1932

Abstract

The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems—the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-071921-100530
2022-05-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-071921-100530.html?itemId=/content/journals/10.1146/annurev-arplant-071921-100530&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Archibald JM. 2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:19R911–21
    [Google Scholar]
  2. 2.
    Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5:10782–91
    [Google Scholar]
  3. 3.
    Bachy C, Charlesworth CJ, Chan AM, Finke JF, Wong C-H et al. 2018. Transcriptional responses of the marine green alga Micromonas pusilla and an infecting prasinovirus under different phosphate conditions. Environ. Microbiol. 20:82898–912
    [Google Scholar]
  4. 4.
    Bachy C, Yung CCM, Needham DM, Gazitúa MC, Roux S et al. 2021. Viruses infecting a warm water picoeukaryote shed light on spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15:3129–47
    [Google Scholar]
  5. 5.
    Bakker H, Schijlen E, de Vries T, Schiphorst WECM, Jordi W et al. 2001. Plant members of the α1→3/4-fucosyltransferase gene family encode an α1→4-fucosyltransferase, potentially involved in Lewisa biosynthesis, and two core α1→3-fucosyltransferases. FEBS Lett 507:3307–12
    [Google Scholar]
  6. 6.
    Baquero F, Levin BR. 2021. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 19:2123–32
    [Google Scholar]
  7. 7.
    Bateman A, Bycroft M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J. Mol. Biol. 299:41113–19
    [Google Scholar]
  8. 8.
    Blaby-Haas CE, Merchant SS 2019. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70:605–38
    [Google Scholar]
  9. 9.
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR et al. 2020. Small phytoplankton dominate western North Atlantic biomass. ISME J 14:1663–74Discovered that tiny prasinophyte algae are key components of an annual Atlantic spring bloom responsible for supporting many fisheries and carbon export.
    [Google Scholar]
  10. 10.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:Part 3769–81
    [Google Scholar]
  11. 11.
    Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:2287–304.e15
    [Google Scholar]
  12. 12.
    Buist G, Steen A, Kok J, Kuipers OP. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68:4838–47
    [Google Scholar]
  13. 13.
    Burgie ES, Gannam ZTK, McLoughlin KE, Sherman CD, Holehouse AS et al. 2021. Differing biophysical properties underpin the unique signaling potentials within the plant phytochrome photoreceptor families. PNAS 118:22e2105649118
    [Google Scholar]
  14. 14.
    Busi MV, Barchiesi J, Martín M, Gomez-Casati DF. 2014. Starch metabolism in green algae. Starch 66:1–228–40
    [Google Scholar]
  15. 15.
    Butcher RW. 1952. Contributions to our knowledge of the smaller marine algae. J. Mar. Biol. Ass. U. K. 31:1175–91
    [Google Scholar]
  16. 16.
    Campbell JA, Davies GJ, Bulone V, Henrissat B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326:Part 3929–39
    [Google Scholar]
  17. 17.
    Chavez FP, Messié M, Pennington JT. 2011. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3:227–60
    [Google Scholar]
  18. 18.
    Chen Y-R, Su Y-S, Tu S-L. 2012. Distinct phytochrome actions in nonvascular plants revealed by targeted inactivation of phytobilin biosynthesis. PNAS 109:218310–15
    [Google Scholar]
  19. 19.
    Cheng M-C, Kathare PK, Paik I, Huq E. 2021. Phytochrome signaling networks. Annu. Rev. Plant Biol. 72:217–44
    [Google Scholar]
  20. 20.
    Chisholm SW 1992. Phytoplankton size. Primary Productivity and Biogeochemical Cycles in the Sea PG Falkowski, AD Woodhead, K Vivirito 213–37 Boston, MA: Springer
    [Google Scholar]
  21. 21.
    Chrétiennot-Dinet M-J, Courties C, Vaquer A, Neveux J, Claustre H et al. 1995. A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 34:4285–92
    [Google Scholar]
  22. 22.
    Clayton S, Lin Y-C, Follows MJ, Worden AZ. 2017. Co-existence of distinct Ostreococcus ecotypes at an oceanic front. Limnol. Oceanogr. 62:75–88
    [Google Scholar]
  23. 23.
    Coesel SN, Durham BP, Groussman RD, Hu SK, Caron DA et al. 2021. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. PNAS 118:6e2011038118
    [Google Scholar]
  24. 24.
    Corlett RT. 2016. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38:110–16
    [Google Scholar]
  25. 25.
    Coutinho PM, Stam M, Blanc E, Henrissat B. 2003. Why are there so many carbohydrate-active enzyme-related genes in plants?. Trends Plant Sci 8:12563–65
    [Google Scholar]
  26. 26.
    Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M et al. 2015. Algal ancestor of land plants was preadapted for symbiosis. PNAS 112:4313390–95
    [Google Scholar]
  27. 27.
    Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Curr. Biol. 25:19R899–910
    [Google Scholar]
  28. 28.
    Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann CL, Zehr JP, Worden AZ. 2011. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J 5:71095–107
    [Google Scholar]
  29. 29.
    Demory D, Baudoux A-C, Monier A, Simon N, Six C et al. 2019. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J 13:132–46Combined growth experiments and theoretical ecology to characterize the differentiated thermal responses of several Micromonas species.
    [Google Scholar]
  30. 30.
    Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ et al. 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103:3111647–52
    [Google Scholar]
  31. 31.
    Deschamps P, Moreau H, Worden AZ, Dauvillée D, Ball SG. 2008. Early gene duplication within Chloroplastida and its correspondence with relocation of starch metabolism to chloroplasts. Genetics 178:42373–87
    [Google Scholar]
  32. 32.
    Devireddy AR, Liscum E, Mittler R. 2020. Phytochrome B is required for systemic stomatal responses and reactive oxygen species signaling during light stress. Plant Physiol 184:31563–72
    [Google Scholar]
  33. 33.
    Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. 2012. The cell walls of green algae: a journey through evolution and diversity. Front. Plant Sci. 3:82
    [Google Scholar]
  34. 34.
    Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1:169–92
    [Google Scholar]
  35. 35.
    Duanmu D, Bachy C, Sudek S, Wong C-H, Jiménez V et al. 2014. Marine algae and land plants share conserved phytochrome signaling systems. PNAS 111:4415827–32Demonstration of an operational conserved phytochrome signaling mechanism between prasinophytes and plants alongside phylogenetic analysis showing a eukaryotic origin of the Archaeplastida phytochromes.
    [Google Scholar]
  36. 36.
    Dutcher SK. 2020. Asymmetries in the cilia of Chlamydomonas. Philos. Trans. R. Soc. B 375:20190153
    [Google Scholar]
  37. 37.
    Egan AJF, Errington J, Vollmer W. 2020. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18:8446–60
    [Google Scholar]
  38. 38.
    Ejaz M, Bencivenga S, Tavares R, Bush M, Sablowski R. 2021. ARABIDOPSIS THALIANA HOMEO-BOX GENE 1 controls plant architecture by locally restricting environmental responses. PNAS 118:17e2018615118
    [Google Scholar]
  39. 39.
    Emms DM, Kelly S 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238
    [Google Scholar]
  40. 40.
    Faktorová D, Nisbet RER, Robledo JAF, Casacuberta E, Sudek L et al. 2020. Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat. Methods 17:5481–94Introduces first steps toward genetic manipulation methods for nascent model organisms, including the widespread marine prasinophytes Micromonas commoda, Bathycoccus prasinos, and Ostreococcus lucimarinus.
    [Google Scholar]
  41. 41.
    Falciatore A, Bowler C. 2005. The evolution and function of blue and red light photoreceptors. Curr. Top. Dev. Biol. 68:317–50
    [Google Scholar]
  42. 42.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40
    [Google Scholar]
  43. 43.
    Figueroa CM, Lunn JE. 2016. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol 172:17–27
    [Google Scholar]
  44. 44.
    Fischl R, Bertelsen K, Gaillard F, Coelho S, Michel G et al. 2016. The cell-wall active mannuronan C5-epimerases in the model brown alga Ectocarpus: from gene context to recombinant protein. Glycobiology 26:9973–83
    [Google Scholar]
  45. 45.
    Fitzek E, Orton L, Entwistle S, Grayburn WS, Ausland C et al. 2019. Cell wall enzymes in Zygnema circumcarinatum UTEX 1559 respond to osmotic stress in a plant-like fashion. Front. Plant Sci. 10:732
    [Google Scholar]
  46. 46.
    Fortunato AE, Jaubert M, Enomoto G, Bouly J-P, Raniello R et al. 2016. Diatom phytochromes reveal the existence of far-red-light-based sensing in the ocean. Plant Cell 28:3616–28
    [Google Scholar]
  47. 47.
    Fujiwara MT, Sanjaya A, Itoh RD. 2019. Arabidopsis thaliana leaf epidermal guard cells: a model for studying chloroplast proliferation and partitioning in plants. Front. Plant Sci. 10:1403
    [Google Scholar]
  48. 48.
    Gaarder T. 1933. Untersuchungen über Produktions- und Lebensbedingungen in norwegischen Austern-Pollen. Bergens Museums Arbok Naturv3
    [Google Scholar]
  49. 49.
    Garcia M, Myouga F, Takechi K, Sato H, Nabeshima K et al. 2008. An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant J 53:6924–34
    [Google Scholar]
  50. 50.
    Geng Y, Cai C, McAdam SAM, Banks JA, Wisecaver JH, Zhou Y. 2021. A de novo transcriptome assembly of Ceratopteris richardii provides insights into the evolutionary dynamics of complex gene families in land plants. Genome Biol. Evol. 13:3evab042
    [Google Scholar]
  51. 51.
    Gibbons IR. 1981. Cilia and flagella of eukaryotes. J. Cell Biol. 91:3107–24
    [Google Scholar]
  52. 52.
    Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:Database issueD1178–86
    [Google Scholar]
  53. 53.
    Grigoriev IV, Hayes RD, Calhoun S, Kamel B, Wang A et al. 2021. PhycoCosm, a comparative algal genomics resource. Nucleic Acids Res 49:D1D1004–11
    [Google Scholar]
  54. 54.
    Grossman A, Sanz-Luque E, Yi H, Yang W 2019. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology 165:7697–718
    [Google Scholar]
  55. 55.
    Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S et al. 2009. Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles 23:1GB1005
    [Google Scholar]
  56. 56.
    Guasto JS, Rusconi R, Stocker R. 2012. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44:373–400
    [Google Scholar]
  57. 57.
    Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R et al. 2004. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 155:2193–214
    [Google Scholar]
  58. 58.
    Guiry MD. 2012. How many species of algae are there?. J. Phycol. 48:51057–63
    [Google Scholar]
  59. 59.
    Guo Z, Xu J, Wang Y, Hu C, Shi K et al. 2021. The phyB-dependent induction of HY5 promotes iron uptake by systemically activating FER expression. EMBO Rep 22:7e51944
    [Google Scholar]
  60. 60.
    Hamilton M, Mascioni M, Hehenberger E, Bachy C, Yung C et al. 2021. Spatiotemporal variations in Antarctic protistan communities highlight phytoplankton diversity and seasonal dominance by a novel cryptophyte lineage. mBio 12:e02973–21
    [Google Scholar]
  61. 61.
    Harholt J, Jensen JK, Sørensen SO, Orfila C, Pauly M, Scheller HV. 2006. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:149–58
    [Google Scholar]
  62. 62.
    Hart JE, Gardner KH. 2021. Lighting the way: recent insights into the structure and regulation of phototropin blue light receptors. J. Biol. Chem. 296:100594
    [Google Scholar]
  63. 63.
    Hasegawa T, Miyashita H, Kawachi M, Ikemoto H, Kurano N et al. 1996. Prasinoderma coloniale gen. et sp. nov., a new pelagic coccoid prasinophyte from the western Pacific Ocean. Phycologia 35:2170–76
    [Google Scholar]
  64. 64.
    Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:2309–16
    [Google Scholar]
  65. 65.
    Henrissat B, Coutinho PM, Davies GJ. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol. 47:1–255–72
    [Google Scholar]
  66. 66.
    Hirano T, Tanidokoro K, Shimizu Y, Kawarabayasi Y, Ohshima T et al. 2016. Moss chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids. Plant Cell 28:71521–32
    [Google Scholar]
  67. 67.
    Hirth M, Liverani S, Mahlow S, Bouget F-Y, Pohnert G, Sasso S. 2017. Metabolic profiling identifies trehalose as an abundant and diurnally fluctuating metabolite in the microalga Ostreococcus tauri. Metabolomics 13:668
    [Google Scholar]
  68. 68.
    Homi S, Takechi K, Tanidokoro K, Sato H, Takio S, Takano H. 2009. The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens. Plant Cell Physiol 50:122047–56
    [Google Scholar]
  69. 69.
    Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G et al. 2019. Global trends in marine plankton diversity across kingdoms of life. Cell 179:51084–97.e21
    [Google Scholar]
  70. 70.
    Ikeda H, Suzuki T, Oka Y, Gustafsson ALS, Brochmann C et al. 2021. Divergence in red light responses associated with thermal reversion of phytochrome B between high- and low-latitude species. New Phytol 231:175–84Shows differences in responses connected to thermal stability of a physiologically active form of phytochrome (Pfr) that has diverged between sister species of Brassicaceae (the cabbage family) inhabiting ecosystems at different latitudes.
    [Google Scholar]
  71. 71.
    Ishizaki K, Nishihama R, Yamato KT, Kohchi T. 2016. Molecular genetic tools and techniques for Marchantia polymorpha research. Plant Cell Physiol 57:2262–70
    [Google Scholar]
  72. 72.
    Jensen JK, Busse-Wicher M, Poulsen CP, Fangel JU, Smith PJ et al. 2018. Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytol 218:31049–60
    [Google Scholar]
  73. 73.
    Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M 2012. RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol. Plant. 5:5984–92
    [Google Scholar]
  74. 74.
    Jensen JK, Sørensen SO, Harholt J, Geshi N, Sakuragi Y et al. 2008. Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:51289–302
    [Google Scholar]
  75. 75.
    Jeong J, Choi G. 2013. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells 35:5371–80
    [Google Scholar]
  76. 76.
    Jouenne F, Eikrem W, Le Gall F, Marie D, Johnsen G, Vaulot D 2011. Prasinoderma singularis sp. nov. (Prasinophyceae, Chlorophyta), a solitary coccoid Prasinophyte from the South-East Pacific Ocean. Protist 162:170–84
    [Google Scholar]
  77. 77.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  78. 78.
    Karlusich JJP, Ibarbalz FM, Bowler C. 2020. Exploration of marine phytoplankton: from their historical appreciation to the omics era. J. Plankton Res. 42:6595–612
    [Google Scholar]
  79. 79.
    Karsten U, Holzinger A. 2014. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers. Conserv. 23:71845–58
    [Google Scholar]
  80. 80.
    Kathare PK, Huq E. 2021. Light-regulated pre-mRNA splicing in plants. Curr. Opin. Plant Biol. 63:102037
    [Google Scholar]
  81. 81.
    Keeling PJ, Burki F. 2019. Progress towards the Tree of Eukaryotes. Curr. Biol. 29:16R808–17
    [Google Scholar]
  82. 82.
    Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biol 12:6e1001889
    [Google Scholar]
  83. 83.
    Kies L 1984. Cytological aspects of blue-green algal endosymbiosis. Compartments in Algal Cells and Their Interaction W Weissner, DG Robinson, RC Starr 191–99 Berlin: Springer
    [Google Scholar]
  84. 84.
    Knight-Jones EW, Walne PR 1951. Chromulina pusilla Butcher, a dominant member of the ultraplankton. Nature 167:4246445–46
    [Google Scholar]
  85. 85.
    Kolody BC, McCrow JP, Ziegler Allen L, Aylward FO, Fontanez KM et al. 2019. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J 13:2817–33
    [Google Scholar]
  86. 86.
    Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P et al. 2019. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. Plant J 99:4589–609
    [Google Scholar]
  87. 87.
    Kuroiwa H, Sugai M, Kuroiwa T. 1988. Behavior of chloroplasts and chloroplast nuclei during spermatogenesis in the fern, Pteris vittata L. Protoplasma 146:289–100
    [Google Scholar]
  88. 88.
    Laine RA. 1994. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4:6759–67
    [Google Scholar]
  89. 89.
    Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J et al. 2018. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93:3515–33
    [Google Scholar]
  90. 90.
    Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. 2019. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 10:2043
    [Google Scholar]
  91. 91.
    Lee S, Zhu L, Huq E. 2021. An autoregulatory negative feedback loop controls thermomorphogenesis in Arabidopsis. PLOS Genet 17:6e1009595
    [Google Scholar]
  92. 92.
    Leliaert F. 2019. Green algae: Chlorophyta and Streptophyta. Encyclopedia of Microbiology TM Schmidt457–68 Oxford: Academic. , 4th ed..
    [Google Scholar]
  93. 93.
    Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H et al. 2012. Phylogeny and molecular evolution of the green algae. Crit. Rev. Plant Sci. 31:11–46
    [Google Scholar]
  94. 94.
    Leliaert F, Tronholm A, Lemieux C, Turmel M, DePriest MS et al. 2016. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci. Rep. 6:25367
    [Google Scholar]
  95. 95.
    Leliaert F, Verbruggen H, Zechman FW. 2011. Into the deep: new discoveries at the base of the green plant phylogeny. Bioessays 33:9683–92
    [Google Scholar]
  96. 96.
    Lemieux C, Turmel M, Otis C, Pombert J-F. 2019. A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat. Commun. 10:4061
    [Google Scholar]
  97. 97.
    Lewis LA, McCourt RM. 2004. Green algae and the origin of land plants. Am. J. Bot. 91:101535–56
    [Google Scholar]
  98. 98.
    Li F-W, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J et al. 2018. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants 4:460–72
    [Google Scholar]
  99. 99.
    Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW. 2015. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat. Commun. 6:7852
    [Google Scholar]
  100. 100.
    Li L, Wang S, Wang H, Sahu SK, Marin B et al. 2020. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat. Ecol. Evol. 4:91220–31Genome analysis of Prasinoderma coloniale, previously considered a prasinophyte, establishes the early divergence of Prasinodermophyta and recognizes it as a Viridiplantae phylum.
    [Google Scholar]
  101. 101.
    Li WKW, McLaughlin FA, Lovejoy C, Carmack EC. 2009. Smallest algae thrive as the Arctic Ocean freshens. Science 326:5952539
    [Google Scholar]
  102. 102.
    Liang Y, Wang J, Zheng J, Gong Z, Li Z et al. 2021. Genome-wide comparative analysis of heat shock transcription factors provides novel insights for evolutionary history and expression characterization in cotton diploid and tetraploid genomes. Front. Genet. 12:658847
    [Google Scholar]
  103. 103.
    Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB. 2006. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:2129
    [Google Scholar]
  104. 104.
    Limardo AJ, Sudek S, Choi CJ, Poirier C, Rii YM et al. 2017. Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton. Environ. Microbiol. 19:83219–34
    [Google Scholar]
  105. 105.
    Lin X, Li N, Kudo H, Zhang Z, Li J et al. 2017. Genes sufficient for synthesizing peptidoglycan are retained in gymnosperm genomes, and MurE from Larix gmelinii can rescue the albino phenotype of Arabidopsis MurE Mutation. Plant Cell Physiol 58:3587–97Functional exploration of the gymnosperm and Arabidopsis peptidoglycan pathway member MurE, establishing modification of functional roles in different Viridiplantae lineages.
    [Google Scholar]
  106. 106.
    Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B. 2010. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem. J. 432:3437–44
    [Google Scholar]
  107. 107.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:Database issueD490–95
    [Google Scholar]
  108. 108.
    Lopes dos Santos A, Pollina T, Gourvil P, Corre E, Marie D et al. 2017. Chloropicophyceae, a new class of picophytoplanktonic prasinophytes. Sci. Rep. 7:114019
    [Google Scholar]
  109. 109.
    López-García P, Eme L, Moreira D. 2017. Symbiosis in eukaryotic evolution. J. Theor. Biol. 434:20–33
    [Google Scholar]
  110. 110.
    Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau M-J et al. 2007. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43:78–89
    [Google Scholar]
  111. 111.
    Machida M, Takechi K, Sato H, Chung SJ, Kuroiwa H et al. 2006. Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. PNAS 103:176753–58
    [Google Scholar]
  112. 112.
    Madson M, Dunand C, Li X, Verma R, Vanzin GF et al. 2003. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:71662–70
    [Google Scholar]
  113. 113.
    Makita Y, Suzuki S, Fushimi K, Shimada S, Suehisa A et al. 2021. Identification of a dual orange/far-red and blue light photoreceptor from an oceanic green picoplankton. Nat. Commun. 12:3593
    [Google Scholar]
  114. 114.
    Margulis L, Corliss JO, Melkonian M, Chapman DJ, eds. 1990. Handbook of Protoctista: The Structure, Cultivation, Habitats and Life Histories of the Eukaryotic Microorganisms and Their Descendants Exclusive of Animals, Plants and Fungi Boston, MA: Jones & Bartlett
  115. 115.
    Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep 35:5949–65
    [Google Scholar]
  116. 116.
    Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S et al. 2013. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol. Cell. Proteom. 12:113160–83
    [Google Scholar]
  117. 117.
    McDonald SM, Plant JN, Worden AZ. 2010. The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol. Biol. Evol. 27:102268–83
    [Google Scholar]
  118. 118.
    McFadden GI. 2014. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 6:4a016105
    [Google Scholar]
  119. 119.
    Melkonian M, Preisig HR. 1986. A light and electron microscopic study of Scherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord. J. Bot. 6:2235–56
    [Google Scholar]
  120. 120.
    Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:5848245–50
    [Google Scholar]
  121. 121.
    Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU et al. 2014. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann. Bot. 114:61217–36
    [Google Scholar]
  122. 122.
    Mikkelsen MD, Harholt J, Westereng B, Domozych D, Fry SC et al. 2021. Ancient origin of fucosylated xyloglucan in charophycean green algae. Commun. Biol. 4:754Identified fucosylated xyloglucan in a streptophyte alga, banishing the long-believed dogma that it evolved in multicellular land plants.
    [Google Scholar]
  123. 123.
    Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M. 1993. Prasinococcus capsulatus gen. et sp. nov., a new marine coccoid prasinophyte. J. Gen. Appl. Microbiol. 39:6571–82
    [Google Scholar]
  124. 124.
    Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C et al. 2020. Phenolic cross-links: building and de-constructing the plant cell wall. Nat. Prod. Rep. 37:7919–61
    [Google Scholar]
  125. 125.
    Møller SR, Yi X, Velásquez SM, Gille S, Hansen PLM et al. 2017. Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Sci. Rep. 7:45341
    [Google Scholar]
  126. 126.
    Monier A, Worden AZ, Richards TA. 2016. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ. Microbiol. Rep. 8:4461–69
    [Google Scholar]
  127. 127.
    Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S et al. 2012. Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 13:R74
    [Google Scholar]
  128. 128.
    Niklas KJ, Cobb ED, Matas AJ. 2017. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. Bot. 68:195261–69
    [Google Scholar]
  129. 129.
    Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D et al. 2018. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:2448–64.e24
    [Google Scholar]
  130. 130.
    Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y. 2013. Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat. Chem. Biol. 9:11726–30
    [Google Scholar]
  131. 131.
    One Thousand Plant Transc. Initiat 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–85
    [Google Scholar]
  132. 132.
    O'Toole ET. 2010. Chlamydomonas cryopreparation methods for the 3-D analysis of cellular organelles. Methods Cell Biol 96:71–91
    [Google Scholar]
  133. 133.
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP et al. 2013. Pattern and synchrony of gene expression among sympatric marine microbial populations. PNAS 110:6E488–97
    [Google Scholar]
  134. 134.
    Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A et al. 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104:7705–10
    [Google Scholar]
  135. 135.
    Petriman N-A, Lorentzen E. 2020. Structural insights into the architecture and assembly of eukaryotic flagella. Microb. Cell Fact. 7:11289–99
    [Google Scholar]
  136. 136.
    Pimm SL, Joppa LN. 2015. How many plant species are there, where are they, and at what rate are they going extinct?. Ann. Mo. Bot. Gard. 100:3170–76
    [Google Scholar]
  137. 137.
    Possart A, Xu T, Paik I, Hanke S, Keim S et al. 2017. Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. Plant Cell 29:2310–30
    [Google Scholar]
  138. 138.
    Prerostova S, Dobrev PI, Knirsch V, Jarosova J, Gaudinova A et al. 2021. Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci. 22:52736
    [Google Scholar]
  139. 139.
    Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N et al. 2017. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat. Chem. Biol. 13:7793–98
    [Google Scholar]
  140. 140.
    Ral J-P, Derelle E, Ferraz C, Wattebled F, Farinas B et al. 2004. Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri. Plant Physiol 136:23333–40
    [Google Scholar]
  141. 141.
    Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:585964–69
    [Google Scholar]
  142. 142.
    Rockwell NC, Duanmu D, Martin SS, Bachy C, Price DC et al. 2014. Eukaryotic algal phytochromes span the visible spectrum. PNAS 111:3871–76
    [Google Scholar]
  143. 143.
    Rockwell NC, Lagarias JC. 2020. Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytol 225:62283–300
    [Google Scholar]
  144. 144.
    Ruiz N. 2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PNAS 105:4015553–57
    [Google Scholar]
  145. 145.
    Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. 2008. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32:2234–58
    [Google Scholar]
  146. 146.
    Saxena IM, Brown RM Jr. 2005. Cellulose biosynthesis: current views and evolving concepts. Ann. Bot. 96:19–21
    [Google Scholar]
  147. 147.
    Schlöffel MA, Käsbauer C, Gust AA. 2019. Interplay of plant glycan hydrolases and LysM proteins in plant—bacteria interactions. Int. J. Med. Microbiol. 309:3252–57
    [Google Scholar]
  148. 148.
    Shi XL, Marie D, Jardillier L, Scanlan DJ, Vaulot D. 2009. Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLOS ONE 4:10e7657
    [Google Scholar]
  149. 149.
    Simmons MP, Bachy C, Sudek S, van Baren MJ, Sudek L et al. 2015. Intron invasions trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations. Mol. Biol. Evol. 32:92219–35
    [Google Scholar]
  150. 150.
    Simmons MP, Sudek S, Monier A, Limardo AJ, Jimenez V et al. 2016. Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton in the eastern North Pacific Ocean. AEM 82:61693–705
    [Google Scholar]
  151. 151.
    Simon N, Foulon E, Grulois D, Six C, Desdevises Y et al. 2017. Revision of the genus Micromonas Manton et Parke (Chlorophyta, Mamiellophyceae), of the type species M. pusilla (Butcher) Manton & Parke and of the species M. commoda van Baren, Bachy and Worden and description of two new species based on the genetic and phenotypic characterization of cultured isolates. Protist 168:5612–35
    [Google Scholar]
  152. 152.
    Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A et al. 2004. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:12687–99
    [Google Scholar]
  153. 153.
    Somerville C. 2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78
    [Google Scholar]
  154. 154.
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:91312–13
    [Google Scholar]
  155. 155.
    Takano H, Takechi K. 2010. Plastid peptidoglycan. Biochim. Biophys. Acta Gen. Subj. 1800:2144–51
    [Google Scholar]
  156. 156.
    Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF. 2016. Mammalian axoneme central pair complex proteins: broader roles revealed by gene knockout phenotypes. Cytoskeleton 73:13–22
    [Google Scholar]
  157. 157.
    Thomas S, Kumar R, Sharma K, Barpanda A, Sreelakshmi Y et al. 2021. iTRAQ-based proteome profiling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling. Sci. Rep. 11:7540
    [Google Scholar]
  158. 158.
    Toyokawa C, Yamano T, Fukuzawa H. 2020. Pyrenoid starch sheath is required for LCIB localization and the CO2-concentrating mechanism in green algae. Plant Physiol 182:41883–93
    [Google Scholar]
  159. 159.
    Tragin M, Lopes dos Santos A, Christen R, Vaulot D 2016. Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences. Perspect. Phycol. 3:141–54
    [Google Scholar]
  160. 160.
    Tragin M, Vaulot D. 2018. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci. Rep. 8:14020
    [Google Scholar]
  161. 161.
    Umen JG. 2014. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb. Perspect. Biol. 6:11a016170Review of the independent transitions from unicellularity to multicellularity in two well-studied groups of green algae within the chlorophytes and streptophyte algae.
    [Google Scholar]
  162. 162.
    van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J et al. 2016. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC Genom 17:267Showed that the complete peptidoglycan pathway is present not only in some prasinophytes but also in some plant lineages (but greatly reduced in others); identified the PPASP protein [putatively replacing penicillin-binding protein (PBP)], which is present only in plants with the pathway.
    [Google Scholar]
  163. 163.
    Van Vlierberghe M, Philippe H, Baurain D 2021. Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages. BMC Res. Notes 14:143
    [Google Scholar]
  164. 164.
    Vanier G, Lucas P-L, Loutelier-Bourhis C, Vanier J, Plasson C et al. 2017. Heterologous expression of the N-acetylglucosaminyltransferase I dictates a reinvestigation of the N-glycosylation pathway in Chlamydomonas reinhardtii. Sci. Rep. 7:10156
    [Google Scholar]
  165. 165.
    Velasquez SM, Marzol E, Borassi C, Pol-Fachin L, Ricardi MM et al. 2015. Low sugar is not always good: impact of specific O-glycan defects on tip growth in Arabidopsis. Plant Physiol 168:3808–13
    [Google Scholar]
  166. 166.
    Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD et al. 2011. O-glycosylated cell wall proteins are essential in root hair growth. Science 332:60361401–3
    [Google Scholar]
  167. 167.
    Vergin KL, Beszteri B, Monier A, Thrash JC, Temperton B et al. 2013. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences. ISME J 7:71322–32
    [Google Scholar]
  168. 168.
    Viprey M, Guillou L, Ferréol M, Vaulot D. 2008. Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ. Microbiol. 10:71804–22
    [Google Scholar]
  169. 169.
    Wang S, Li L, Li H, Sahu SK, Wang H et al. 2020. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat. Plants 6:295–106Plant terrestrialization steps reconsidered in the light of genome sequencing and analysis of the streptophyte algae Mesostigma viride and Chlorokybus atmophyticus.
    [Google Scholar]
  170. 170.
    Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. PNAS 111:45E4859–68
    [Google Scholar]
  171. 171.
    Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. PNAS 108:4919824–29
    [Google Scholar]
  172. 172.
    Wilson IBH, Rendić D, Freilinger A, Dumić J, Altmann F et al. 2001. Cloning and expression of cDNAs encoding α1,3-fucosyltransferase homologues from Arabidopsis thaliana. Biochim. Biophys. Acta Gen. Subj. 1527:188–96
    [Google Scholar]
  173. 173.
    Worden AZ. 2006. Picoeukaryote diversity in coastal waters of the Pacific Ocean. AME 43:165–75
    [Google Scholar]
  174. 174.
    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. 2015. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347:62231257594
    [Google Scholar]
  175. 175.
    Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP et al. 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:5924268–72
    [Google Scholar]
  176. 176.
    Worden AZ, Nolan JK, Palenik B. 2004. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49:1168–79
    [Google Scholar]
  177. 177.
    Xu T, Yuan J, Hiltbrunner A 2020. PHYTOCHROME INTERACTING FACTORs in the moss Physcomitrella patens regulate light-controlled gene expression. Physiol. Plant. 169:3467–79
    [Google Scholar]
  178. 178.
    Yau S, Krasovec M, Benites LF, Rombauts S, Groussin M et al. 2020. Virus-host coexistence in phytoplankton through the genomic lens. Sci. Adv. 6:14eaay2587
    [Google Scholar]
  179. 179.
    Yeh K-C, Lagarias JC. 1998. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. PNAS 95:2313976–81
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-071921-100530
Loading
/content/journals/10.1146/annurev-arplant-071921-100530
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error