1932

Abstract

When exposed to warmer, nonstressful average temperatures, some plant organs grow and develop at a faster rate without affecting their final dimensions. Other plant organs show specific changes in morphology or development in a response termed thermomorphogenesis. Selected coding and noncoding RNA, chromatin features, alternative splicing variants, and signaling proteins change their abundance, localization, and/or intrinsic activity to mediate thermomorphogenesis. Temperature, light, and circadian clock cues are integrated to impinge on the level or signaling of hormones such as auxin, brassinosteroids, and gibberellins. The light receptor phytochrome B (phyB) is a temperature sensor, and the phyB–PHYTOCHROME-INTERACTING FACTOR 4 (PIF4)–auxin module is only one thread in a complex network that governs temperature sensitivity. Thermomorphogenesis offers an avenue to search for climate-smart plants to sustain crop and pasture productivity in the context of global climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-095919
2019-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/70/1/annurev-arplant-050718-095919.html?itemId=/content/journals/10.1146/annurev-arplant-050718-095919&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Armstrong AF, Logan DC, Atkin OK 2006. On the developmental dependence of leaf respiration: responses to short- and long-term changes in growth temperature. Am. J. Bot. 93:1633–39
    [Google Scholar]
  2. 2.  Balasubramanian S, Sureshkumar S, Lempe J, Weigel D 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLOS Genet 2:e106
    [Google Scholar]
  3. 3.  Balasubramanian S, Weigel D 2006. Temperature induced flowering in Arabidopsis thaliana. Plant Signal. Behav. 1:227–28
    [Google Scholar]
  4. 4.  Berry S, Dean C 2015. Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J 83:133–48
    [Google Scholar]
  5. 5.  Blázquez M, Ahn J, Weigel D 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33:168–71
    [Google Scholar]
  6. 6.  Boden SA, Kavanová M, Finnegan EJ, Wigge PA 2013. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol 14:R65
    [Google Scholar]
  7. 7.  Bours R, Kohlen W, Bouwmeester HJ, van der Krol A 2015. Thermoperiodic control of hypocotyl elongation depends on auxin-induced ethylene signaling that controls downstream PHYTOCHROME INTERACTING FACTOR3 activity. Plant Physiol 167:517–30
    [Google Scholar]
  8. 8.  Box MS, Huang BE, Domijan M, Jaeger KE, Khattak AK et al. 2015. ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25:194–99Shows that ELF3 represses thermomorphogenesis by directly reducing PIF4 expression under cold temperatures.
    [Google Scholar]
  9. 9.  Bridge LJ, Franklin KA, Homer ME 2013. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. J. R. Soc. Interface 10:20130326
    [Google Scholar]
  10. 10.  Burgie ES, Bussell AN, Lye SH, Wang T, Hu W et al. 2017. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Sci. Rep. 7:13648
    [Google Scholar]
  11. 11.  Burgie ES, Vierstra RD 2014. Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:4568–83
    [Google Scholar]
  12. 12.  Capovilla G, Delhomme N, Collani S, Shutava I, Bezrukov I et al. 2018. PORCUPINE regulates development in response to temperature through alternative splicing. Nat. Plants 4:534–39
    [Google Scholar]
  13. 13.  Capovilla G, Symeonidi E, Wu R, Schmid M 2017. Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J. Exp. Bot. 68:5117–27
    [Google Scholar]
  14. 14.  Carter B, Bishop B, Ho KK, Huang R, Jia W et al. 2018. The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis. Plant Cell 30:1337–52
    [Google Scholar]
  15. 15.  Casal JJ, Qüesta J 2018. Light and temperature cues: multitasking receptors and transcriptional integrators. New Phytol 217:1029–34
    [Google Scholar]
  16. 16.  Catalá R, Medina J, Salinas J 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. PNAS 108:16475–80
    [Google Scholar]
  17. 17.  Chen X, Lu L, Mayer KS, Scalf M, Qian S et al. 2016. POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. eLife 5:e17214
    [Google Scholar]
  18. 18.  Coleman-Derr D, Zilberman D 2012. Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLOS Genet 8:e1002988
    [Google Scholar]
  19. 19.  Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C et al. 2017. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol. Plant 10:1258–73
    [Google Scholar]
  20. 20.  Cosgrove DJ 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:850–61
    [Google Scholar]
  21. 21.  Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA 2012. High temperature exposure increases plant cooling capacity. Curr. Biol. 22:R396–97
    [Google Scholar]
  22. 22.  de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM et al. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–84
    [Google Scholar]
  23. 23.  de Wit M, Keuskamp DH, Bongers FJ, Hornitschek P, Gommers CMM et al. 2016. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. Curr. Biol. 26:3320–26
    [Google Scholar]
  24. 24.  Delker C, Sonntag L, James GV, Janitza P, Ibañez C et al. 2014. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 9:1983–89Describes the DET1-COP1-HY5 pathway in the control of thermomorphogenesis.
    [Google Scholar]
  25. 25.  Dell AI, Pawar S, Savage VM 2011. Systematic variation in the temperature dependence of physiological and ecological traits. PNAS 108:10591–96
    [Google Scholar]
  26. 26.  Eimer H, Sureshkumar S, Singh Yadav A, Kraupner-Taylor C, Bandaranayake C et al. 2018. RNA-dependent epigenetic silencing directs transcriptional downregulation caused by intronic repeat expansions. Cell 174:1095–105.e11
    [Google Scholar]
  27. 27.  Enderle B, Sheerin DJ, Paik I, Kathare PK, Schwenk P et al. 2017. PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nat. Commun. 8:2221
    [Google Scholar]
  28. 28.  Erwin JE, Heins RD, Karlsson MG 1989. Thermomorphogenesis in Lilium longiflorum. Am. J. Bot. 76:47–52
    [Google Scholar]
  29. 29.  Ezer D, Jung J-H, Lan H, Biswas S, Gregoire L et al. 2017. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3:17087
    [Google Scholar]
  30. 30.  Fernández V, Takahashi Y, Le Gourrierec J, Coupland G 2016. Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days. Plant J 86:426–40
    [Google Scholar]
  31. 31.  Findlay KMW, Jenkins GI 2016. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environ 39:1706–14
    [Google Scholar]
  32. 32.  Foreman J, Johansson H, Hornitschek P, Josse E-M, Fankhauser C, Halliday KJ 2011. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 65:441–52
    [Google Scholar]
  33. 33.  Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK et al. 2011. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. PNAS 108:20231–35Together with Reference 104, demonstrates that PIF4 enhances the expression of auxin synthesis genes in response to warm temperatures.
    [Google Scholar]
  34. 34.  Friend DJC 1965. Tillering and leaf production in wheat as affected by temperature and light intensity. Can. J. Bot. 43:1063–76
    [Google Scholar]
  35. 35.  Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N et al. 2017. Phototropin perceives temperature based on the lifetime of its photoactivated state. PNAS 114:9206–11
    [Google Scholar]
  36. 36.  Fukai S, Silsbury JH 1976. Responses of subterranean clover communities to temperature. I. Dry matter production and plant morphogenesis. Aust. J. Plant Physiol. 3:527–43
    [Google Scholar]
  37. 37.  Gangappa SN, Berriri S, Kumar SV 2017. PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr. Biol 27:243–49
    [Google Scholar]
  38. 38.  Gangappa SN, Kumar SV 2017. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep 18:344–51
    [Google Scholar]
  39. 39.  Gray WM, Östin A, Sandberg G, Romano CP, Estelle M 1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. PNAS 95:7197–202
    [Google Scholar]
  40. 40.  Gyula P, Baksa I, Tóth T, Mohorianu I, Dalmay T, Szittya G 2018. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2. Plant. Cell Environ. 41:2404–17
    [Google Scholar]
  41. 41.  Halliday KJ, Salter MG, Thingnaes E, Whitelam GC 2003. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J 33:875–85
    [Google Scholar]
  42. 42.  Hanzawa T, Shibasaki K, Numata T, Kawamura Y, Gaude T, Rahman A 2013. Cellular auxin homeo-stasis under high temperature is regulated through a SORTING NEXIN1–dependent endosomal trafficking pathway. Plant Cell 25:3424–33
    [Google Scholar]
  43. 43.  Hao Y, Oh E, Choi G, Liang Z, Wang Z-Y 2012. Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol. Plant. 5:688–97
    [Google Scholar]
  44. 44.  Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK et al. 2017. UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr. Biol. 27:120–27
    [Google Scholar]
  45. 45.  Heijde M, Ulm R 2012. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–37
    [Google Scholar]
  46. 46.  Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K 2007. A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–41
    [Google Scholar]
  47. 47.  Hong S-Y, Seo PJ, Ryu JY, Cho S-H, Woo J-C, Park C-M 2013. A competitive peptide inhibitor KIDARI negatively regulates HFR1 by forming nonfunctional heterodimers in Arabidopsis photomorphogenesis. Mol. Cells 35:25–31
    [Google Scholar]
  48. 48.  Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C 2009. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–902
    [Google Scholar]
  49. 49.  Huai J, Zhang X, Li J, Ma T, Zha P et al. 2018. SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol. Plant. 11:928–42
    [Google Scholar]
  50. 50.  Hwang G, Zhu J-Y, Lee YK, Kim S, Nguyen TT et al. 2017. PIF4 promotes expression of LNG1 and LNG2 to induce thermomorphogenic growth in Arabidopsis. Front. Plant Sci. 8:1320
    [Google Scholar]
  51. 51.  Ibañez C, Delker C, Martinez C, Bürstenbinder K, Janitza P et al. 2018. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr. Biol. 28:303–10Describes the role of brassinosteroids and BZR1 in thermomorphogenesis.
    [Google Scholar]
  52. 52.  Ibañez C, Poeschl Y, Peterson T, Bellstädt J, Denk K et al. 2017. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana. BMC Plant Biol 17:114
    [Google Scholar]
  53. 53.  Jung J-H, Domijan M, Klose C, Biswas S, Ezer D et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886–89Together with Reference 64, demonstrates that phytochrome B is a temperature sensor.
    [Google Scholar]
  54. 54.  Kim YJ, Wang R, Gao L, Li D, Xu C et al. 2016. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis. PNAS 113:14858–63
    [Google Scholar]
  55. 55.  Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C 2015. Systematic analysis of how phytochrome B dimerization determines its specificity. Nat. Plants 1:15090
    [Google Scholar]
  56. 56.  Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP et al. 2009. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19:408–13
    [Google Scholar]
  57. 57.  Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E et al. 2012. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–45
    [Google Scholar]
  58. 58.  Kumar SV, Wigge PA 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–47Provides insight into the role of the dynamics of H2A.Z-containing nucleosomes in thermomorphogenesis.
    [Google Scholar]
  59. 59.  Lau OS, Deng XW 2012. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–93
    [Google Scholar]
  60. 60.  Lau OS, Song Z, Zhou Z, Davies KA, Chang J et al. 2018. Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Curr. Biol. 28:1273–80
    [Google Scholar]
  61. 61.  Lee H-J, Jung J-H, Cortés Llorca L, Kim S-G, Lee S et al. 2014. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5:5473
    [Google Scholar]
  62. 62.  Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK et al. 2010. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res 38:3081–93
    [Google Scholar]
  63. 63.  Lee J, He K, Stolc V, Lee H, Figueroa P et al. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–49
    [Google Scholar]
  64. 64.  Legris M, Klose C, Burgie ES, Rojas CC, Neme M et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900Together with Reference 53, demonstrates that phytochrome B is a temperature sensor.
    [Google Scholar]
  65. 65.  Legris M, Nieto C, Sellaro R, Prat S, Casal JJ 2017. Perception and signalling of light and temperature cues in plants. Plant J 90:683–97
    [Google Scholar]
  66. 66.  Li K, Yu R, Fan L-M, Wei N, Chen H, Deng XW 2016. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat. Commun. 7:11868
    [Google Scholar]
  67. 67.  Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C 2008. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–23
    [Google Scholar]
  68. 68.  Lutz U, Nussbaumer T, Spannagl M, Diener J, Mayer KF, Schwechheimer C 2017. Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis. eLife 6:e22114
    [Google Scholar]
  69. 69.  Lutz U, Posé D, Pfeifer M, Gundlach H, Hagmann J et al. 2015. Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLOS Genet 11:e1005588
    [Google Scholar]
  70. 70.  Ma D, Li X, Guo Y, Chu J, Fang S et al. 2016. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. PNAS 113:224–29
    [Google Scholar]
  71. 71.  Martínez C, Espinosa-Ruíz A, de Lucas M, Bernardo-García S, Franco-Zorrilla JM, Prat S 2018. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J 37:e99552
    [Google Scholar]
  72. 72.  Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Le Roux CP et al. 2017. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun. 8:309
    [Google Scholar]
  73. 73.  Mazzella MA, Bertero D, Casal JJ 2000. Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1. Planta 210:497–501
    [Google Scholar]
  74. 74.  Mazzella MA, Cerdán PD, Staneloni RJ, Casal JJ 2001. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128:2291–99
    [Google Scholar]
  75. 75.  Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É et al. 2013. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25:535–44
    [Google Scholar]
  76. 76.  Nieto C, López-Salmerón V, Davière J-M, Prat S 2015. ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Curr. Biol. 25:187–93
    [Google Scholar]
  77. 77.  Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T et al. 2011. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402
    [Google Scholar]
  78. 78.  Oh E, Zhu J-Y, Wang Z-Y 2012. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14:802–9
    [Google Scholar]
  79. 79.  Pajoro A, Severing E, Angenent GC, Immink RGH 2017. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol 18:102
    [Google Scholar]
  80. 80.  Parent B, Tardieu F 2012. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol 194:760–74
    [Google Scholar]
  81. 81.  Park Y-J, Lee H-J, Ha J-H, Kim JY, Park C-M 2017. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol 215:269–80
    [Google Scholar]
  82. 82.  Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J et al. 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–45
    [Google Scholar]
  83. 83.  Posé D, Verhage L, Ott F, Yant L, Mathieu J et al. 2013. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414–17
    [Google Scholar]
  84. 84.  Pucciariello O, Legris M, Rojas CC, Iglesias MJ, Hernando CE et al. 2018. Rewiring of auxin signaling under persistent shade. PNAS 115:5612–17
    [Google Scholar]
  85. 85.  Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M 2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2:15190
    [Google Scholar]
  86. 86.  Raschke A, Ibañez C, Ullrich KK, Anwer MU, Becker S et al. 2015. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin responses. BMC Plant Biol 15:197
    [Google Scholar]
  87. 87.  Ren H, Park MY, Spartz AK, Wong JH, Gray WM 2018. A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis. PLOS Genet 14:e1007455
    [Google Scholar]
  88. 88.  Robson MJ 1972. Effect of temperature on the growth of the S.170 tall fescue (Festuca arundinacea). I. Constant temperature. J. Appl. Ecol. 9:643–53
    [Google Scholar]
  89. 89.  Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S et al. 2007. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–67
    [Google Scholar]
  90. 90.  Sablowski RWM, Meyerowitz EM 1998. Temperature-sensitive splicing in the floral homeotic mutant apetala3-1. Plant Cell 10:1453–63
    [Google Scholar]
  91. 91.  Sanchez-Bermejo E, Zhu W, Tasset C, Eimer H, Sureshkumar S et al. 2015. Genetic architecture of natural variation in thermal responses of Arabidopsis. Plant Physiol 169:647–59
    [Google Scholar]
  92. 92.  Sánchez-Lamas M, Lorenzo CD, Cerdán PD 2016. Bottom-up assembly of the phytochrome network. PLOS Genet 12:e1006413
    [Google Scholar]
  93. 93.  Schäfer E, Schmidt W 1974. Temperature dependence of phytochrome dark reactions. Planta 116:257–66
    [Google Scholar]
  94. 94.  Schlenker W, Roberts MJ 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. PNAS 106:15594–98
    [Google Scholar]
  95. 95.  Scortecci KC, Michaels SD, Amasino RM 2001. Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant J 26:229–36
    [Google Scholar]
  96. 96.  Serivichyaswat PT, Susila H, Ahn JH 2017. Elongated Hypocotyl 5-Homolog (HYH) negatively regulates expression of the ambient temperature-responsive microRNA gene MIR169. Front. Plant Sci 8:2087
    [Google Scholar]
  97. 97.  Severing E, Faino L, Jamge S, Busscher M, Kuijer-Zhang Y et al. 2018. Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biol 18:145
    [Google Scholar]
  98. 98.  Sharpe PJH, DeMichele DW 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64:649–70
    [Google Scholar]
  99. 99.  Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S 2014. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol 15:R45
    [Google Scholar]
  100. 100.  Sionit N, Strain BR, Flint EP 1987. Interaction of temperature and CO2 enrichment on soybean: growth and dry matter partitioning. Can. J. Plant Sci. 67:59–67
    [Google Scholar]
  101. 101.  Spartz AK, Ren H, Park MY, Grandt KN, Lee SH et al. 2014. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–42
    [Google Scholar]
  102. 102.  Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T et al. 2009. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601
    [Google Scholar]
  103. 103.  Stoller EW, Woolley JT 1983. The effects of light and temperature on yellow nutsedge (Cyperus esculentus) basal-bulb formation. Weed Sci 31:148–52
    [Google Scholar]
  104. 104.  Sun J, Qi L, Li Y, Chu J, Li C 2012. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLOS Genet 8:e1002594Together with Reference 33, demonstrates that PIF4 enhances the expression of auxin synthesis genes in response to warm temperatures.
    [Google Scholar]
  105. 105.  Sureshkumar S, Dent C, Seleznev A, Tasset C, Balasubramanian S 2016. Nonsense-mediated mRNA decay modulates FLM-dependent thermosensory flowering response in Arabidopsis. Nat. Plants 2:16055Proposes a role of nonsense-mediated mRNA decay in thermomorphogenesis.
    [Google Scholar]
  106. 106.  Tasset C, Singh Yadav A, Sureshkumar S, Singh R, van der Woude L et al. 2018. POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLOS Genet 14:e1007280Describes an essential role of histone deacetylation in thermomorphogenesis.
    [Google Scholar]
  107. 107.  Thines B, Harmon FG 2010. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. PNAS 107:3257–62
    [Google Scholar]
  108. 108.  Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K et al. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLOS Genet 10:e1004416
    [Google Scholar]
  109. 109.  Topham AT, Taylor RE, Yan D, Nambara E, Johnston IG, Bassel GW 2017. Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds. PNAS 114:6629–34
    [Google Scholar]
  110. 110.  Trudgill DL, Honek A, Li D, Van Straalen NM 2005. Thermal time—concepts and utility. Ann. Appl. Biol. 146:1–14
    [Google Scholar]
  111. 111.  Wang E, Martre P, Zhao Z, Ewert F, Maiorano A et al. 2017. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3:17102
    [Google Scholar]
  112. 112.  Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M 2016. HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat. Commun. 7:10269
    [Google Scholar]
  113. 113.  Weitbrecht K, Müller K, Leubner-Metzger G 2011. First off the mark: early seed germination. J. Exp. Bot. 62:3289–309
    [Google Scholar]
  114. 114.  Yang X, Dong G, Palaniappan K, Mi G, Baskin TI 2017. Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ 40:264–76
    [Google Scholar]
  115. 115.  Yi Y, Jack T 1998. An intragenic suppressor of the Arabidopsis floral organ identity mutant apetala3-1 functions by suppressing defects in splicing. Plant Cell 10:1465–77
    [Google Scholar]
  116. 116.  Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L et al. 2017. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6:e26759
    [Google Scholar]
  117. 117.  Zhu J-Y, Oh E, Wang T, Wang Z-Y 2016. TOC1–PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat. Commun. 7:13692
    [Google Scholar]
  118. 118.  Zhu J, Zhang K-X, Wang W-S, Gong W, Liu W-C et al. 2018. Low temperature inhibits root growth by reducing auxin accumulation via ARR1/12. Plant Cell Physiol 56:727–36
    [Google Scholar]
  119. 119.  Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX et al. 2015. Natural variation identifies ICARUS1, a universal gene required for cell proliferation and growth at high temperatures in Arabidopsis thaliana. PLOS Genet 11:e1005085
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-095919
Loading
/content/journals/10.1146/annurev-arplant-050718-095919
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error