1932

Abstract

Seed dormancy—the absence of seed germination under favorable germination conditions—is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In , dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-090750
2022-05-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-090750.html?itemId=/content/journals/10.1146/annurev-arplant-102820-090750&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H et al. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94
    [Google Scholar]
  2. 2.
    Agius F, Kapoor A, Zhu JK. 2006. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. PNAS 103:11796–801
    [Google Scholar]
  3. 3.
    Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B et al. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–88Showed that dormant seeds sustain high abscisic acid levels upon seed imbibition.
    [Google Scholar]
  4. 4.
    Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M. 2003. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–29
    [Google Scholar]
  5. 5.
    Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio GA, Rodriguez PL. 2012. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol. 158:970–80
    [Google Scholar]
  6. 6.
    Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M et al. 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–31
    [Google Scholar]
  7. 7.
    Auge GA, Blair LK, Neville H, Donohue K. 2017. Maternal vernalization and vernalization-pathway genes influence progeny seed germination. New Phytol. 216:388–400
    [Google Scholar]
  8. 8.
    Barros-Galvão T, Dave A, Cole A, Harvey D, Langer S et al. 2019. cis-12-Oxo-phytodienoic acid represses Arabidopsis seed germination in shade conditions. J. Exp. Bot. 70:5919–27
    [Google Scholar]
  9. 9.
    Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1–16
    [Google Scholar]
  10. 10.
    Batista RA, Köhler C. 2020. Genomic imprinting in plants—revisiting existing models. Gene Dev 34:24–36
    [Google Scholar]
  11. 11.
    Benech RLA, Fenner M, Edwards PJ. 1991. Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytol. 118:339–47
    [Google Scholar]
  12. 12.
    Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. PNAS 103:17042–47
    [Google Scholar]
  13. 13.
    Bethke PC, Libourel IG, Aoyama N, Chung YY, Still DW, Jones RL. 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol. 143:1173–88Showed that the endosperm is necessary to repress dormant seed germination upon imbibition.
    [Google Scholar]
  14. 14.
    Bryant FM, Hughes D, Hassani-Pak K, Eastmond PJ. 2019. Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis. Plant Cell 31:1276–88
    [Google Scholar]
  15. 15.
    Buijs G. 2020. A perspective on secondary seed dormancy in Arabidopsis thaliana. Plants 9:749
    [Google Scholar]
  16. 16.
    Cadman CS, Toorop PE, Hilhorst HW, Finch-Savage WE. 2006. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46:805–22
    [Google Scholar]
  17. 17.
    Chen HH, Tong JH, Fu W, Liang ZW, Ruan JX et al. 2020. The H3K27me3 demethylase RELATIVE OF EARLY FLOWERING6 suppresses seed dormancy by inducing abscisic acid catabolism. Plant Physiol. 184:1969–78
    [Google Scholar]
  18. 18.
    Chen M, MacGregor DR, Dave A, Florance H, Moore K et al. 2014. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. PNAS 111:18787–92Showed that temperature during seed set regulates seed coat tannin content through FT.
    [Google Scholar]
  19. 19.
    Chen M, Penfield S 2018. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–17
    [Google Scholar]
  20. 20.
    Chen X, Yoong FY, O'Neill CM, Penfield S. 2021. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. New Phytol. 232:1311–22
    [Google Scholar]
  21. 21.
    Chiang GC, Bartsch M, Barua D, Nakabayashi K, Debieu M et al. 2011. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol. Ecol. 20:3336–49
    [Google Scholar]
  22. 22.
    Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K. 2009. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. PNAS 106:11661–66
    [Google Scholar]
  23. 23.
    Choi J, Hyun Y, Kang MJ, In Yun H, Yun JY et al. 2009. Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. Plant J. 57:918–31
    [Google Scholar]
  24. 24.
    Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ et al. 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42
    [Google Scholar]
  25. 25.
    Crevillen P, Yang H, Cui X, Greeff C, Trick M et al. 2014. Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state. Nature 515:587–90
    [Google Scholar]
  26. 26.
    Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ. 2016. Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2:e1501340
    [Google Scholar]
  27. 27.
    Cuerda-Gil D, Slotkin RK 2016. Non-canonical RNA-directed DNA methylation. Nat. Plants 2:16163
    [Google Scholar]
  28. 28.
    Cui X, Lu FL, Qiu Q, Zhou B, Gu LF et al. 2016. REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nat. Genet. 48:694–99
    [Google Scholar]
  29. 29.
    Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61:651–79
    [Google Scholar]
  30. 30.
    De Giorgi J, Piskurewicz U, Loubéry S, Utz-Pugin A, Bailly C et al. 2015. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLOS Genet. 11:e1005708
    [Google Scholar]
  31. 31.
    de Souza Vidigal D, He H, Hilhorst HWM, Willems LAJ, Bentsink L. 2020. Arabidopsis in the wild-the effect of seasons on seed performance. Plants 9:576
    [Google Scholar]
  32. 32.
    Debeaujon I, Leon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122:403–14Revealed the importance of flavonoid pigments to promote seed dormancy.
    [Google Scholar]
  33. 33.
    Debeaujon I, Lepiniec L, Pourcel L, Routaboul J-M 2007. Seed coat development and dormancy. Seed Development, Dormancy and Germination K Bradford, H Nonogaki 25–43 Oxford, UK: Blackwell
    [Google Scholar]
  34. 34.
    Dekkers BJ, He H, Hanson J, Willems LA, Jamar DC et al. 2016. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J. 85:451–65Showed that DOG1 promotes various seed maturation processes in addition to promoting dormancy.
    [Google Scholar]
  35. 35.
    Demonsais L, Utz-Pugin A, Loubéry S, Lopez-Molina L. 2020. Identification of tannic cell walls at the outer surface of the endosperm upon Arabidopsis seed coat rupture. Plant J 104:567–80
    [Google Scholar]
  36. 36.
    Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. 2010. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41:293–319
    [Google Scholar]
  37. 37.
    Du M, Luo M, Zhang R, Finnegan EJ, Koltunow AM. 2014. Imprinting in rice: the role of DNA and histone methylation in modulating parent-of-origin specific expression and determining transcript start sites. Plant J. 79:232–42
    [Google Scholar]
  38. 38.
    Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ et al. 2015. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4:e05255
    [Google Scholar]
  39. 39.
    Erbasol Serbes I, Palovaara J, Gross-Hardt R 2019. Development and function of the flowering plant female gametophyte. Curr. Top. Dev. Biol. 131:401–34
    [Google Scholar]
  40. 40.
    Erdmann RM, Picard CL. 2020. RNA-directed DNA methylation. PLOS Genet. 16:e1009034
    [Google Scholar]
  41. 41.
    Fedak H, Palusinska M, Krzyczmonik K, Brzezniak L, Yatusevich R et al. 2016. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. PNAS 113:E7846–55
    [Google Scholar]
  42. 42.
    Finch-Savage WE, Footitt S. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68:843–56
    [Google Scholar]
  43. 43.
    Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE 2011. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. PNAS 108:20236–41
    [Google Scholar]
  44. 44.
    Footitt S, Olcer-Footitt H, Hambidge AJ, Finch-Savage WE. 2017. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant Cell Environ. 40:1474–86
    [Google Scholar]
  45. 45.
    Footitt S, Walley PG, Lynn JR, Hambidge AJ, Penfield S, Finch-Savage WE. 2020. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. 225:2035–47
    [Google Scholar]
  46. 46.
    Gong ZH, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK 2002. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–14
    [Google Scholar]
  47. 47.
    Graeber K, Linkies A, Steinbrecher T, Mummenhoff K, Tarkowska D et al. 2014. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. PNAS 111:E3571–80
    [Google Scholar]
  48. 48.
    Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ. 2012. Molecular mechanisms of seed dormancy. Plant Cell Environ. 35:1769–86
    [Google Scholar]
  49. 49.
    Haig D. 2014. Coadaptation and conflict, misconception and muddle, in the evolution of genomic imprinting. Heredity 113:96–103
    [Google Scholar]
  50. 50.
    Haig D, Westoby M. 1989. Parent-specific gene-expression and the triploid endosperm. Am. Nat. 134:147–55
    [Google Scholar]
  51. 51.
    Hamilton WD, May RM. 1977. Dispersal in stable habitats. Nature 269:578–81
    [Google Scholar]
  52. 52.
    Hanson T. 2015. The Triumph of Seeds: How Grains, Nuts, Kernels, Pulses, and Pips Conquered the Plant Kingdom and Shaped Human History New York: Basic
  53. 53.
    Harris LW, Davies TJ. 2016. A complete fossil-calibrated phylogeny of seed plant families as a tool for comparative analyses: testing the ‘time for speciation’ hypothesis. PLOS ONE 11:e0162907
    [Google Scholar]
  54. 54.
    He H, Willems LA, Batushansky A, Fait A, Hanson J et al. 2016. Effects of parental temperature and nitrate on seed performance are reflected by partly overlapping genetic and metabolic pathways. Plant Cell Physiol. 57:473–87
    [Google Scholar]
  55. 55.
    Hsieh TF, Shin JY, Uzawa R, Silva P, Cohen S et al. 2011. Regulation of imprinted gene expression in Arabidopsis endosperm. PNAS 108:1755–62
    [Google Scholar]
  56. 56.
    Ibarra CA, Feng XQ, Schoft VK, Hsieh TF, Uzawa R et al. 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–64
    [Google Scholar]
  57. 57.
    Iwasaki M, Hyvärinen L, Piskurewicz U, Lopez-Molina L. 2019. Non-canonical RNA-directed DNA methylation participates in maternal and environmental control of seed dormancy. eLife 8:e37434Identified a cold-induced RdDM pathway in seeds regulating seed dormancy.
    [Google Scholar]
  58. 58.
    Iwasaki M, Paszkowski J. 2014. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. PNAS 111:8547–52
    [Google Scholar]
  59. 59.
    Jackson JP, Lindroth AM, Cao XF, Jacobsen SE. 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–60
    [Google Scholar]
  60. 60.
    Jullien PE, Kinoshita T, Ohad N, Berger F 2006. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–72
    [Google Scholar]
  61. 61.
    Kang J, Yim S, Choi H, Kim A, Lee KP et al. 2015. Abscisic acid transporters cooperate to control seed germination. Nat. Commun. 6:8113
    [Google Scholar]
  62. 62.
    Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR et al. 2010. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51:1988–2001
    [Google Scholar]
  63. 63.
    Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158–65
    [Google Scholar]
  64. 64.
    Kawakatsu T, Nery JR, Castanon R, Ecker JR. 2017. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18:171
    [Google Scholar]
  65. 65.
    Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S 2011. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–80
    [Google Scholar]
  66. 66.
    Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V et al. 2016. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. eLife 5:e22502
    [Google Scholar]
  67. 67.
    Kinoshita N, Berr A, Belin C, Chappuis R, Nishizawa NK, Lopez-Molina L. 2010. Identification of growth insensitive to ABA3 (gia3), a recessive mutation affecting ABA signaling for the control of early post-germination growth in Arabidopsis thaliana. Plant Cell Physiol. 51:239–51
    [Google Scholar]
  68. 68.
    Klosinska M, Picard CL, Gehring M. 2016. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat. Plants 2:16145
    [Google Scholar]
  69. 69.
    Köhler C, Weinhofer-Molisch I. 2010. Mechanisms and evolution of genomic imprinting in plants. Heredity 105:57–63
    [Google Scholar]
  70. 70.
    Koornneef M, Bentsink L, Hilhorst H. 2002. Seed dormancy and germination. Curr. Opin. Plant Biol. 5:33–36
    [Google Scholar]
  71. 71.
    Kucera B, Alan Cohn M, Leubner-Metzger G 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15:281–307
    [Google Scholar]
  72. 72.
    Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S et al. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23:1647–56
    [Google Scholar]
  73. 73.
    Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20
    [Google Scholar]
  74. 74.
    Lee KP, Piskurewicz U, Tureckova V, Strnad M, Lopez-Molina L. 2010. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. PNAS 107:19108–13Showed that the endosperm of dormant seeds releases abscisic acid upon seed imbibition.
    [Google Scholar]
  75. 75.
    Lee S, Cheng H, King KE, Wang W, He Y et al. 2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16:646–58
    [Google Scholar]
  76. 76.
    Li CL, Gu LF, Gao L, Chen C, Wei CQ et al. 2016. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat. Genet. 48:687–93
    [Google Scholar]
  77. 77.
    Li T, Bonkovsky HL, Guo JT. 2011. Structural analysis of heme proteins: implications for design and prediction. BMC Struct. Biol. 11:13
    [Google Scholar]
  78. 78.
    Li XR, Deb J, Kumar SV, Ostergaard L 2018. Temperature modulates tissue-specification program to control fruit dehiscence in Brassicaceae. Mol. Plant 11:598–606
    [Google Scholar]
  79. 79.
    Linkies A, Graeber K, Knight C, Leubner-Metzger G. 2010. The evolution of seeds. New Phytol. 186:817–31
    [Google Scholar]
  80. 80.
    Liu X, Hou X. 2018. Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front. Plant Sci. 9:251
    [Google Scholar]
  81. 81.
    Liu YX, Koornneef M, Soppe WJJ. 2007. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–44
    [Google Scholar]
  82. 82.
    Lopez-Molina L, Mongrand S, Chua NH 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. PNAS 98:4782–87
    [Google Scholar]
  83. 83.
    Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH. 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32:317–28
    [Google Scholar]
  84. 84.
    Loubéry S, De Giorgi J, Utz-Pugin A, Demonsais L, Lopez-Molina L. 2018. A maternally deposited endosperm cuticle contributes to the physiological defects of transparent testa seeds. Plant Physiol. 177:1218–33
    [Google Scholar]
  85. 85.
    Lu FL, Cui X, Zhang SB, Jenuwein T, Cao XF 2011. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 43:715–U144
    [Google Scholar]
  86. 86.
    Luo X, Ou Y, Li R, He Y 2020. Maternal transmission of the epigenetic ‘memory of winter cold’ in Arabidopsis. Nat. Plants 6:1211–18
    [Google Scholar]
  87. 87.
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–68
    [Google Scholar]
  88. 88.
    MacGregor DR, Kendall SL, Florance H, Fedi F, Moore K et al. 2015. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 205:642–52
    [Google Scholar]
  89. 89.
    Martinez-Andújar C, Ordiz MI, Huang Z, Nonogaki M, Beachy RN, Nonogaki H. 2011. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. PNAS 108:17225–29
    [Google Scholar]
  90. 90.
    Martínez-Berdeja A, Stitzer MC, Taylor MA, Okada M, Ezcurra E et al. 2020. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. PNAS 117:2526–34
    [Google Scholar]
  91. 91.
    Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O et al. 2009. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol. 149:949–60
    [Google Scholar]
  92. 92.
    Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J. 2007. Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–62
    [Google Scholar]
  93. 93.
    Matzke MA, Kanno T, Matzke AJ. 2015. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66:243–67
    [Google Scholar]
  94. 94.
    McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK 2015. ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation. EMBO J. 34:20–35
    [Google Scholar]
  95. 95.
    Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT et al. 2006. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J. 45:942–54
    [Google Scholar]
  96. 96.
    Montesinos-Navarro A, Pico FX, Tonsor SJ 2012. Clinal variation in seed traits influencing life cycle timing in Arabidopsis thaliana. Evolution 66:3417–31
    [Google Scholar]
  97. 97.
    Moreno-Romero J, Del Toro-De León G, Yadav VK, Santos-González J, Köhler C 2019. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol. 20:41
    [Google Scholar]
  98. 98.
    Moreno-Romero J, Jiang H, Santos-González J, Köhler C. 2016. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J. 35:1298–311
    [Google Scholar]
  99. 99.
    Mortensen SA, Sonderkaer M, Lynggaard C, Grasser M, Nielsen KL, Grasser KD. 2011. Reduced expression of the DOG1 gene in Arabidopsis mutant seeds lacking the transcript elongation factor TFIIS. FEBS Lett. 585:1929–33
    [Google Scholar]
  100. 100.
    Nakabayashi K, Bartsch M, Ding J, Soppe WJ 2015. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing. PLOS Genet. 11:e1005737
    [Google Scholar]
  101. 101.
    Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S et al. 2012. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24:2826–38
    [Google Scholar]
  102. 102.
    Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J. 41:697–709
    [Google Scholar]
  103. 103.
    Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A et al. 2011. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–29
    [Google Scholar]
  104. 104.
    Née G. 2014. The identification of heme and flavin as cofactors of the dormancy protein DOG1 Paper presented at 5th NIBB-MPIPZ-TLL Symposium: Horizons in Plant Biology Cologne, Ger: Nov. 25
  105. 105.
    Nee G, Kramer K, Nakabayashi K, Yuan B, Xiang Y et al. 2017. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 8:72Showed that DOG1 interacts with AHG1 and AHG3, indicating that it regulates abscisic acid signaling.
    [Google Scholar]
  106. 106.
    Nee G, Xiang Y, Soppe WJ. 2017. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant Biol. 35:8–14
    [Google Scholar]
  107. 107.
    Nikolaeva MG, Rasumova MV, Gladkova VN. 1985. Reference Book on Dormant Seed Germination Leningrad: Nauka
  108. 108.
    Nishimura N, Tsuchiya W, Moresco JJ, Hayashi Y, Satoh K et al. 2018. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat. Commun. 9:2132Showed that DOG1 binds heme, indicating a possible redox-sensing function.
    [Google Scholar]
  109. 109.
    Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. 2007. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J. 50:935–49
    [Google Scholar]
  110. 110.
    Nonogaki H. 2014. Seed dormancy and germination—emerging mechanisms and new hypotheses. Front. Plant Sci. 5:233
    [Google Scholar]
  111. 111.
    Nonogaki H. 2017. Seed biology updates—highlights and new discoveries in seed dormancy and germination research. Front. Plant Sci. 8:524
    [Google Scholar]
  112. 112.
    Nonogaki H. 2019. Seed germination and dormancy: the classic story, new puzzles, and evolution. J. Integr. Plant Biol. 61:541–63
    [Google Scholar]
  113. 113.
    Nonogaki H. 2020. A repressor complex silencing ABA signaling in seeds?. J. Exp. Bot. 71:2847–53
    [Google Scholar]
  114. 114.
    Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T et al. 2006. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 141:97–107
    [Google Scholar]
  115. 115.
    Ortega-Galisteo AP, Morales-Ruiz T, Ariza RR, Roldan-Arjona T. 2008. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67:671–81
    [Google Scholar]
  116. 116.
    Park SY, Fung P, Nishimura N, Jensen DR, Fujii H et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–71
    [Google Scholar]
  117. 117.
    Peeters AJM, Blankestijn-de Vries H, Hanhart CJ, Leon-Kloosterziel KM, Zeevaart JAD, Koornneef M 2002. Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiol. Plant. 115:604–12
    [Google Scholar]
  118. 118.
    Penfield S, Gilday AD, Halliday KJ, Graham IA. 2006. DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr. Biol. 16:2366–70
    [Google Scholar]
  119. 119.
    Penfield S, Hall A. 2009. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–32
    [Google Scholar]
  120. 120.
    Piskurewicz U, Iwasaki M, Susaki D, Megies C, Kinoshita T, Lopez-Molina L. 2016. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana. eLife 5:e19573
    [Google Scholar]
  121. 121.
    Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. 2008. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–45
    [Google Scholar]
  122. 122.
    Piskurewicz U, Tureckova V, Lacombe E, Lopez-Molina L. 2009. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J. 28:2259–71
    [Google Scholar]
  123. 123.
    Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME. 2011. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14:841–51
    [Google Scholar]
  124. 124.
    Postma FM, Agren J. 2015. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana. Mol. Ecol. 24:785–97
    [Google Scholar]
  125. 125.
    Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends Plant Sci. 15:395–401
    [Google Scholar]
  126. 126.
    Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R et al. 2013. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. PNAS 110:7934–39
    [Google Scholar]
  127. 127.
    Rodrigues JA, Zilberman D. 2015. Evolution and function of genomic imprinting in plants. Genes Dev. 29:2517–31
    [Google Scholar]
  128. 128.
    Sall K, Dekkers BJW, Nonogaki M, Katsuragawa Y, Koyari R et al. 2019. DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation. Plant J. 100:7–19
    [Google Scholar]
  129. 129.
    Sallon S, Solowey E, Cohen Y, Korchinsky R, Egli M et al. 2008. Germination, genetics, and growth of an ancient date seed. Science 320:1464
    [Google Scholar]
  130. 130.
    Sano N, Marion-Poll A. 2021. ABA metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 22:5069
    [Google Scholar]
  131. 131.
    Sato H, Santos-González J, Köhler C. 2021. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 10:e64593
    [Google Scholar]
  132. 132.
    Saze H, Mittelsten Scheid O, Paszkowski J 2003. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 34:65–69
    [Google Scholar]
  133. 133.
    Schmuths H, Bachmann K, Weber WE, Horres R, Hoffmann MH. 2006. Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana. Ann. Bot. 97:623–34
    [Google Scholar]
  134. 134.
    Secco D, Wang C, Shou H, Schultz MD, Chiarenza S et al. 2015. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 4:e09343
    [Google Scholar]
  135. 135.
    Secco D, Whelan J, Rouached H, Lister R 2017. Nutrient stress-induced chromatin changes in plants. Curr. Opin. Plant Biol. 39:1–7
    [Google Scholar]
  136. 136.
    Sidaway-Lee K, Josse EM, Brown A, Gan Y, Halliday KJ et al. 2010. SPATULA links daytime temperature and plant growth rate. Curr. Biol. 20:1493–97
    [Google Scholar]
  137. 137.
    Springthorpe V, Penfield S. 2015. Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife 4:e05557
    [Google Scholar]
  138. 138.
    Tischer SV, Wunschel C, Papacek M, Kleigrewe K, Hofmann T et al. 2017. Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. PNAS 114:10280–85
    [Google Scholar]
  139. 139.
    Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F et al. 2009. Type 2C protein phosphatases directly regulate abscisic acid–activated protein kinases in Arabidopsis. PNAS 106:17588–93
    [Google Scholar]
  140. 140.
    Vaistij FE, Barros-Galvão T, Cole AF, Gilday AD, He Z et al. 2018. MOTHER-OF-FT-AND-TFL1 represses seed germination under far-red light by modulating phytohormone responses in Arabidopsis thaliana. PNAS 115:8442–47
    [Google Scholar]
  141. 141.
    Venable DL 1989. Modeling the evolutionary ecology of seed banks. Ecology of Soil Seed Banks MA Leck, VT Parker, RL Simpson 67–87 San Diego, CA: Academic
    [Google Scholar]
  142. 142.
    Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C et al. 2009. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21:3170–84
    [Google Scholar]
  143. 143.
    Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ et al. 2013. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140:2953–60
    [Google Scholar]
  144. 144.
    Walker L, Boddington C, Jenkins D, Wang Y, Gronlund JT et al. 2017. Changes in gene expression in space and time orchestrate environmentally mediated shaping of root architecture. Plant Cell 29:2393–412
    [Google Scholar]
  145. 145.
    Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. 2014. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant Cell Environ 37:1022–36
    [Google Scholar]
  146. 146.
    Wibowo A, Becker C, Marconi G, Durr J, Price J et al. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:e13546
    [Google Scholar]
  147. 147.
    Wilkins JF, Haig D. 2003. What good is genomic imprinting: the function of parent-specific gene expression. Nat. Rev. Genet. 4:359–68
    [Google Scholar]
  148. 148.
    Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL et al. 2014. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203:300–9
    [Google Scholar]
  149. 149.
    Willson MF. 1993. Dispersal mode, seed shadows, and colonization patterns. Vegetatio 108:261–80
    [Google Scholar]
  150. 150.
    Wolf JB, Hager R. 2006. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLOS Biol. 4:2238–43
    [Google Scholar]
  151. 151.
    Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C et al. 2011. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLOS Genet. 7:e1002126
    [Google Scholar]
  152. 152.
    Xi W, Yu H. 2010. MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signal. Behav. 5:101315–17
    [Google Scholar]
  153. 153.
    Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M et al. 2016. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 7:13179
    [Google Scholar]
  154. 154.
    Yatusevich R, Fedak H, Ciesielski A, Krzyczmonik K, Kulik A et al. 2017. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep. 18:2186–96
    [Google Scholar]
  155. 155.
    Zhang M, Xie SJ, Dong XM, Zhao X, Zeng B et al. 2014. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res. 24:167–76
    [Google Scholar]
  156. 156.
    Zheng J, Chen FY, Wang Z, Cao H, Li XY et al. 2012. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytol. 193:605–16
    [Google Scholar]
  157. 157.
    Zhu HF, Xie WX, Xu DC, Miki D, Tang K et al. 2018. DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. PNAS 115:E9962–70
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-090750
Loading
/content/journals/10.1146/annurev-arplant-102820-090750
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error