1932

Abstract

The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-080620-024221
2021-06-17
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-080620-024221.html?itemId=/content/journals/10.1146/annurev-arplant-080620-024221&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ádám É, Kircher S, Liu P, Mérai Z, González-Schain N et al. 2013. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling. New Phytol 200:86–96
    [Google Scholar]
  2. 2. 
    Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH. 2006. Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell 23:439–46
    [Google Scholar]
  3. 3. 
    Anders K, Daminelli-Widany G, Mroginski MA, von Stetten D, Essen L-O. 2013. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling. J. Biol. Chem. 288:35714–25
    [Google Scholar]
  4. 4. 
    Bae G, Choi G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 59:281–311
    [Google Scholar]
  5. 5. 
    Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R et al. 2004. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–45
    [Google Scholar]
  6. 6. 
    Bernardo-García S, de Lucas M, Martínez C, Espinosa-Ruiz A, Daviere J-M, Prat S. 2014. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–94
    [Google Scholar]
  7. 7. 
    Björling A, Berntsson O, Lehtivuori H, Takala H, Hughes AJ et al. 2016. Structural photoactivation of a full-length bacterial phytochrome. Sci. Adv. 2:e1600920
    [Google Scholar]
  8. 8. 
    Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK 1952. A reversible photoreaction controlling seed germination. PNAS 38:662–66
    [Google Scholar]
  9. 9. 
    Bu Q, Zhu L, Huq E. 2011. Multiple kinases promote light-induced degradation of PIF1. Plant Sig. Behav. 6:1119–21
    [Google Scholar]
  10. 10. 
    Bu Q, Zhu L, Yu L, Dennis M, Lu X et al. 2011. Phosphorylation by CK2 enhances the rapid light-induced degradation of PIF1. J. Biol. Chem. 286:12066–74
    [Google Scholar]
  11. 11. 
    Burgie ES, Bussell AN, Lye S-H, Wang T, Hu W et al. 2017. Photosensing and thermosensing by phytochrome B require both proximal and distal allosteric features within the dimeric photoreceptor. Sci. Rep. 7:13648
    [Google Scholar]
  12. 12. 
    Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD 2014. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. PNAS 111:10179–84Proposes a 3D structural detail for the dark-to-light transition of PSM in phytochromes.
    [Google Scholar]
  13. 13. 
    Burgie ES, Vierstra RD. 2014. Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:4568–83
    [Google Scholar]
  14. 14. 
    Burgie ES, Zhang J, Vierstra RD. 2016. Crystal structure of Deinococcus phytochrome in the photoactivated state reveals a cascade of structural rearrangements during photoconversion. Structure 24:448–57
    [Google Scholar]
  15. 15. 
    Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nat. Plants 6:8921–28
    [Google Scholar]
  16. 16. 
    Buskirk EKV, Reddy AK, Nagatani A, Chen M. 2014. Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol 165:595–617
    [Google Scholar]
  17. 17. 
    Buti S, Hayes S, Pierik R. 2020. The bHLH network underlying plant shade-avoidance. Physiol. Plant. 169:312–24
    [Google Scholar]
  18. 18. 
    Casal JJ. 2013. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64:403–27
    [Google Scholar]
  19. 19. 
    Casal JJ, Balasubramanian S 2019. Thermomorphogenesis. Annu. Rev. Plant Biol. 70:321–46
    [Google Scholar]
  20. 20. 
    Chen F, Li B, Demone J, Charron J-B, Shi X, Deng XW 2014. Photoreceptor partner FHY1 has an independent role in gene modulation and plant development under far-red light. PNAS 111:11888–93
    [Google Scholar]
  21. 21. 
    Chen F, Li B, Li G, Charron J-B, Dai M et al. 2014. Arabidopsis phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell Online 26:1949–66
    [Google Scholar]
  22. 22. 
    Chen G-H, Liu M-J, Xiong Y, Sheen J, Wu S-H. 2018. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. PNAS 115:12823–28Demonstrates that phytochrome regulates translation through the COP1-mediated auxin signaling pathway.
    [Google Scholar]
  23. 23. 
    Chen M, Chory J. 2011. Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–71
    [Google Scholar]
  24. 24. 
    Chen M, Chory J, Fankhauser C. 2004. Light signal transduction in higher plants. Annu. Rev. Genet. 38:87–117
    [Google Scholar]
  25. 25. 
    Chen M, Galvão RM, Li M, Burger B, Bugea J et al. 2010. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141:1230–40
    [Google Scholar]
  26. 26. 
    Chen M, Schwab R, Chory J 2003. Characterization of the requirements for localization of phytochrome B to nuclear bodies. PNAS 100:14493–98
    [Google Scholar]
  27. 27. 
    Chen M, Tao Y, Lim J, Shaw A, Chory J. 2005. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr. Biol. 15:637–42
    [Google Scholar]
  28. 28. 
    Cheng M-C, Enderle B, Kathare PK, Islam R, Hiltbrunner A, Huq E. 2020. PCH1 and PCHL directly interact with PIF1, promote its degradation and inhibit its transcriptional function during photomorphogenesis. Mol. Plant 13:499–514
    [Google Scholar]
  29. 29. 
    Cheng Y-L, Tu S-L. 2018. Alternative splicing and cross-talk with light signaling. Plant Cell Physiol 59:1104–10
    [Google Scholar]
  30. 30. 
    Cherry JR, Hondred D, Walker JM, Keller JM, Hershey HP, Vierstra RD. 1993. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell 5:565–75
    [Google Scholar]
  31. 31. 
    Cherry JR, Hondred D, Walker JM, Vierstra RD 1992. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. PNAS 89:5039–43
    [Google Scholar]
  32. 32. 
    Clack T, Shokry A, Moffet M, Liu P, Faul M, Sharrock RA. 2009. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant Cell 21:786–99
    [Google Scholar]
  33. 33. 
    Clough RC, Vierstra RD. 1997. Phytochrome degradation. Plant Cell Environ 20:713–21
    [Google Scholar]
  34. 34. 
    Dickey LF, Petracek ME, Nguyen TT, Hansen ER, Thompson WF. 1998. Light regulation of Fed-1 mRNA requires an element in the 5′ untranslated region and correlates with differential polyribosome association. Plant Cell 10:475–84
    [Google Scholar]
  35. 35. 
    Dong J, Chen H, Deng XW, Irish VF, Wei N. 2020. Phytochrome B induces intron retention and translational inhibition of PHYTOCHROME-INTERACTING FACTOR3. Plant Physiol. 182:159–66Proposes a reversible regulatory mechanism that phyB induces alternative splicing of PIF3 and fine-tunes its protein level.
    [Google Scholar]
  36. 36. 
    Dong J, Ni W, Yu R, Deng XW, Chen H, Wei N. 2017. Light-dependent degradation of PIF3 by SCF-EBF1/2 promotes a photomorphogenic response in Arabidopsis. Curr. Biol. 27:2420–30
    [Google Scholar]
  37. 37. 
    Dong J, Sun N, Yang J, Deng Z, Lan J et al. 2019. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of SAUR genes to modulate cotyledon opening during de-etiolation in Arabidopsis. Plant Cell 31:1155–70
    [Google Scholar]
  38. 38. 
    Dong J, Tang D, Gao Z, Yu R, Li K et al. 2014. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell Online 26:3630–45
    [Google Scholar]
  39. 39. 
    Dujardin G, Lafaille C, de la Mata M, Marasco LE, Muñoz MJ et al. 2014. How slow RNA polymerase II elongation favors alternative exon skipping. Mol. Cell 54:683–90
    [Google Scholar]
  40. 40. 
    Edgerton MD, Jones AM. 1992. Localization of protein-protein interactions between subunits of phytochrome. Plant Cell 4:161–71
    [Google Scholar]
  41. 41. 
    Enderle B, Sheerin DJ, Paik I, Kathare PK, Schwenk P et al. 2017. PCH1 and PCHL promote photomorphogenesis in plants by controlling phytochrome B dark reversion. Nat. Commun. 8:2221Demonstrates that PCH1/PCHL promotes photomorphogenesis by preventing phyB thermal reversion.
    [Google Scholar]
  42. 42. 
    Essen LO, Mailliet J, Hughes J 2008. The structure of a complete phytochrome sensory module in the Pr ground state. PNAS 105:14709–14
    [Google Scholar]
  43. 43. 
    Franklin KA, Quail PH. 2009. Phytochrome functions in Arabidopsis development. J. Exp. Bot. 61:11–24
    [Google Scholar]
  44. 44. 
    Galvāo VC, Fiorucci A-S, Trevisan M, Franco-Zorilla JM, Goyal A et al. 2019. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat. Commun. 10:4005
    [Google Scholar]
  45. 45. 
    Genoud T, Schweizer F, Tscheuschler A, Debrieux D, Casal JJ et al. 2008. FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLOS Genet 4:e1000143
    [Google Scholar]
  46. 46. 
    Godoy Herz MA, Kubaczka MG, Brzyżek G, Servi L, Krzyszton M et al. 2019. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell 73:1066–74.e3
    [Google Scholar]
  47. 47. 
    Gu D, Chen C-Y, Zhao M, Zhao L, Duan X et al. 2017. Identification of HDA15-PIF1 as a key repression module directing the transcriptional network of seed germination in the dark. Nucleic Acids Res 45:7137–50
    [Google Scholar]
  48. 48. 
    Hahm J, Kim K, Qiu Y, Chen M. 2020. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 11:1660
    [Google Scholar]
  49. 49. 
    Han X, Huang X, Deng XW. 2020. The photomorphogenic central repressor COP1: conservation and functional diversification during evolution. Plant Commun 1:100044
    [Google Scholar]
  50. 50. 
    Han Y-J, Kim H-S, Kim Y-M, Shin A-Y, Lee S-S et al. 2010. Functional characterization of phytochrome autophosphorylation in plant light signaling. Plant Cell Physiol 51:596–609
    [Google Scholar]
  51. 51. 
    Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S et al. 2005. Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr. Biol. 15:2125–30
    [Google Scholar]
  52. 52. 
    Hoecker U. 2017. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37:63–69
    [Google Scholar]
  53. 53. 
    Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. 2009. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–902
    [Google Scholar]
  54. 54. 
    Hua W, Franklin KA, Sharrock RA, Jones MA, Harmer SL, Lagarias JC 2013. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. PNAS 110:1542–47
    [Google Scholar]
  55. 55. 
    Huang H, McLoughlin KE, Sorkin ML, Burgie ES, Bindbeutel RK et al. 2019. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in Arabidopsis. PNAS 116:8603–8
    [Google Scholar]
  56. 56. 
    Huang H, Yoo CY, Bindbeutel R, Goldsworthy J, Tielking A et al. 2016. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis. eLife 5:e13292
    [Google Scholar]
  57. 57. 
    Huq E, Al-Sady B, Quail PH 2003. Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis. Plant J 35:660–64
    [Google Scholar]
  58. 58. 
    Jang G-J, Yang J-Y, Hsieh H-L, Wu S-H 2019. Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. PNAS 116:6451–56Demonstrates that phytochromes regulate the p-body-controlled selective translation for adaptation.
    [Google Scholar]
  59. 59. 
    Jiao Y, Lau OS, Deng XW. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8:217–30
    [Google Scholar]
  60. 60. 
    Jing Y, Zhang D, Wang X, Tang W, Wang W et al. 2013. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation. Plant Cell 25:242–56
    [Google Scholar]
  61. 61. 
    Jung J-H, Domijan M, Klose C, Biswas S, Ezer D et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886–89
    [Google Scholar]
  62. 62. 
    Kaiserli E, Páldi K, O'Donnell L, Batalov O, Pedmale UV et al. 2015. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev. Cell 35:311–21
    [Google Scholar]
  63. 63. 
    Kathare PK, Xu X, Nguyen A, Huq E. 2020. A COP1-PIF-HEC regulatory module fine-tunes photomorphogenesis in Arabidopsis. Plant J 104:113–23
    [Google Scholar]
  64. 64. 
    Kikis EA, Oka Y, Hudson ME, Nagatani A, Quail PH. 2009. Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3. PLOS Genet 5:e1000352
    [Google Scholar]
  65. 65. 
    Kim J-H, Lee H-J, Jung J-H, Lee S, Park C-M 2017. HOS1 facilitates the phytochrome B-mediated inhibition of PIF4 function during hypocotyl growth in Arabidopsis. Mol. Plant 10:274–84
    [Google Scholar]
  66. 66. 
    Kim T-H, Kim B-H, Yahalom A, Chamovitz DA, von Arnim AG 2004. Translational regulation via 5′ mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3h. Plant Cell 16:3341–56
    [Google Scholar]
  67. 67. 
    Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V et al. 2002. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–55
    [Google Scholar]
  68. 68. 
    Klose C, Nagy F, Schäfer E. 2020. Thermal reversion of plant phytochromes. Mol. Plant 13:386–97
    [Google Scholar]
  69. 69. 
    Klose C, Viczián A, Kircher S, Schäfer E, Nagy F. 2015. Molecular mechanisms for mediating light-dependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors. New Phytol 206:965–71
    [Google Scholar]
  70. 70. 
    Lee S, Paik I, Huq E. 2020. SPAs promote thermomorphogenesis by regulating the phyB-PIF4 module in Arabidopsis. Development 147:dev189233
    [Google Scholar]
  71. 71. 
    Legris M, Ince , Fankhauser C. 2019. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10:5219
    [Google Scholar]
  72. 72. 
    Legris M, Klose C, Burgie ES, Costigliolo C, Neme M et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900
    [Google Scholar]
  73. 73. 
    Leivar P, Monte E 2014. PIFs: systems integrators in plant development. Plant Cell 26:56–78
    [Google Scholar]
  74. 74. 
    Leivar P, Quail PH. 2011. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28
    [Google Scholar]
  75. 75. 
    Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW et al. 2015. Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat. Commun. 6:7852
    [Google Scholar]
  76. 76. 
    Lin B-Y, Shih C-J, Tu S-L. 2020. Phytochrome coordinates with a hnRNP to regulate alternative splicing via an exonic splicing silencer. Plant Physiol 182:243–54
    [Google Scholar]
  77. 77. 
    Lin F, Jiang Y, Li J, Yan T, Fan L et al. 2018. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and undergoes COP1-mediated degradation. Plant Cell 30:2006–19
    [Google Scholar]
  78. 78. 
    Ling J-J, Li J, Zhu D, Deng XW 2017. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. PNAS 114:3539–44
    [Google Scholar]
  79. 79. 
    Liu M-J, Wu S-H, Chen H-M, Wu S-H. 2012. Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol. Syst. Biol. 8:566
    [Google Scholar]
  80. 80. 
    Liu X, Chen C-Y, Wang K-C, Luo M, Tai R et al. 2013. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. Plant Cell 25:1258–73
    [Google Scholar]
  81. 81. 
    Lu X-D, Zhou C-M, Xu P-B, Luo Q, Lian H-L, Yang H-Q. 2015. Red-light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol. Plant 8:467–78
    [Google Scholar]
  82. 82. 
    Lyu M, Shi H, Li Y, Kuang K, Yang Z et al. 2019. Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth. Dev. Cell 51:78–88.e3
    [Google Scholar]
  83. 83. 
    Majee M, Kumar S, Kathare PK, Wu S, Gingerich D et al. 2018. KELCH F-BOX protein positively influences Arabidopsis seed germination by targeting PHYTOCHROME-INTERACTING FACTOR1. PNAS 115:E4120–29
    [Google Scholar]
  84. 84. 
    Martínez-García JF, Huq E, Quail PH. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–63
    [Google Scholar]
  85. 85. 
    Mathews S. 2010. Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell 22:4–16
    [Google Scholar]
  86. 86. 
    Matsushita T, Mochizuki N, Nagatani A. 2003. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature 424:571–74
    [Google Scholar]
  87. 87. 
    Menon C, Klose C, Hiltbrunner A. 2020. Arabidopsis FHY1 and FHY1-LIKE are not required for phytochrome A signal transduction in the nucleus. Plant Commun 1:100007
    [Google Scholar]
  88. 88. 
    Nagano S. 2016. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes. J. Plant Res. 129:123–35
    [Google Scholar]
  89. 89. 
    Ni W, Xu S-L, González-Grandío E, Chalkley RJ, Huhmer AFR et al. 2017. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8:15236
    [Google Scholar]
  90. 90. 
    Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA et al. 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344:1160–64
    [Google Scholar]
  91. 91. 
    Nieto C, López-Salmerón V, Davière J-M, Prat S. 2014. ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Curr. Biol. 25:187–93
    [Google Scholar]
  92. 92. 
    Nito K, Wong CCL, Yates JR 3rd, Chory J 2013. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Rep 3:1970–79
    [Google Scholar]
  93. 93. 
    Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T et al. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402
    [Google Scholar]
  94. 94. 
    Oka Y, Ono Y, Toledo-Ortiz G, Kokaji K, Matsui M et al. 2012. Arabidopsis phytochrome A is modularly structured to integrate the multiple features that are required for a highly sensitized phytochrome. Plant Cell 24:2949–62
    [Google Scholar]
  95. 95. 
    Pacín M, Legris M, Casal JJ. 2014. Rapid decline in nuclear COSTITUTIVE PHOTOMORPHOGENESIS1 abundance anticipates the stabilization of its target ELONGATED HYPOCOTYL5 in the light. Plant Physiol 164:1134–38
    [Google Scholar]
  96. 96. 
    Paik I, Chen F, Ngoc Pham V, Zhu L, Kim J-I, Huq E 2019. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat. Commun. 10:4216Proposes a new role for SPA1 as a kinase phosphorylating PIF to promote photomorphogenesis.
    [Google Scholar]
  97. 97. 
    Paik I, Huq E. 2019. Plant photoreceptors: multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 92:114–21
    [Google Scholar]
  98. 98. 
    Paik I, Yang S, Choi G 2012. Phytochrome regulates translation of mRNA in the cytosol. PNAS 109:1335–40
    [Google Scholar]
  99. 99. 
    Park E, Kim Y, Choi G. 2018. Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. Plant Cell 30:1277–92
    [Google Scholar]
  100. 100. 
    Park E, Park J, Kim J, Nagatani A, Lagarias JC, Choi G. 2012. Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J 72:537–46
    [Google Scholar]
  101. 101. 
    Petracek ME, Dickey LF, Huber SC, Thompson WF. 1997. Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis. Plant Cell 9:2291–300
    [Google Scholar]
  102. 102. 
    Pfeiffer A, Nagel M-K, Popp C, Wüst F, Bindics J et al. 2012. Interaction with plant transcription factors can mediate nuclear import of phytochrome B. PNAS 109:5892–97
    [Google Scholar]
  103. 103. 
    Pham VN, Kathare PK, Huq E. 2018. Dynamic regulation of PIF5 by COP1-SPA complex to optimize photomorphogenesis in Arabidopsis. Plant J 96:260–73
    [Google Scholar]
  104. 104. 
    Pham VN, Kathare PK, Huq E. 2018. Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–38
    [Google Scholar]
  105. 105. 
    Pham VN, Xu X, Huq E. 2018. Molecular bases for the constitutive photomorphogenic phenotypes in Arabidopsis. Development 145:dev169870
    [Google Scholar]
  106. 106. 
    Podolec R, Ulm R. 2018. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 45:18–25
    [Google Scholar]
  107. 107. 
    Qiu Y, Li M, Pasoreck EK, Long L, Shi Y et al. 2015. HEMERA couples the proteolysis and transcriptional activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis photomorphogenesis. Plant Cell 27:1409–27
    [Google Scholar]
  108. 108. 
    Qiu Y, Pasoreck EK, Reddy AK, Nagatani A, Ma W et al. 2017. Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B. Nat. Commun. 8:1905
    [Google Scholar]
  109. 109. 
    Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J et al. 2011. Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. Cell 146:813–25
    [Google Scholar]
  110. 110. 
    Rockwell NC, Lagarias JC. 2020. Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytol 225:2283–300
    [Google Scholar]
  111. 111. 
    Ryu JS, Kim J-I, Kunkel T, Kim BC, Cho DS et al. 2005. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell 120:395–406
    [Google Scholar]
  112. 112. 
    Sadanandom A, Ádám É, Orosa B, Viczián A, Klose C et al. 2015. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana. PNAS 112:11108–13
    [Google Scholar]
  113. 113. 
    Sánchez-Lamas M, Lorenzo CD, Cerdán PD. 2016. Bottom-up assembly of the phytochrome network. PLOS Genet 12:e1006413
    [Google Scholar]
  114. 114. 
    Sheerin DJ, Hiltbrunner A. 2017. Molecular mechanisms and ecological function of far-red light signalling. Plant Cell Environ 40:2509–29
    [Google Scholar]
  115. 115. 
    Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L et al. 2015. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27:189–201
    [Google Scholar]
  116. 116. 
    Shen H, Ling Z, Castillon A, Majee M, Downie B, Huq E. 2008. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME INTERACTING FACTOR 1 depends upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–602
    [Google Scholar]
  117. 117. 
    Shen YP, Zhou ZZ, Feng SH, Li JG, Tan-Wilson A et al. 2009. Phytochrome A mediates rapid red light-induced phosphorylation of Arabidopsis FAR-RED ELONGATED HYPOCOTYL1 in a low fluence response. Plant Cell 21:494–506
    [Google Scholar]
  118. 118. 
    Sherameti I, Nakamura M, Yamamoto YY, Pfannschmidt T, Obokata J, Oelmüller R. 2002. Polyribosome loading of spinach mRNAs for photosystem I subunits is controlled by photosynthetic electron transport. Plant J 32:631–39
    [Google Scholar]
  119. 119. 
    Shi H, Liu R, Xue C, Shen X, Wei N et al. 2016. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr. Biol. 26:139–49
    [Google Scholar]
  120. 120. 
    Shi H, Lyu M, Luo Y, Liu S, Li Y et al. 2018. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors. PNAS 115:6482–87
    [Google Scholar]
  121. 121. 
    Shi H, Wang X, Mo X, Tang C, Zhong S, Deng XW 2015. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. PNAS 112:3817–22
    [Google Scholar]
  122. 122. 
    Shi H, Zhong S, Mo X, Liu N, Nezames CD, Deng XW. 2013. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25:3770–84
    [Google Scholar]
  123. 123. 
    Shih C-J, Chen H-W, Hsieh H-Y, Lai Y-H, Chiu F-Y et al. 2019. Heterogeneous nuclear ribonucleoprotein H1 coordinates with phytochrome and the U1-snRNP complex to regulate alternative splicing in Physcomitrella patens. Plant Cell 31:2510–24Demonstrates that P. patens phytochrome regulates alternative splicing by interacting with the spliceosome complex.
    [Google Scholar]
  124. 124. 
    Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T 2014. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. PNAS 111:18781–86
    [Google Scholar]
  125. 125. 
    Shikata H, Shibata M, Ushijima T, Nakashima M, Kong S-G et al. 2012. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. Plant J 70:727–38
    [Google Scholar]
  126. 126. 
    Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. 2002. A light-switchable gene promoter system. Nat. Biotechnol. 20:1041–44
    [Google Scholar]
  127. 127. 
    Shin A-Y, Han Y-J, Baek A, Ahn T, Kim SY et al. 2016. Evidence that phytochrome functions as a protein kinase in plant light signalling. Nat. Commun. 7:11545
    [Google Scholar]
  128. 128. 
    Somers DE, Devlin PF, Kay SA. 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–90
    [Google Scholar]
  129. 129. 
    Song C, Mroginski MA, Lang C, Kopycki J, Gärtner W et al. 2018. 3D structures of plant phytochrome A as Pr and Pfr from solid-state NMR: implications for molecular function. Front. Plant Sci. 9:498
    [Google Scholar]
  130. 130. 
    Song Z, Bian Y, Liu J, Sun Y, Xu D. 2020. B-box proteins: pivotal players in light-mediated development in plants. J. Integr. Plant Biol. 62:1293–309
    [Google Scholar]
  131. 131. 
    Strassera B, Sánchez-Lamasa M, Yanovsky MJ, Casal JJ, Cerdán PD 2010. Arabidopsis thaliana life without phytochromes. PNAS 107:4776–81
    [Google Scholar]
  132. 132. 
    Subramanian C, Kim B-H, Lyssenko NN, Xu X, Johnson CH, von Arnim AG 2004. The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. PNAS 101:6798–802
    [Google Scholar]
  133. 133. 
    Sun N, Wang J, Gao Z, Dong J, He H et al. 2016. Arabidopsis SAURs are critical for differential light regulation of the development of various organs. PNAS 113:6071–76
    [Google Scholar]
  134. 134. 
    Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S et al. 2014. Signal amplification and transduction in phytochrome photosensors. Nature 509:245–48
    [Google Scholar]
  135. 135. 
    Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. 2015. Light-induced changes in the dimerization interface of bacteriophytochromes. J. Biol. Chem. 290:16383–92
    [Google Scholar]
  136. 136. 
    Trupkin SA, Legris M, Buchovsky AS, Tolava Rivero MB, Casal JJ 2014. Phytochrome B nuclear bodies respond to the low red to far-red ratio and to the reduced irradiance of canopy shade in Arabidopsis. Plant Physiol 165:1698–708
    [Google Scholar]
  137. 137. 
    Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. 2005. A light-sensing knot revealed by the structure of the chromophore binding domain of phytochrome. Nature 438:325–31
    [Google Scholar]
  138. 138. 
    Wang X, Yu R, Wang J, Lin Z, Han X et al. 2020. The asymmetric expression of SAUR genes mediated by ARF7/19 promotes the gravitropism and phototropism of plant hypocotyls. Cell Rep 31:107529
    [Google Scholar]
  139. 139. 
    Wit MD, Galvão VC, Fankhauser C. 2016. Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 67:513–37
    [Google Scholar]
  140. 140. 
    Wu H-P, Su Y-S, Chen H-C, Chen Y-R, Wu C-C et al. 2014. Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens. Genome Biol 15:R10
    [Google Scholar]
  141. 141. 
    Wu J, Wang W, Xu P, Pan J, Zhang T et al. 2018. phyB interacts with BES1 to regulate brassinosteroid signaling in Arabidopsis. Plant Cell Physiol 60:353–66
    [Google Scholar]
  142. 142. 
    Wu Q, Kuang K, Lyu M, Zhao Y, Li Y et al. 2020. Allosteric deactivation of PIFs and EIN3 by microproteins in light control of plant development. PNAS 117:18858–68
    [Google Scholar]
  143. 143. 
    Wu S-H. 2014. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu. Rev. Plant Biol. 65:311–33
    [Google Scholar]
  144. 144. 
    Xin R, Kathare PK, Huq E. 2019. Coordinated regulation of pre-mRNA splicing by the SFPS-RRC1 complex to promote photomorphogenesis. Plant Cell 31:2052–69Together with Reference145demonstrates that phytochrome regulates alternative splicing by directly interacting with splicing factors.
    [Google Scholar]
  145. 145. 
    Xin R, Zhu L, Salomé PA, Mancini E, Marshall CM et al. 2017. SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. PNAS 114:E7018–27
    [Google Scholar]
  146. 146. 
    Xin X, Chen W, Wang B, Zhu F, Li Y et al. 2017. Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. J. Exp. Bot. 69:423–39
    [Google Scholar]
  147. 147. 
    Xu F, He S, Zhang J, Mao Z, Wang W et al. 2018. Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol. Plant 11:523–41
    [Google Scholar]
  148. 148. 
    Xu X, Kathare PK, Pham VN, Bu Q, Nguyen A, Huq E. 2017. Reciprocal proteasome-mediated degradation of PIFs and HFR1 underlies photomorphogenic development in Arabidopsis. Development 144:1831–40
    [Google Scholar]
  149. 149. 
    Xu X, Paik I, Zhu L, Bu Q, Huang X et al. 2014. PHYTOCHROME INTERACTING FACTOR1 enhances the E3 ligase activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to synergistically repress photomorphogenesis in Arabidopsis. Plant Cell 26:1992–2006Proposes the nontranscriptional roles of PIFs as cofactors of E3 ligase.
    [Google Scholar]
  150. 150. 
    Xu X, Paik I, Zhu L, Huq E. 2015. Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 20:641–50
    [Google Scholar]
  151. 151. 
    Yahalom A, Kim T-H, Roy B, Singer R, Von Arnim AG, Chamovitz DA. 2008. Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J 53:300–11
    [Google Scholar]
  152. 152. 
    Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A. 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol. 145:437–45
    [Google Scholar]
  153. 153. 
    Yan Y, Li C, Dong X, Li H, Zhang D et al. 2020. MYB30 is a key negative regulator of Arabidopsis photomorphogenic development that promotes PIF4 and PIF5 protein accumulation in the light. Plant Cell 32:2196–215
    [Google Scholar]
  154. 154. 
    Yang C, Xie F, Jiang Y, Li Z, Huang X, Li L. 2018. Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Dev. Cell 44:29–41.e4
    [Google Scholar]
  155. 155. 
    Yang EJ, Yoo CY, Liu J, Wang H, Cao J et al. 2019. NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nat. Commun. 10:2630
    [Google Scholar]
  156. 156. 
    Yang P, Wen Q, Yu R, Han X, Deng XW, Chen H 2020. Light modulates the gravitropic responses through organ-specific PIFs and HY5 regulation of LAZY4 expression in Arabidopsis. PNAS 117:18840–48
    [Google Scholar]
  157. 157. 
    Yang X, Kuk J, Moffat K 2009. Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome. PNAS 106:15639–44
    [Google Scholar]
  158. 158. 
    Yeh KC, Lagarias JC 1998. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. PNAS 95:13976–81
    [Google Scholar]
  159. 159. 
    Yoo CY, Pasoreck EK, Wang H, Cao J, Blaha GM et al. 2019. Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nat. Commun. 10:2629Proposes a nucleus-to-plastid anterograde signaling pathway by which phytochrome signaling in the nucleus controls plastidial transcription.
    [Google Scholar]
  160. 160. 
    Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L et al. 2017. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6:e26759
    [Google Scholar]
  161. 161. 
    Zhang D, Jing Y, Jiang Z, Lin R. 2014. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 26:2472–85
    [Google Scholar]
  162. 162. 
    Zhu DM, Maier A, Lee J-H, Laubinger S, Saijo Y et al. 2008. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20:2307–23
    [Google Scholar]
  163. 163. 
    Zhu L, Bu Q, Xu X, Paik I, Huang X et al. 2015. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat. Commun. 6:7245
    [Google Scholar]
  164. 164. 
    Zhu L, Xin R, Bu Q, Shen H, Dang J, Huq E. 2016. A negative feedback loop between PHYTOCHROME INTERACTING FACTORs and HECATE proteins fine tunes photomorphogenesis in Arabidopsis. Plant Cell 28:855–74
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-080620-024221
Loading
/content/journals/10.1146/annurev-arplant-080620-024221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error