC, Wang Y, Wang L et al. 2018. ZEITLUPE in the roots of wild tobacco regulates jasmonate-mediated nicotine biosynthesis and resistance to a generalist herbivore. Plant Physiol 177:833–46
    [Google Scholar]
  92. 92.  Li R, Wang M, Wang Y, Schuman MC, Weinhold A et al. 2017. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. PNAS 114:E7205–14
    [Google Scholar]
  93. 93.  Li R, Zhang J, Li J, Zhou G, Wang Q et al. 2015. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. eLife 4:e04805Shows how a WRKY factor enhances JA signaling and suppresses GA signaling, thereby modulating resistance against herbivores.
    [Google Scholar]
  94. 94.  Li S, Wang H, Li F, Chen Z, Li X et al. 2015. The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. Plant J 84:296–308
    [Google Scholar]
  95. 95.  Li X, Schuler MA, Berenbaum MR 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52:231–53
    [Google Scholar]
  96. 96.  Lin W, Tang W, Anderson C, Yang Z 2018. FERONIA's sensing of cell wall pectin activates ROP GTPase signaling in Arabidopsis. bioRxiv 269647. https://doi.org/10.1101/269647
  97. 97.  Liu Y, Wu H, Chen H, Liu Y, He J et al. 2015. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat. Biotechnol. 33:301–5
    [Google Scholar]
  98. 98.  Louis J, Peiffer M, Ray S, Luthe DS, Felton GW 2013. Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize. New Phytol 199:66–73
    [Google Scholar]
  99. 99.  Lozano-Durán R, Robatzek S 2015. 14-3-3 proteins in plant-pathogen interactions. Mol. Plant-Microbe Interact. 28:511–18
    [Google Scholar]
  100. 100.  Lu J, Li J, Ju H, Liu X, Erb M et al. 2014. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice. Mol. Plant. 7:1670–82
    [Google Scholar]
  101. 101.  Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L et al. 2015. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167:1100–16
    [Google Scholar]
  102. 102.  Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC et al. 2014. 3-β-D-glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102:97–105
    [Google Scholar]
  103. 103.  Maag D, Erb M, Bernal JS, Wolfender J-L, Turlings TCJ, Glauser G 2015. Maize domestication and anti-herbivore defences: leaf-specific dynamics during early ontogeny of maize and its wild ancestors. PLOS ONE 10:e0135722
    [Google Scholar]
  104. 104.  Maag D, Erb M, Köllner TG, Gershenzon J 2015. Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays 37:167–74
    [Google Scholar]
  105. 105.  Maag D, Köhler A, Robert CAM, Frey M, Wolfender J-L et al. 2016. Highly localized and persistent induction of Bx1-dependent herbivore resistance factors in maize. Plant J 88:976–91
    [Google Scholar]
  106. 106.  Machado RA, McClure M, Hervé MR, Baldwin IT, Erb M 2016. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. eLife 5:e13720
    [Google Scholar]
  107. 107.  Machado RAR, Baldwin IT, Erb M 2017. Herbivory-induced jasmonates constrain plant sugar accumulation and growth by antagonizing gibberellin signaling and not by promoting secondary metabolite production. New Phytol 215:803–12
    [Google Scholar]
  108. 108.  Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M et al. 2013. Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–46
    [Google Scholar]
  109. 109.  Machado RAR, Robert CAM, Arce CCM, Ferrieri AP, Xu S et al. 2016. Auxin is rapidly induced by herbivore attack and regulates a subset of systemic, jasmonate-dependent defenses. Plant Physiol 172:521–32
    [Google Scholar]
  110. 110.  Machado RAR, Zhou W, Ferrieri AP, Arce CCM, Baldwin IT et al. 2017. Species-specific regulation of herbivory-induced defoliation tolerance is associated with jasmonate inducibility. Ecol. Evol. 7:3703–12
    [Google Scholar]
  111. 111.  Maffei ME, Bossi S, Spiteller D, Mithoefer A, Boland W 2004. Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–62
    [Google Scholar]
  112. 112.  Major IT, Yoshida Y, Campos ML, Kapali G, Xin X-F et al. 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol 215:1533–47
    [Google Scholar]
  113. 113.  Mao Y-B, Cai W-J, Wang J-W, Hong G-J, Tao X-Y et al. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25:1307–13
    [Google Scholar]
  114. 114.  Meihls LN, Handrick V, Glauser G, Barbier H, Kaur H et al. 2013. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell 25:2341–55
    [Google Scholar]
  115. 115.  Meldau S, Erb M, Baldwin IT 2012. Defence on demand: mechanisms behind optimal defence patterns. Ann. Bot. 110:1503–14
    [Google Scholar]
  116. 116.  Miller G, Schlauch K, Tam R, Cortes D, Torres MA et al. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci. Signal 2:ra45
    [Google Scholar]
  117. 117.  Mirabella R, Rauwerda H, Struys EA, Jakobs C, Triantaphylidès C et al. 2008. The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant J 53:197–213
    [Google Scholar]
  118. 118.  Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM et al. 2018. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat. Chem. Biol. 14:480–88
    [Google Scholar]
  119. 119.  Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D et al. 2009. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. PNAS 106:2447–52
    [Google Scholar]
  120. 120.  Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE 2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–26Identifies molecular components required for generation of long-distance electrical signals in response to wounding.
    [Google Scholar]
  121. 121.  Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G et al. 2002. Herbivory: caterpillar saliva beats plant defences. Nature 416:599–600
    [Google Scholar]
  122. 122.  Müller R, de Vos M, Sun JY, Sønderby IE, Halkier BA et al. 2010. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 36:905–13
    [Google Scholar]
  123. 123.  Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE 2018. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. PNAS 115:10178–83
    [Google Scholar]
  124. 124.  Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME et al. 2012. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488:531–34
    [Google Scholar]
  125. 125.  Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, Dicke M 2016. Differential costs of two distinct resistance mechanisms induced by different herbivore species in Arabidopsis. Plant Physiol 170:891–906
    [Google Scholar]
  126. 126.  Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJA, Dicke M 2014. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J. Exp. Bot 65:2203–17
    [Google Scholar]
  127. 127.  Orozco-Cardenas ML, McGurl B, Ryan CA 1993. Expression of an antisense prosystemin gene in tomato plants reduces resistance toward Manduca sexta larvae. PNAS 90:8273–76
    [Google Scholar]
  128. 128.  Pandey SP, Shahi P, Gase K, Baldwin IT 2008. Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. PNAS 105:4559–64
    [Google Scholar]
  129. 129.  Payne RME, Xu D, Foureau E, Teto Carqueijeiro MIS, Oudin A et al. 2017. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat. Plants 3:16208
    [Google Scholar]
  130. 130.  Pechan T, Cohen A, Williams WP, Luthe DS 2002. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. PNAS 99:13319–23
    [Google Scholar]
  131. 131.  Petschenka G, Agrawal AA 2016. How herbivores coopt plant defenses: natural selection, specialization, and sequestration. Curr. Opin. Insect Sci. 14:17–24
    [Google Scholar]
  132. 132.  Pfalz M, Vogel H, Kroymann J 2009. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985–99
    [Google Scholar]
  133. 133.  Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521
    [Google Scholar]
  134. 134.  Pitino M, Hogenhout SA 2013. Aphid protein effectors promote aphid colonization in a plant species-specific manner. Mol. Plant-Microbe Interact. 26:130–39
    [Google Scholar]
  135. 135.  Poreddy S, Mitra S, Schöttner M, Chandran J, Schneider B et al. 2015. Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nat. Commun. 6:8525
    [Google Scholar]
  136. 136.  Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y et al. 2010. Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. PNAS 107:21193–98
    [Google Scholar]
  137. 137.  Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE 2004. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–47
    [Google Scholar]
  138. 138.  Robert CA, Zhang X, Machado RA, Schirmer S, Lori M et al. 2017. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 6:e29307
    [Google Scholar]
  139. 139.  Robert CAM, Erb M, Hiltpold I, Hibbard BE, Gaillard MDP et al. 2013. Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnol. J. 11:628–39
    [Google Scholar]
  140. 140.  Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S et al. 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304
    [Google Scholar]
  141. 141.  Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC 2017. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. Plant Mol. Biol. 95:399–409
    [Google Scholar]
  142. 142.  Schäfer M, Canales IDM, Brütting C, Baldwin IT, Meldau S 2015. Cytokinin concentrations and CHASE‐DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)‐ and NaCHK3‐mediated perception modulate herbivory‐induced defense signaling and defenses in Nicotiana attenuata. New Phytol 207:645–58
    [Google Scholar]
  143. 143.  Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT 2011. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156:1520–34
    [Google Scholar]
  144. 144.  Schilmiller AL, Koo AJK, Howe GA 2007. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–24
    [Google Scholar]
  145. 145.  Schittko U, Hermsmeier D, Baldwin IT 2001. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. II. Accumulation of plant mRNAs in response to insect-derived cues. Plant Physiol 125:701–10
    [Google Scholar]
  146. 146.  Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J et al. 2006. Fragments of ATP synthase mediate plant perception of insect attack. PNAS 103:8894–99
    [Google Scholar]
  147. 147.  Schmelz EA, Huffaker A, Carroll MJ, Alborn HT, Ali JG, Teal PEA 2012. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses. Plant Physiol 160:1468–78Illustrates how a modified HAMP functions as an effector in an adapted insect herbivore.
    [Google Scholar]
  148. 148.  Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. PNAS 103:1129–34
    [Google Scholar]
  149. 149.  Scholz SS, Vadassery J, Heyer M, Reichelt M, Bender KW et al. 2014. Mutation of the Arabidopsis calmodulin-like protein CML37 deregulates the jasmonate pathway and enhances susceptibility to herbivory. Mol. Plant 7:1712–26
    [Google Scholar]
  150. 150.  Schuman MC, Baldwin IT 2016. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 61:373–94
    [Google Scholar]
  151. 151.  Schuman MC, Barthel K, Baldwin IT 2012. Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. eLife 1:e00007
    [Google Scholar]
  152. 152.  Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, Schittko U, Baldwin IT 2006. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. PNAS 103:12935–40
    [Google Scholar]
  153. 153.  Schweizer F, Bodenhausen N, Lassueur S, Masclaux FG, Reymond P 2013. Differential contribution of transcription factors to Arabidopsis thaliana defense against Spodoptera littoralis. Front. Plant Sci 4:13
    [Google Scholar]
  154. 154.  Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S et al. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–32Identifies a complex of MYC and MYB factors that regulate expression of GS biosynthesis genes.
    [Google Scholar]
  155. 155.  Shangguan X, Zhang J, Liu B, Zhao Y, Wang H et al. 2018. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiol 176:552–65
    [Google Scholar]
  156. 156.  Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S et al. 2006. Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. PNAS 103:16672–76
    [Google Scholar]
  157. 157.  Shitan N, Dalmas F, Dan K, Kato N, Ueda K et al. 2013. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry 91:109–16
    [Google Scholar]
  158. 158.  Shoji T, Inai K, Yazaki Y, Sato Y, Takase H et al. 2009. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol 149:708–18
    [Google Scholar]
  159. 159.  Shoji T, Kajikawa M, Hashimoto T 2010. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22:3390–409
    [Google Scholar]
  160. 160.  Song S, Huang H, Gao H, Wang J, Wu D et al. 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–79
    [Google Scholar]
  161. 161.  Song S, Huang H, Wang J, Liu B, Qi T, Xie D 2017. MYC5 is involved in jasmonate-regulated plant growth, leaf senescence and defense responses. Plant Cell Physiol 58:1752–63
    [Google Scholar]
  162. 162.  Song S, Qi T, Fan M, Zhang X, Gao H et al. 2013. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLOS Genet 9:e1003653
    [Google Scholar]
  163. 163.  Stahl E, Hilfiker O, Reymond P 2018. Plant-arthropod interactions: Who is the winner. ? Plant J 93:703–28
    [Google Scholar]
  164. 164.  Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:287–89
    [Google Scholar]
  165. 165.  Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT 2004. Nicotine's defensive function in nature. PLOS Biol 2:e217
    [Google Scholar]
  166. 166.  Stone G 2003. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 18:512–22
    [Google Scholar]
  167. 167.  Sugio A, Kingdom HN, Maclean AM, Grieve VM, Hogenhout SA 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS 108:E1254–63
    [Google Scholar]
  168. 168.  Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T et al. 2018. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361:1112–15
    [Google Scholar]
  169. 169.  Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K 2018. Extracellular ATP acts on jasmonate signaling to reinforce plant defense. Plant Physiol 176:511–23
    [Google Scholar]
  170. 170.  Truitt CL, Wei H-X, Pare PW 2004. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–32
    [Google Scholar]
  171. 171.  Turlings TCJ, Erb M 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433–52
    [Google Scholar]
  172. 172.  Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A 2012. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–75
    [Google Scholar]
  173. 173.  Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ et al. 2013. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–25
    [Google Scholar]
  174. 174.  Véry A-A, Sentenac H 2002. Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–75
    [Google Scholar]
  175. 175.  Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N et al. 2017. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29:1460–79
    [Google Scholar]
  176. 176.  Wang C, Zhou M, Zhang X, Yao J, Zhang Y, Mou Z 2017. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. eLife 6:e25474
    [Google Scholar]
  177. 177.  Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A et al. 2018. Two abscisic acid responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell 30:1006–22
    [Google Scholar]
  178. 178.  Wang L, Einig E, Almeida-Trapp M, Albert M, Fliegmann J et al. 2018. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat. Plants 4:152–56Demonstrates that perception of systemin depends on two LRR-RK receptors, SYR1 and SYR2.
    [Google Scholar]
  179. 179.  Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y 2013. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep 32:1075–84
    [Google Scholar]
  180. 180.  Williams KS, Gilbert LE 1981. Insects as selective agents on plant vegetative morphology: Egg mimicry reduces egg laying by butterflies. Science 212:467–69
    [Google Scholar]
  181. 181.  Winde I, Wittstock U 2011. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566–75
    [Google Scholar]
  182. 182.  Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I 2013. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biol 13:73
    [Google Scholar]
  183. 183.  Wu J, Hettenhausen C, Meldau S, Baldwin IT 2007. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–122
    [Google Scholar]
  184. 184.  Wu J, Wang L, Wünsche H, Baldwin IT 2013. Narboh D, a respiratory burst oxidase homolog in Nicotiana attenuata, is required for late defense responses after herbivore attack. J. Integr. Plant Biol. 55:187–98
    [Google Scholar]
  185. 185.  Xiao Y, Wang Q, Erb M, Turlings TCJ, Ge L et al. 2012. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol. Lett. 15:1130–39
    [Google Scholar]
  186. 186.  Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–22
    [Google Scholar]
  187. 187.  Yan C, Fan M, Yang M, Zhao J, Zhang W et al. 2018. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol. Cell 70:136–37Identifies a molecular link between insect-induced Ca2+ influx and activation of JA biosynthesis.
    [Google Scholar]
  188. 188.  Yang D-H, Hettenhausen C, Baldwin IT, Wu J 2012. Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound- and herbivory-induced jasmonic acid accumulations. Plant Physiol 159:1591–607
    [Google Scholar]
  189. 189.  Ye M, Veyrat N, Xu H, Hu L, Turlings TCJ, Erb M 2018. An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars. Sci. Adv 4:eaar4767
    [Google Scholar]
  190. 190.  Yoo SJ, Kim S-H, Kim M-J, Ryu C-M, Kim YC et al. 2014. Involvement of the OsMKK4-OsMPK1 cascade and its downstream transcription factor OsWRKY53 in the wounding response in rice. Plant Pathol. J. 30:168–77
    [Google Scholar]
  191. 191.  Zarate SI, Kempema LA, Walling LL 2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–75
    [Google Scholar]
  192. 192.  Zhang C, Shi H, Chen L, Wang X, B et al. 2011. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol 11:11
    [Google Scholar]
  193. 193.  Zhang L, Reed RD 2016. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Nat. Commun. 7:11769
    [Google Scholar]
  194. 194.  Zhang X, Mou Z 2009. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in Arabidopsis. Plant J 57:302–12
    [Google Scholar]
  195. 195.  Zhao C, Zayed O, Yu Z, Jiang W, Zhu P 2018. Leucine-rich repeat extension proteins regulate plant salt tolerance in Arabidopsis. PNAS 115:13123–28
    [Google Scholar]
  196. 196.  Zheng L, McMullen MD, Bauer E, Schön C-C, Gierl A, Frey M 2015. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. J. Exp. Bot 66:3917–30
    [Google Scholar]
  197. 197.  Zhou G, Qi J, Ren N, Cheng J, Erb M et al. 2009. Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–48
    [Google Scholar]
  198. 198.  Zhou W, Kügler A, McGale E, Haverkamp A, Knaden M et al. 2017. Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores. Curr. Biol. 27:1336–41
    [Google Scholar]
  199. 199.  Züst T, Agrawal AA 2016. Mechanisms and evolution of plant resistance to aphids. Nat. Plants. 2:15206
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-095910
Loading
/content/journals/10.1146/annurev-arplant-050718-095910
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error