1932

Abstract

Light is essential for photosynthesis. Nevertheless, its intensity widely changes depending on time of day, weather, season, and localization of individual leaves within canopies. This variability means that light collected by the light-harvesting system is often in excess with respect to photon fluence or spectral quality in the context of the capacity of photosynthetic metabolism to use ATP and reductants produced from the light reactions. Absorption of excess light can lead to increased production of excited, highly reactive intermediates, which expose photosynthetic organisms to serious risks of oxidative damage. Prevention and management of such stress are performed by photoprotective mechanisms, which operate by cutting down light absorption, limiting the generation of redox-active molecules, or scavenging reactive oxygen species that are released despite the operation of preventive mechanisms. Here, we describe the major physiological and molecular mechanisms of photoprotection involved in the harmless removal of the excess light energy absorbed by green algae and land plants. In vivo analyses of mutants targeting photosynthetic components and the enhanced resolution of spectroscopic techniques have highlighted specific mechanisms protecting the photosynthetic apparatus from overexcitation. Recent findings unveil a network of multiple interacting elements, the reaction times of which vary from a millisecond to weeks, that continuously maintain photosynthetic organisms within the narrow safety range between efficient light harvesting and photoprotection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-071720-015522
2021-06-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-071720-015522.html?itemId=/content/journals/10.1146/annurev-arplant-071720-015522&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adamska I, Roobol-Boza M, Lindahl M, Andersson B. 1999. Isolation of pigment-binding early light-inducible proteins from pea. Eur. J. Biochem. 260:453–60
    [Google Scholar]
  2. 2. 
    Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T 2010. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. PNAS 107:2411128–33
    [Google Scholar]
  3. 3. 
    Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P et al. 2013. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. PNAS 110:104111–16
    [Google Scholar]
  4. 4. 
    Allorent G, Petroutsos D. 2017. Photoreceptor-dependent regulation of photoprotection. Curr. Opin. Plant Biol. 37:102–8
    [Google Scholar]
  5. 5. 
    Allorent G, Tokutsu R, Roach T, Peers G, Cardol P et al. 2013. A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–57
    [Google Scholar]
  6. 6. 
    Amarnath K, Bennett DIG, Schneider AR, Fleming GR 2016. Multiscale model of light harvesting by photosystem II in plants. PNAS 113:51156–61
    [Google Scholar]
  7. 7. 
    Amstutz CL, Fristedt R, Schultink A, Merchant SS, Niyogi KK, Malnoë A. 2020. An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis. Nat. Plants 6:2154–66Proposes that LCNP and ROQH1 fulfill antagonistic functions in the regulation of qH.
    [Google Scholar]
  8. 8. 
    Armbruster U, Labs M, Pribil M, Viola S, Xu W et al. 2013. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25:2661–78
    [Google Scholar]
  9. 9. 
    Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenerg. 1143:113–34
    [Google Scholar]
  10. 10. 
    Awad J, Stotz HU, Fekete A, Krischke M, Engert C et al. 2015. 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:41592–603
    [Google Scholar]
  11. 11. 
    Bailleul B, Cardol P, Breyton C, Finazzi G. 2010. Electrochromism: a useful probe to study algal photosynthesis. Photosynth. Res. 106:179
    [Google Scholar]
  12. 12. 
    Baker NR. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89–113
    [Google Scholar]
  13. 13. 
    Ballaré CL, Pierik R. 2017. The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ 40:2530–43
    [Google Scholar]
  14. 14. 
    Beck J, Lohscheider JN, Albert S, Andersson U, Mendgen KW et al. 2017. Small one-helix proteins are essential for photosynthesis in Arabidopsis. Front. Plant Sci. 8:7
    [Google Scholar]
  15. 15. 
    Beisel KG, Jahnke S, Hofmann D, Köppchen S, Schurr U, Matsubara S. 2010. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol 152:2188–99
    [Google Scholar]
  16. 16. 
    Bellafiore S, Barneche F, Peltier G, Rochaix J-D. 2005. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–95
    [Google Scholar]
  17. 17. 
    Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S et al. 2009. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284:2215255–66
    [Google Scholar]
  18. 18. 
    Björkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504
    [Google Scholar]
  19. 19. 
    Bode S, Quentmeier CC, Liao P-N, Hafi N, Barros T et al. 2009. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. PNAS 106:12311–16Proposes a photophysical mechanism in which low excitonic carotenoid–chlorophyll states dissipate excess excitation energy.
    [Google Scholar]
  20. 20. 
    Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK et al. 2011. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLOS Biol 9:1e1000577
    [Google Scholar]
  21. 21. 
    Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK. 2013. A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. PNAS 110:29E2733–40Describes SOQ1, a gene product which prevents formation of the slowly reversible quenching component, qH.
    [Google Scholar]
  22. 22. 
    Caffarri S, Croce R, Breton J, Bassi R. 2001. The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J. Biol. Chem. 276:3835924–33
    [Google Scholar]
  23. 23. 
    Cazzaniga S, Dall'Osto L, Kong SG, Wada M, Bassi R 2013. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J. 76:4568–79Reports evidence that the chloroplast avoidance response interplays with NPQ and identifies a component called qM that causes fluorescence decrease.
    [Google Scholar]
  24. 24. 
    Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S et al. 2020. Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii. Plant Cell Environ 43:2496–509
    [Google Scholar]
  25. 25. 
    Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall'Osto L 2012. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. Plant Physiol 159:41745–58
    [Google Scholar]
  26. 26. 
    Chidgey JW, Linhartová M, Komenda J, Jackson PJ, Dickman MJ et al. 2014. A cyanobacterial chlorophyll synthase-HliD complex associates with the Ycf39 protein and the YidC/Alb3 insertase. Plant Cell 26:31267–79
    [Google Scholar]
  27. 27. 
    Chow WS, Lee HY, He J, Hendrickson L, Hong YN, Matsubara S. 2005. Photoinactivation of photosystem II in leaves. Photosynth. Res. 84:1–335–41
    [Google Scholar]
  28. 28. 
    Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P. 2016. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2:15225
    [Google Scholar]
  29. 29. 
    Craine JM, Dybzinski R. 2013. Mechanisms of plant competition for nutrients, water and light. Funct. Ecol. 27:4833–40
    [Google Scholar]
  30. 30. 
    Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:7468535–38
    [Google Scholar]
  31. 31. 
    Dalcorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D et al. 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–85
    [Google Scholar]
  32. 32. 
    D'Alessandro S, Havaux M 2019. Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytol 223:41776–83Summarizes the role of apocarotenoids in mediating PSII stress response and the pathways elicited by these messengers.
    [Google Scholar]
  33. 33. 
    Dall'Osto L, Bressan M, Bassi R. 2015. Biogenesis of light harvesting proteins. Biochim. Biophys. Acta Bioenerg. 1847:9861–71
    [Google Scholar]
  34. 34. 
    Dall'Osto L, Caffarri S, Bassi R. 2005. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:41217–32
    [Google Scholar]
  35. 35. 
    Dall'Osto L, Cazzaniga S, Bressan M, Palečèk D, Židek K et al. 2017. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat. Plants 3:17033Demonstrates that NPQ is catalyzed by two mechanisms; the fastest within monomeric LHCs depends on the formation of a radical cation.
    [Google Scholar]
  36. 36. 
    Dall'Osto L, Cazzaniga S, Havaux M, Bassi R. 2010. Enhanced photoprotection by protein-bound versus free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol. Plant 3:576–93
    [Google Scholar]
  37. 37. 
    Dall'Osto L, Cazzaniga S, North H, Marion-Poll A, Bassi R. 2007. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19:31048–64
    [Google Scholar]
  38. 38. 
    Dall'Osto L, Holt NE, Kaligotla S, Fuciman M, Cazzaniga S et al. 2012. Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. J. Biol. Chem. 287:5041820–34
    [Google Scholar]
  39. 39. 
    Dall'Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R. 2006. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:132
    [Google Scholar]
  40. 40. 
    de Bianchi S, Dall'Osto L, Tognon G, Morosinotto T, Bassi R 2008. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20:1012–28
    [Google Scholar]
  41. 41. 
    De la Torre WR, Burkey KO 1990. Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components. Photosynth. Res. 24:2127–36
    [Google Scholar]
  42. 42. 
    Demmig B, Winter K, Kruger A, Czygan F-C. 1987. Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–24
    [Google Scholar]
  43. 43. 
    Dikaios I, Schiphorst C, Dall'Osto L, Alboresi A, Bassi R, Pinnola A 2019. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Photosynth. Res. 142:249–64
    [Google Scholar]
  44. 44. 
    Ding S, Lu Q, Zhang Y, Yang Z, Wen X et al. 2009. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol. Biol. 69:5577–92
    [Google Scholar]
  45. 45. 
    Dolganov NAM, Bhaya D, Grossman AR 1995. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. PNAS 92:2636–40
    [Google Scholar]
  46. 46. 
    Drop B, Yadav KNS, Boekema EJ, Croce R. 2014. Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–91
    [Google Scholar]
  47. 47. 
    Ducruet JM, Peeva V, Havaux M. 2007. Chlorophyll thermofluorescence and thermoluminescence as complementary tools for the study of temperature stress in plants. Photosynth. Res. 93:159–71
    [Google Scholar]
  48. 48. 
    Edge R, McGarvey DJ, Truscott TG. 1997. The carotenoids as anti-oxidants—a review. J. Photochem. Photobiol. B 41:189–200
    [Google Scholar]
  49. 49. 
    Fan M, Li M, Liu Z, Cao P, Pan X et al. 2015. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat. Struct. Mol. Biol. 22:729–35
    [Google Scholar]
  50. 50. 
    Finazzi G, Johnson GN, Dall'Osto L, Joliot P, Wollman FA, Bassi R 2004. A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. PNAS 101:12375–80
    [Google Scholar]
  51. 51. 
    Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF et al. 2017. Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat. Commun. 8:15885
    [Google Scholar]
  52. 52. 
    Foyer CH. 2018. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154:134–142
    [Google Scholar]
  53. 53. 
    Frank HA, Cogdell R 1993. Photochemistry and functions of carotenoids in photosynthesis. Carotenoids in Photosynthesis G Britton, A Young 252–326 London: Springer-Verlag
    [Google Scholar]
  54. 54. 
    Fufezan C, Rutherford AW, Krieger-Liszkay A. 2002. Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 532:3407–10
    [Google Scholar]
  55. 55. 
    Gerotto C, Franchin C, Arrigoni G, Morosinotto T. 2015. In vivo identification of photosystem II light harvesting complexes interacting with PHOTOSYSTEM II SUBUNIT S. Plant Physiol 168:41747–61
    [Google Scholar]
  56. 56. 
    Gilmore AM, Ball MC 2000. Protection and storage of chlorophyll in overwintering evergreens. PNAS 97:2011098–101
    [Google Scholar]
  57. 57. 
    Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R 2019. LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. PNAS 116:4212–17
    [Google Scholar]
  58. 58. 
    Grouneva I, Gollan PJ, Kangasjärvi S, Suorsa M, Tikkanen M, Aro EM. 2013. Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms. Planta 237:399–412
    [Google Scholar]
  59. 59. 
    Guardini Z, Bressan M, Caferri R, Bassi R, Dall'Osto L 2020. Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nat. Plants 6:3303–13Pinpoints the catalytic chlorophyll-xanthophyll cluster responsible for fast quenching response in plants.
    [Google Scholar]
  60. 60. 
    Havaux M, Eymery F, Porfirova S, Rey P, Dormann P. 2005. Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–69
    [Google Scholar]
  61. 61. 
    Heber U, Walker D. 1992. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:41621–26
    [Google Scholar]
  62. 62. 
    Heddad M, Adamska I. 2002. The evolution of light stress proteins in photosynthetic organisms. Comp. Funct. Genom. 3:6504–10
    [Google Scholar]
  63. 63. 
    Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M et al. 2013. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol. Cell 49:3511–23
    [Google Scholar]
  64. 64. 
    Hey D, Grimm B. 2018. ONE-HELIX PROTEIN2 (OHP2) is required for the stability of OHP1 and assembly factor HCF244 and is functionally linked to PSII biogenesis. Plant Physiol 177:41453–72
    [Google Scholar]
  65. 65. 
    Hey D, Rothbart M, Herbst J, Wang P, Müller J et al. 2017. LIL3, a light-harvesting complex protein, links terpenoid and tetrapyrrole biosynthesis in Arabidopsis thaliana. Plant Physiol 174:21037–50
    [Google Scholar]
  66. 66. 
    Hideg É, Schreiber U. 2007. Parallel assessment of ROS formation and photosynthesis in leaves by fluorescence imaging. Photosynth. Res. 92:1103–8
    [Google Scholar]
  67. 67. 
    Holt NE, Zigmantas D, Valkunas L, Li X-P, Niyogi KK, Fleming GR. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:5708433–36Proposes that a charge separation event, within a chlorophyll-zeaxanthin heterodimer, catalyzes excess energy dissipation.
    [Google Scholar]
  68. 68. 
    Horton P 1996. Nonphotochemical quenching of chlorophyll fluorescence. Light as an Energy Source and Information Carrier in Plant Physiology RC Jennings 99–111 New York: Plenum Press
    [Google Scholar]
  69. 69. 
    Horváth EM, Peter SO, Joet T, Rumeau D, Cournac L et al. 2000. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:41337–49
    [Google Scholar]
  70. 70. 
    Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M 2003. Early light-induced proteins protect Arabidopsis from photooxidative stress. PNAS 100:4921–26
    [Google Scholar]
  71. 71. 
    Jahns P, Latowski D, Strzalka K. 2009. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta Bioenerg. 1787:3–14
    [Google Scholar]
  72. 72. 
    Jansson S. 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–40
    [Google Scholar]
  73. 73. 
    Jin H, Liu B, Luo L, Feng D, Wang P et al. 2014. HYPERSENSITIVE TO HIGH LIGHT1 interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and functions in protection of photosystem II from photodamage in Arabidopsis. Plant Cell 26:1213–29
    [Google Scholar]
  74. 74. 
    Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. 2011. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:41468–79
    [Google Scholar]
  75. 75. 
    Joliot PA, Finazzi G 2010. Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants. PNAS 107:2812728–33
    [Google Scholar]
  76. 76. 
    Keren N, Liberton M, Pakrasi HB. 2005. Photochemical competence of assembled photosystem II core complex in cyanobacterial plasma membrane. J. Biol. Chem. 280:86548–53
    [Google Scholar]
  77. 77. 
    Kondo T, Pinnola A, Chen WJ, Dall'Osto L, Bassi R, Schlau-Cohen GS 2017. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nat. Chem. 9:772–78
    [Google Scholar]
  78. 78. 
    Koochak H, Puthiyaveetil S, Mullendore DL, Li M, Kirchhoff H. 2019. The structural and functional domains of plant thylakoid membranes. Plant J 97:412–29
    [Google Scholar]
  79. 79. 
    Kouril R, Dekker JP, Boekema EJ. 2012. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta Bioenerg. 1817:12–12
    [Google Scholar]
  80. 80. 
    Kozuleva MA, Petrova AA, Mamedov MD, Semenov AY, Ivanov BN. 2014. O2 reduction by photosystem I involves phylloquinone under steady-state illumination. FEBS Lett 588:234364–68
    [Google Scholar]
  81. 81. 
    Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M et al. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:6314857–61
    [Google Scholar]
  82. 82. 
    Kruk J, Trebst A. 2008. Plastoquinol as a singlet oxygen scavenger in photosystem II. Biochim. Biophys. Acta Bioenerg. 1777:2154–62
    [Google Scholar]
  83. 83. 
    Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G et al. 2013. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. Plant Cell Environ 36:71296–310
    [Google Scholar]
  84. 84. 
    Lemeille S, Willig A, Depège-Fargeix N, Delessert C, Bassi R, Rochaix JD. 2009. Analysis of the chloroplast protein kinase Stt7 during state transitions. PLOS Biol 7:3e1000045
    [Google Scholar]
  85. 85. 
    Leoni C, Pietrzykowska M, Kiss AZ, Suorsa M, Ceci LR et al. 2013. Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis. Plant J 76:2236–46
    [Google Scholar]
  86. 86. 
    Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M et al. 2000. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:6768391–95
    [Google Scholar]
  87. 87. 
    Li X-P, Phippard A, Pasari J, Niyogi KK. 2002. Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29:101131–39
    [Google Scholar]
  88. 88. 
    Li Y, Liu B, Zhang J, Kong F, Zhang L et al. 2019. OHP1, OHP2, and HCF244 form a transient functional complex with the photosystem II reaction center. Plant Physiol 179:1195–208
    [Google Scholar]
  89. 89. 
    Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA et al. 2009. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–812
    [Google Scholar]
  90. 90. 
    Li Z, Peers G, Dent RM, Bai Y, Yang SY et al. 2016. Evolution of an atypical de-epoxidase for photoprotection in the green lineage. Nat. Plants 2:16140
    [Google Scholar]
  91. 91. 
    Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60:239–60
    [Google Scholar]
  92. 92. 
    Liguori N, Roy LM, Opacic M, Durand G, Croce R. 2013. Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: The C-terminus of LHCSR is the knob of a dimmer switch. J. Am. Chem. Soc. 135:4918339–42
    [Google Scholar]
  93. 93. 
    Liu J, Last RL 2017. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments. PNAS 114:E8110–17
    [Google Scholar]
  94. 94. 
    Liu Z, Yan H, Wang K, Kuang T, Zhang J et al. 2004. Crystal structure of spinach major light-harvesting complex at 2.72Å resolution. Nature 428:6980287–92
    [Google Scholar]
  95. 95. 
    Lu Y, Hall DA, Last RL. 2011. A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell 23:1861–75
    [Google Scholar]
  96. 96. 
    Malnoë A. 2018. Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ. Exp. Bot. 154:May123–33
    [Google Scholar]
  97. 97. 
    Malnoë A, Schultink A, Shahrasbi S, Rumeau D, Havaux M, Niyogi KK. 2018. The plastid lipocalin LCNP is required for sustained photoprotective energy dissipation in Arabidopsis. Plant Cell 30:1196–208
    [Google Scholar]
  98. 98. 
    Mano J, Kanameda S, Kuramitsu R, Matsuura N, Yamauchi Y. 2019. Detoxification of reactive carbonyl species by glutathione transferase Tau isozymes. Front. Plant Sci. 10:487
    [Google Scholar]
  99. 99. 
    Matros A, Peshev D, Peukert M, Mock HP, Van Den Ende W. 2015. Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J 82:5822–39
    [Google Scholar]
  100. 100. 
    Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M et al. 2008. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–31
    [Google Scholar]
  101. 101. 
    Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci 9:490–98
    [Google Scholar]
  102. 102. 
    Morosinotto T, Breton J, Bassi R, Croce R. 2003. The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J. Biol. Chem. 278:49223–29
    [Google Scholar]
  103. 103. 
    Motohashi K, Hisabori T. 2010. CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid. Redox Signal. 13:81169–76
    [Google Scholar]
  104. 104. 
    Mou S, Zhang X, Ye N, Dong M, Liang C et al. 2012. Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L. Extremophiles 16:2193–203
    [Google Scholar]
  105. 105. 
    Moya I, Silvestri M, Vallon O, Cinque G, Bassi R. 2001. Time-resolved fluorescence analysis of the Photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–61
    [Google Scholar]
  106. 106. 
    Muller-Moule P, Golan T, Niyogi KK. 2004. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiol 134:1163–72
    [Google Scholar]
  107. 107. 
    Muller-Moule P, Havaux M, Niyogi KK. 2003. Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis. Plant Physiol 133:748–60
    [Google Scholar]
  108. 108. 
    Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–71
    [Google Scholar]
  109. 109. 
    Neely WC, Martin JM, Barker SA. 1988. Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 48:4423–28
    [Google Scholar]
  110. 110. 
    Nelson N, Ben-Shem A. 2004. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5:971–82
    [Google Scholar]
  111. 111. 
    Nicol L, Nawrocki WJ, Croce R. 2019. Disentangling the sites of non-photochemical quenching in vascular plants. Nat. Plants 5:111177–83
    [Google Scholar]
  112. 112. 
    Nilkens M, Kress E, Lambrev P, Miloslavina Y, Muller M et al. 2010. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta Bioenerg. 1797:466–75
    [Google Scholar]
  113. 113. 
    Niyogi KK. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333–59
    [Google Scholar]
  114. 114. 
    Niyogi KK, Bjorkman O, Grossman AR. 1997. Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–80
    [Google Scholar]
  115. 115. 
    Niyogi KK, Grossman AR, Björkman O. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–34
    [Google Scholar]
  116. 116. 
    Ort DR. 2001. When there is too much light. Plant Physiol 125:129–32
    [Google Scholar]
  117. 117. 
    Pan X, Ma J, Su X, Cao P, Chang W et al. 2018. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360:63931109–13
    [Google Scholar]
  118. 118. 
    Peers G, Truong TB, Ostendorf E, Busch A, Elrad D et al. 2009. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:7272518–21Identifies LHCSR as the chlorophyll-binding subunit catalyzing NPQ in green microalgae.
    [Google Scholar]
  119. 119. 
    Peng LW, Shikanai T. 2011. Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155:41629–39
    [Google Scholar]
  120. 120. 
    Peng LW, Yamamoto H, Shikanai T. 2011. Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim. Biophys. Acta Bioenerg. 1807:8945–53
    [Google Scholar]
  121. 121. 
    Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ et al. 2014. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26:93646–60
    [Google Scholar]
  122. 122. 
    Pinnola A, Ballottari M, Bargigia I, Alcocer M, D'Andrea C et al. 2017. Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Sci. Rep. 7:11158
    [Google Scholar]
  123. 123. 
    Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S et al. 2015. Light-harvesting complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physcomitrella patens. Plant Cell 27:3213–27
    [Google Scholar]
  124. 124. 
    Pinnola A, Dall'Osto L, Gerotto C, Morosinotto T, Bassi R, Alboresi A 2013. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25:93519–34
    [Google Scholar]
  125. 125. 
    Pinnola A, Staleva-Musto H, Capaldi S, Ballottari M, Bassi R, Polívka T. 2016. Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochim. Biophys. Acta Bioenerg. 1857:121870–78
    [Google Scholar]
  126. 126. 
    Pospíšil P. 2012. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerg. 1817:1218–31
    [Google Scholar]
  127. 127. 
    Pospíšil P, Prasad A. 2014. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. J. Photochem. Photobiol. B Biol. 137:39–48
    [Google Scholar]
  128. 128. 
    Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. PNAS 109:145535–40
    [Google Scholar]
  129. 129. 
    Reisinger V, Plöscher M, Eichacker LA. 2008. Lil3 assembles as chlorophyll-binding protein complex during deetiolation. FEBS Lett 582:101547–51
    [Google Scholar]
  130. 130. 
    Riechers DE, Kreuz K, Zhang Q. 2010. Detoxification without intoxication: Herbicide safeners activate plant defense gene expression. Plant Physiol 153:13–13
    [Google Scholar]
  131. 131. 
    Roach T, Krieger-Liszkay A. 2012. The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochim. Biophys. Acta Bioenerg. 1817:122158–65
    [Google Scholar]
  132. 132. 
    Roach T, Krieger-Liszkay A. 2014. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15:4351–62
    [Google Scholar]
  133. 133. 
    Rochaix J-D, Bassi R. 2019. LHC-like proteins involved in stress responses and biogenesis/repair of the photosynthetic apparatus. Biochem. J. 476:3581–93
    [Google Scholar]
  134. 134. 
    Rochaix J-D, Lemeille S, Shapiguzov A, Samol I, Fucile G et al. 2012. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Philos. Trans. R. Soc. B 367:3466–74
    [Google Scholar]
  135. 135. 
    Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM et al. 2007. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–78Proposes that excitation energy transfer from chlorophyll to a low-lying carotenoid excited state catalyzes the dissipative reactions.
    [Google Scholar]
  136. 136. 
    Ruban AV, Johnson MP, Duffy CDP. 2012. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg. 1817:1167–81
    [Google Scholar]
  137. 137. 
    Ruban AV, Murchie EH. 2012. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim. Biophys. Acta Bioenerg. 1817:7977–82
    [Google Scholar]
  138. 138. 
    Rutherford AW, Osyczka A, Rappaport F. 2012. Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett 586:5603–16
    [Google Scholar]
  139. 139. 
    Rutherford AW, Thurnauer MC 1982. Radical pair state in photosystem 2. PNAS 79:7283–87
    [Google Scholar]
  140. 140. 
    Santabarbara S, Neverov KV, Garlaschi FM, Zucchelli G, Jennings RC. 2001. Involvement of uncoupled antenna chlorophylls in photoinhibition in thylakoids. FEBS Lett 491:109–13
    [Google Scholar]
  141. 141. 
    Semchonok DA, Sathish Yadav KN, Xu P, Drop B, Croce R, Boekema EJ 2017. Interaction between the photoprotective protein LHCSR3 and C2S2 Photosystem II supercomplex in Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 1858:5379–85
    [Google Scholar]
  142. 142. 
    Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F et al. 2010. The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. PNAS 107:104782–87
    [Google Scholar]
  143. 143. 
    Shen J-R. 2015. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66:23–48
    [Google Scholar]
  144. 144. 
    Shen L, Huang Z, Chang S, Wang W, Wang J et al. 2019. Structure of a C2S2M2N2-type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. PNAS 116:4221246–55
    [Google Scholar]
  145. 145. 
    Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A 1998. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. PNAS 95:169705–9
    [Google Scholar]
  146. 146. 
    Shumbe L, D'Alessandro S, Shao N, Chevalier A, Ksas B et al. 2017. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant Cell Environ. 40:2216–26
    [Google Scholar]
  147. 147. 
    Smirnoff N, Critchley C. 2000. Ascorbate biosynthesis and function in photoprotection. Philos. Trans. R. Soc. B 355:1455–64
    [Google Scholar]
  148. 148. 
    Somersalo S, Krause GH. 1988. Changes in chlorophyll fluorescence related to photoinhibition of photosynthesis and cold acclimation of green plants. Applications of Chlorophyll Fluorescence HK Lichtenthaler 157–64 Dordrecht, Neth: Kluwer Acad.
    [Google Scholar]
  149. 149. 
    Son M, Pinnola A, Gordon SC, Bassi R, Schlau-Cohen GS. 2020. Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat. Commun. 11:11295
    [Google Scholar]
  150. 150. 
    Son M, Pinnola A, Schlau-Cohen GS. 2020. Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment. Biochim. Biophys. Acta Bioenerg. 1861:5–6148115
    [Google Scholar]
  151. 151. 
    Staleva H, Komenda J, Shukla MK, Šlouf V, Kanâ R et al. 2015. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11:4287–91
    [Google Scholar]
  152. 152. 
    Storm P, Hernandez-Prieto MA, Eggink LL, Hoober JK, Funk C. 2008. The small CAB-like proteins of Synechocystis sp. PCC 6803 bind chlorophyll: in vitro pigment reconstitution studies on one-helix light-harvesting-like proteins. Photosynth. Res. 98:1–3479–88
    [Google Scholar]
  153. 153. 
    Strenkert D, Schmollinger S, Gallaher SD, Salomé PA, Purvine SO et al. 2019. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. PNAS 116:62374–83
    [Google Scholar]
  154. 154. 
    Su X, Ma J, Wei X, Cao P, Zhu D et al. 2017. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357:6353815–20
    [Google Scholar]
  155. 155. 
    Suga M, Ozawa SI, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y. 2019. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants 5:6626–36
    [Google Scholar]
  156. 156. 
    Suorsa M, Jarvi S, Grieco M, Nurmi M, Pietrzykowska M et al. 2012. PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:72934–48
    [Google Scholar]
  157. 157. 
    Sylak-Glassman EJ, Malnoe A, De Re E, Brooks MD, Fischer AL et al. 2014. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. PNAS 111:4917498–503
    [Google Scholar]
  158. 158. 
    Sylak-Glassman EJ, Zaks J, Amarnath K, Leuenberger M, Fleming GR. 2016. Characterizing non-photochemical quenching in leaves through fluorescence lifetime snapshots. Photosynth. Res. 127:169–76
    [Google Scholar]
  159. 159. 
    Takagi D, Takumi S, Hashiguchi M, Sejima T, Miyake C. 2016. Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiol 171:31626–34
    [Google Scholar]
  160. 160. 
    Takahashi S, Murata N. 2005. Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage. Biochim. Biophys. Acta Bioenerg. 1708:3352–61
    [Google Scholar]
  161. 161. 
    Telfer A. 2005. Too much light? How β-carotene protects the photosystem II reaction centre. Photochem. Photobiol. Sci. 4:950–56
    [Google Scholar]
  162. 162. 
    Tibiletti T, Auroy P, Peltier G, Caffarri S. 2016. Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol 171:42717–30
    [Google Scholar]
  163. 163. 
    Tiwari A, Mamedov F, Grieco M, Suorsa M, Jajoo A et al. 2016. Photodamage of iron-sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nat. Plants 2:416035
    [Google Scholar]
  164. 164. 
    Tjus SE, Moller BL, Scheller HV. 1998. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116:755–64
    [Google Scholar]
  165. 165. 
    Tjus SE, Scheller HV, Andersson B, Moller BL. 2001. Active oxygen produced during selective excitation of photosystem I is damaging not only to photosystem I, but also to photosystem II. Plant Physiol 125:2007–15
    [Google Scholar]
  166. 166. 
    Tokutsu R, Iwai M, Minagawa J. 2009. CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. J. Biol. Chem 284:7777–82
    [Google Scholar]
  167. 167. 
    Töpfer N, Caldana C, Grimbs S, Willmitzer L, Fernie AR, Nikoloski Z. 2013. Integration of genome-scale modeling and transcript profiling reveals metabolic pathways underlying light and temperature acclimation in Arabidopsis. Plant Cell 25:41197–211
    [Google Scholar]
  168. 168. 
    Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G. 2011. The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:1382–92
    [Google Scholar]
  169. 169. 
    Triantaphylides C, Havaux M. 2009. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–28
    [Google Scholar]
  170. 170. 
    Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G et al. 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–68
    [Google Scholar]
  171. 171. 
    Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P et al. 2012. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim. Biophys. Acta Bioenerg. 1817:122140–48
    [Google Scholar]
  172. 172. 
    Truong TB. 2011. Investigating the role(s) of LHCSRs in Chlamydomonas reinhardtii PhD Thesis, Univ. Calif. Berkeley:
  173. 173. 
    Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carriere F et al. 2007. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50:5795–809
    [Google Scholar]
  174. 174. 
    Vass I. 2011. Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. Physiol. Plant. 142:16–16
    [Google Scholar]
  175. 175. 
    Verhoeven AS, Adams WW, Demmig-Adams B. 1998. Two forms of sustained xanthophyll cycle-dependent energy dissipation in overwintering Euonymus kiautschovicus. Plant Cell Environ 21:893–903
    [Google Scholar]
  176. 176. 
    Wada M, Kagawa T, Sato Y. 2003. Chloroplast movement. Annu. Rev. Plant Biol. 54:455–68
    [Google Scholar]
  177. 177. 
    Wang P, Duan W, Takabayashi A, Endo T, Shikanai T et al. 2006. Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:2465–74
    [Google Scholar]
  178. 178. 
    Wientjes E, Drop B, Kouril R, Boekem EJ, Croce R. 2013. During state 1 to state 2 transition in Arabidopsis thaliana, the Photosystem II supercomplex gets phosphorylated but does not disassemble. J. Biol. Chem. 288:4632821–26
    [Google Scholar]
  179. 179. 
    Wilson S, Ruban AV. 2020. Rethinking the influence of chloroplast movements on non-photochemical quenching and photoprotection. Plant Physiol 183:31213–23
    [Google Scholar]
  180. 180. 
    Wobbe L, Bassi R, Kruse O. 2016. Multi-level light capture control in plants and green algae. Trends Plant Sci 21:55–68
    [Google Scholar]
  181. 181. 
    Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G. 1997. Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim. Biophys. Acta Gen. Subj. 1336:33–42
    [Google Scholar]
  182. 182. 
    Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R 2020. Systemic signaling during abiotic stress combination in plants. PNAS 117:13810–20
    [Google Scholar]
  183. 183. 
    Zhao L, Cheng D, Huang X, Chen M, Dall'Osto L et al. 2017. A light harvesting complex-like protein in maintenance of photosynthetic components in Chlamydomonas. Plant Physiol 174:42419–33
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-071720-015522
Loading
/content/journals/10.1146/annurev-arplant-071720-015522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error