1932

Abstract

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011320-103928
2020-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011320-103928.html?itemId=/content/journals/10.1146/annurev-biochem-011320-103928&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Saxen L. 2000. Sammakkolääkäri [A doctor for frogs] Helsinki: Kustannusyhtiö Otava
    [Google Scholar]
  2. 2. 
    Korn ED. 1966. Structure of biological membranes. Science 153:1491–98
    [Google Scholar]
  3. 3. 
    Stoeckenius W, Engelman DM. 1969. Current models for the structure of biological membranes. J. Cell Biol. 42:613–46
    [Google Scholar]
  4. 4. 
    Helenius A, Simons K. 1971. Removal of lipids from human plasma low-density lipoprotein by detergents. Biochemistry 10:2542–47
    [Google Scholar]
  5. 5. 
    Helenius A, Simons K. 1975. Solubilization of membranes by detergents. Biochim. Biophys. Acta Biomembr. 415:29–79
    [Google Scholar]
  6. 6. 
    Helenius A, Sarvas M, Simons K 1981. Asymmetric and symmetric membrane reconstruction by detergent elimination: studies with Semliki-Forest-virus spike glycoprotein and penicillinase from the membrane of Bacilluslicheniformis. Eur. J. Biochem 116:27–35
    [Google Scholar]
  7. 7. 
    Lonberg-Holm K, Philipson L. 1974. Early interaction between animal viruses and cells. Monogr. Virol. 9:1–148
    [Google Scholar]
  8. 8. 
    Fries E, Helenius A. 1979. Binding of Semliki Forest virus and its spike glycoproteins to cells. Eur. J. Biochem. 97:213–20
    [Google Scholar]
  9. 9. 
    Jensen EM, Force EE, Unger JB 1961. Inhibitory effect of ammonium ions on influenza virus in tissue culture. Proc. Soc. Exp. Biol. Med. 107:447–51
    [Google Scholar]
  10. 10. 
    Ohkuma S, Poole B. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. PNAS 75:3327–31
    [Google Scholar]
  11. 11. 
    Helenius A, Kartenbeck J, Simons K, Fries E 1980. On the entry of Semliki forest virus into BHK-21 cells. J. Cell Biol. 84:404–20
    [Google Scholar]
  12. 12. 
    Matlin KS, Reggio H, Helenius A, Simons K 1981. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 91:601–13
    [Google Scholar]
  13. 13. 
    Matlin KS, Reggio H, Helenius A, Simons K 1982. Pathway of vesicular stomatitis virus entry leading to infection. J. Mol. Biol. 156:609–31
    [Google Scholar]
  14. 14. 
    Wilson IA, Skehel JJ, Wiley DC 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73
    [Google Scholar]
  15. 15. 
    White J, Kartenbeck J, Helenius A 1982. Membrane fusion activity of influenza virus. EMBO J 1:217–22
    [Google Scholar]
  16. 16. 
    Marsh M, Helenius A. 1980. Adsorptive endocytosis of Semliki Forest virus. J. Mol. Biol. 142:439–54
    [Google Scholar]
  17. 17. 
    Steinman RM, Mellman IS, Muller WA, Cohn ZA 1983. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96:1–27
    [Google Scholar]
  18. 18. 
    Helenius A, Marsh M, White J 1980. The entry of viruses into animal cells. Trends Biochem. Sci. 5:104–6
    [Google Scholar]
  19. 19. 
    Helenius A, Mellman I, Wall D, Hubbard A 1983. Endosomes. Trends Biochem. Sci. 8:245–50
    [Google Scholar]
  20. 20. 
    Marsh M, Bolzau E, Helenius A 1983. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32:931–40
    [Google Scholar]
  21. 21. 
    Schmid S, Fuchs R, Kielian M, Helenius A, Mellman I 1989. Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants. J. Cell Biol. 108:1291–300
    [Google Scholar]
  22. 22. 
    Kielian M, Marsh M, Helenius A 1986. Kinetics of endosome acidification detected by mutant and wild-type Semliki Forest virus. EMBO J 5:3103–9
    [Google Scholar]
  23. 23. 
    Marsh M, Schmid S, Kern H, Harms E, Male P et al. 1987. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis. J. Cell Biol. 104:875–86
    [Google Scholar]
  24. 24. 
    Marsh M, Griffiths G, Dean GE, Mellman I, Helenius A 1986. Three-dimensional structure of endosomes in BHK-21 cells. PNAS 83:2899–903
    [Google Scholar]
  25. 25. 
    Ukkonen P, Lewis V, Marsh M, Helenius A, Mellman I 1986. Transport of macrophage Fc receptors and Fc receptor–bound ligands to lysosomes. J. Exp. Med. 163:952–71
    [Google Scholar]
  26. 26. 
    Froshauer S, Kartenbeck J, Helenius A 1988. Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J. Cell Biol. 107:2075–86
    [Google Scholar]
  27. 27. 
    Huotari J, Helenius A. 2011. Endosome maturation. EMBO J 30:3481–500
    [Google Scholar]
  28. 28. 
    Martin K, Helenius A. 1991. Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–30
    [Google Scholar]
  29. 29. 
    Whittaker G, Bui M, Helenius A 1996. Nuclear traffic during influenza virus infection. Trends Cell Biol 6:67–71
    [Google Scholar]
  30. 30. 
    White J, Kielian M, Helenius A 1983. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 16:151–95
    [Google Scholar]
  31. 31. 
    White J, Helenius A, Gerthing MJ 1982. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature 300:658–59
    [Google Scholar]
  32. 32. 
    Stegmann T, Delfino JM, Richards FM, Helenius A 1991. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J. Biol. Chem. 266:18404–10
    [Google Scholar]
  33. 33. 
    Stegmann T, White JM, Helenius A 1990. Intermediates in influenza induced membrane fusion. EMBO J 9:4231–41
    [Google Scholar]
  34. 34. 
    MacKay RL, Consigili RA. 1976. Early events in polyoma virus infection: attachment, penetration, and nuclear entry. J. Virol. 19:620–36
    [Google Scholar]
  35. 35. 
    Kartenbeck J, Stukenbrok H, Helenius A 1989. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109:2721–29
    [Google Scholar]
  36. 36. 
    Fitzgerald DJP, Padmanabhan R, Pastan I, Willigham MC 1983. Adenovirus-induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32:607–17
    [Google Scholar]
  37. 37. 
    Greber UF, Willetts M, Webster P, Helenius A 1993. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–86
    [Google Scholar]
  38. 38. 
    Meier O, Greber UF. 2004. Adenovirus endocytosis. J. Gene. Med. 6: Suppl. 1 S152–63
    [Google Scholar]
  39. 39. 
    Copeland CS, Doms RW, Bolzau EM, Webster RG, Helenius A 1986. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell Biol. 103:1179–91
    [Google Scholar]
  40. 40. 
    Hurtley SM, Helenius A. 1989. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5:277–307
    [Google Scholar]
  41. 41. 
    Ellgaard L, McCaul N, Chatsisvili A, Braakman I 2016. Co- and post-translational protein folding in the ER. Traffic 17:615–38
    [Google Scholar]
  42. 42. 
    Berner N, Reutter K-R, Wolf DH 2018. Protein quality control of the endoplasmic reticulum and ubiquitin–proteasome-triggered degradation of aberrant proteins: yeast pioneers the path. Annu. Rev. Biochem. 87:751–82
    [Google Scholar]
  43. 43. 
    McCracken AA, Brodsky JL. 2003. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). BioEssays 25:868–77
    [Google Scholar]
  44. 44. 
    Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–86
    [Google Scholar]
  45. 45. 
    Juszkiewicz S, Hegde RS. 2018. Quality control of orphaned proteins. Mol. Cell 71:443–57
    [Google Scholar]
  46. 46. 
    Karamyshev AL, Karamysheva ZN. 2018. Lost in translation: ribosome-associated mRNA and protein quality controls. Front. Genet. 9:431
    [Google Scholar]
  47. 47. 
    Chen W, Helenius A. 1997. Folding and oligomerization of ribosome-associated nascent chains in the endoplasmic reticulum of living cells. PNAS 92:6229–33
    [Google Scholar]
  48. 48. 
    Nicola AV, Chen W, Helenius A 1999. Co-translational folding of an alphavirus capsid protein in the cytosol of living cells. Nat. Cell Biol. 1:341–45
    [Google Scholar]
  49. 49. 
    Molinari M, Helenius A. 2000. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331–33
    [Google Scholar]
  50. 50. 
    Braakman I, Helenius J, Helenius A 1992. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–22
    [Google Scholar]
  51. 51. 
    Hammond C, Braakman I, Helenius A 1994. Role of N-linked oligosaccharides, glucose trimming and calnexin during glycoprotein folding in the endoplasmic reticulum. PNAS 91:913–17
    [Google Scholar]
  52. 52. 
    Sousa MC, Parodi AJ. 1996. The interaction of the UDP-GLC:glycoprotein glucosyltransferase with the acceptor glycoprotein. Cell. Mol. Biol. 42:609–16
    [Google Scholar]
  53. 53. 
    Ritter C, Helenius A. 2000. Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nat. Struct. Biol. 7:278–80
    [Google Scholar]
  54. 54. 
    Trombetta ES, Fleming KG, Helenius A 2001. Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40:10717–22
    [Google Scholar]
  55. 55. 
    Ellgaard L, Frickel EM. 2003. Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem. Biophys. 39:223–47
    [Google Scholar]
  56. 56. 
    Ellgaard L, Bettendorff P, Braun D, Herrmann T, Fiorito F et al. 2002. NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J. Mol. Biol. 322:773–84
    [Google Scholar]
  57. 57. 
    Sbalzarini IF, Mezzacasa A, Helenius A, Koumoutsakos P 2005. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89:1482–92
    [Google Scholar]
  58. 58. 
    Anderson HA, Chen Y, Norkin LC 1996. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7:1825–34
    [Google Scholar]
  59. 59. 
    Stang E, Kartenbeck J, Parton RG 1997. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8:47–57
    [Google Scholar]
  60. 60. 
    Pelkmans L, Puntener D, Helenius A 2002. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–39
    [Google Scholar]
  61. 61. 
    Pelkmans L, Burli T, Zerial M, Helenius A 2004. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–80
    [Google Scholar]
  62. 62. 
    Ewers H, Jacobsen V, Klotzsch E, Smith AE, Helenius A, Sandoghdar V 2007. Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett 7:2263–66
    [Google Scholar]
  63. 63. 
    Kukura P, Ewers H, Muller C, Renn A, Helenius A, Sandoghdar V 2009. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6:923–27
    [Google Scholar]
  64. 64. 
    Szklarczyk OM, Gonzalez-Segredo N, Kukura P, Oppenheim A, Choquet D et al. 2013. Receptor concentration and diffusivity control multivalent binding of Sv40 to membrane bilayers. PLOS Comput. Biol. 9:e1003310
    [Google Scholar]
  65. 65. 
    Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A 2005. Clathrin- and caveolin-1–independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168:477–88
    [Google Scholar]
  66. 66. 
    Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L et al. 2007. N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 81:12846–58
    [Google Scholar]
  67. 67. 
    Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S et al. 2010. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12:11–18
    [Google Scholar]
  68. 68. 
    Ewers H, Smith AE, Sbalzarini IF, Lilie H, Koumoutsakos P, Helenius A 2005. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. PNAS 102:15110–15
    [Google Scholar]
  69. 69. 
    Engel S, Heger T, Mancini R, Herzog F, Kartenbeck J et al. 2011. Role of endosomes in simian virus 40 entry and infection. J. Virol. 85:4198–211
    [Google Scholar]
  70. 70. 
    Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L et al. 2007. Simian virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131:516–29
    [Google Scholar]
  71. 71. 
    Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S et al. 2011. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 13:1305–14
    [Google Scholar]
  72. 72. 
    Lozach PY, Mancini R, Bitto D, Meier R, Oestereich L et al. 2010. Entry of bunyaviruses into mammalian cells. Cell Host Microbe 7:488–99
    [Google Scholar]
  73. 73. 
    Lozach PY, Kuhbacher A, Meier R, Mancini R, Bitto D et al. 2011. DC-SIGN as a receptor for phleboviruses. Cell Host Microbe 10:75–88
    [Google Scholar]
  74. 74. 
    Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–35
    [Google Scholar]
  75. 75. 
    Schmidt FI, Bleck CK, Helenius A, Mercer J 2011. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. EMBO J 30:3647–61
    [Google Scholar]
  76. 76. 
    Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti PA, Helenius A 2013. Host cell entry of Respiratory Syncytial Virus involves macropinocytosis followed by proteolytic activation of the F protein. PLOS Pathog 9:e1003309
    [Google Scholar]
  77. 77. 
    Hetzenecker S, Helenius A, Krzyzaniak MA 2016. HCMV induces macropinocytosis for host cell entry in fibroblasts. Traffic 17:351–68
    [Google Scholar]
  78. 78. 
    Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A 2008. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology 378:21–33
    [Google Scholar]
  79. 79. 
    Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L et al. 2012. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLOS Pathog 8:e1002657
    [Google Scholar]
  80. 80. 
    Singh I, Helenius A. 1992. Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. J. Virol. 66:7049–58
    [Google Scholar]
  81. 81. 
    Wengler G, Wengler G. 1984. Identification of transfer of viral core protein to cellular ribosomes during the early stages of alphavirus infection. Virology 134:435–42
    [Google Scholar]
  82. 82. 
    Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A 2014. Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J. Virol. 88:13029–46
    [Google Scholar]
  83. 83. 
    Helenius A. 1992. Unpacking the incoming influenza virus. Cell 69:577–78
    [Google Scholar]
  84. 84. 
    Yamauchi Y, Boukari H, Banerjee I, Sbalzarini IF, Horvath P, Helenius A 2011. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLOS Pathog 7:e1002316
    [Google Scholar]
  85. 85. 
    Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P et al. 2014. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346:473–77
    [Google Scholar]
  86. 86. 
    Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I et al. 2016. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. eLife 5:e13841
    [Google Scholar]
  87. 87. 
    Miyake Y, Keusch JJ, Decamps L, Ho-Xuan H, Iketani S et al. 2019. Influenza virus uses transportin 1 for vRNP debundling during cell entry. Nat. Microbiol. 4:578–86
    [Google Scholar]
  88. 88. 
    Schmidt FI, Bleck CK, Reh L, Novy K, Wollscheid B et al. 2013. Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep 4:464–76
    [Google Scholar]
  89. 89. 
    Kilcher S, Schmidt FI, Schneider C, Kopf M, Helenius A, Mercer J 2014. siRNA screen of early poxvirus genes identifies the AAA+ ATPase D5 as the virus genome-uncoating factor. Cell Host Microbe 15:103–12
    [Google Scholar]
  90. 90. 
    Stoeber M, Stoeck IK, Hanni C, Bleck CK, Balistreri G, Helenius A 2012. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31:2350–64
    [Google Scholar]
  91. 91. 
    Hayer A, Stoeber M, Bissig C, Helenius A 2010. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11:361–82
    [Google Scholar]
  92. 92. 
    Stoeber M, Schellenberger P, Siebert CA, Leyrat C, Helenius A, Grunewald K 2016. Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. PNAS 113:E8069–78
    [Google Scholar]
  93. 93. 
    Tagawa A, Mezzacasa A, Hayer A, Longatti A, Pelkmans L, Helenius A 2005. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170:769–79
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011320-103928
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error