1932

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011420-111224
2020-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011420-111224.html?itemId=/content/journals/10.1146/annurev-biochem-011420-111224&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:1008–18
    [Google Scholar]
  2. 2. 
    Dy RL, Richter C, Salmond GP, Fineran PC 2014. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1:307–31
    [Google Scholar]
  3. 3. 
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Google Scholar]
  4. 4. 
    Amitai G, Sorek R. 2016. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14:67–76
    [Google Scholar]
  5. 5. 
    Sorek R, Lawrence CM, Wiedenheft B 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82:237–66
    [Google Scholar]
  6. 6. 
    Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–32
    [Google Scholar]
  7. 7. 
    Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL et al. 2018. A unified resource for tracking anti-CRISPR names. CRISPR J 1:304–5
    [Google Scholar]
  8. 8. 
    Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54:234–44
    [Google Scholar]
  9. 9. 
    Koonin EV, Makarova KS, Zhang F 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37:67–78
    [Google Scholar]
  10. 10. 
    Wright AV, Nunez JK, Doudna JA 2016. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164:29–44
    [Google Scholar]
  11. 11. 
    Bondy-Denomy J, Davidson AR. 2014. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52:235–42
    [Google Scholar]
  12. 12. 
    Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA 2015. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13:641–50
    [Google Scholar]
  13. 13. 
    Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS et al. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–66
    [Google Scholar]
  14. 14. 
    Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR 2014. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 5:e00896
    [Google Scholar]
  15. 15. 
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402
    [Google Scholar]
  16. 16. 
    Pawluk A, Staals RH, Taylor C, Watson BN, Saha S et al. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1:16085
    [Google Scholar]
  17. 17. 
    Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y et al. 2016. Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829–38.e9
    [Google Scholar]
  18. 18. 
    Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ et al. 2017. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168:150–58.e10
    [Google Scholar]
  19. 19. 
    Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA 2018. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362:236–39
    [Google Scholar]
  20. 20. 
    Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM et al. 2018. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362:240–42
    [Google Scholar]
  21. 21. 
    Rusk N. 2019. Spotlight on Cas12. Nat. Methods 16:215
    [Google Scholar]
  22. 22. 
    Hynes AP, Rousseau GM, Lemay ML, Horvath P, Romero DA et al. 2017. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat. Microbiol. 2:1374–80
    [Google Scholar]
  23. 23. 
    Hynes AP, Rousseau GM, Agudelo D, Goulet A, Amigues B et al. 2018. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nat. Commun. 9:2919
    [Google Scholar]
  24. 24. 
    He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M et al. 2018. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3:461–69
    [Google Scholar]
  25. 25. 
    Uribe RV, van der Helm E, Misiakou MA, Lee SW, Kol S, Sommer MOA 2019. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial phyla. Cell Host Microbe 26:702
    [Google Scholar]
  26. 26. 
    Lhuillier S, Gallopin M, Gilquin B, Brasiles S, Lancelot N et al. 2009. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. PNAS 106:8507–12
    [Google Scholar]
  27. 27. 
    Maxwell KL, Yee AA, Arrowsmith CH, Gold M, Davidson AR 2002. The solution structure of the bacteriophage λ head–tail joining protein, gpFII. J. Mol. Biol. 318:1395–404
    [Google Scholar]
  28. 28. 
    Maji B, Gangopadhyay SA, Lee M, Shi M, Wu P et al. 2019. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 177:1067–79.e19
    [Google Scholar]
  29. 29. 
    Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF et al. 2015. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–39
    [Google Scholar]
  30. 30. 
    Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN et al. 2017. Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169:47–57.e11
    [Google Scholar]
  31. 31. 
    Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P et al. 2017. Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171:414–26.e12
    [Google Scholar]
  32. 32. 
    Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM et al. 2019. Structure reveals a mechanism of CRISPR-RNA-guided nuclease recruitment and anti-CRISPR viral mimicry. Mol. Cell 74:132–42.e5
    [Google Scholar]
  33. 33. 
    Peng R, Xu Y, Zhu T, Li N, Qi J et al. 2017. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell Res 27:853–64
    [Google Scholar]
  34. 34. 
    Maxwell KL, Garcia B, Bondy-Denomy J, Bona D, Hidalgo-Reyes Y, Davidson AR 2016. The solution structure of an anti-CRISPR protein. Nat. Commun. 7:13134
    [Google Scholar]
  35. 35. 
    Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF et al. 2017. Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. MBio 8:e01751–17
    [Google Scholar]
  36. 36. 
    Wang X, Yao D, Xu JG, Li AR, Xu J et al. 2016. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat. Struct. Mol. Biol. 23:868–70
    [Google Scholar]
  37. 37. 
    Wang J, Ma J, Cheng Z, Meng X, You L et al. 2016. A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Cell Res 26:1165–68
    [Google Scholar]
  38. 38. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:933–41
    [Google Scholar]
  39. 39. 
    Garcia-Doval C, Jinek M. 2017. Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Curr. Opin. Struct. Biol. 47:157–66
    [Google Scholar]
  40. 40. 
    Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46:505–29
    [Google Scholar]
  41. 41. 
    Stella S, Alcon P, Montoya G 2017. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat. Struct. Mol. Biol. 24:882–92
    [Google Scholar]
  42. 42. 
    Mir A, Edraki A, Lee J, Sontheimer EJ 2018. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem. Biol. 13:357–65
    [Google Scholar]
  43. 43. 
    Dong, Guo M, Wang S, Zhu Y, Wang S et al. 2017. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 546:436–39
    [Google Scholar]
  44. 44. 
    Kim I, Jeong M, Ka D, Han M, Kim NK et al. 2018. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor. Sci. Rep. 8:3883
    [Google Scholar]
  45. 45. 
    Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ et al. 2017. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3:e1701620
    [Google Scholar]
  46. 46. 
    Yang H, Patel DJ. 2017. Inhibition mechanism of an Anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol. Cell 67:117–27.e5
    [Google Scholar]
  47. 47. 
    Jiang F, Liu JJ, Osuna BA, Xu M, Berry JD et al. 2019. Temperature-responsive competitive inhibition of CRISPR-Cas9. Mol. Cell 73:601–10.e5
    [Google Scholar]
  48. 48. 
    Liu L, Yin M, Wang M, Wang Y 2019. Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol. Cell 73:611–20.e3
    [Google Scholar]
  49. 49. 
    Lee J, Mir A, Edraki A, Garcia B, Amrani N et al. 2018. Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. MBio 9:e02321–18
    [Google Scholar]
  50. 50. 
    Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ et al. 2017. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170:1224–33.e15
    [Google Scholar]
  51. 51. 
    Zhu Y, Gao A, Zhan Q, Wang Y, Feng H et al. 2019. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins. Mol. Cell 74:296–309.e7
    [Google Scholar]
  52. 52. 
    Kim Y, Lee SJ, Yoon HJ, Kim NK, Lee BJ, Suh JY 2019. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain. FEBS J 28:4661–74
    [Google Scholar]
  53. 53. 
    Sun W, Yang J, Cheng Z, Amrani N, Liu C et al. 2019. Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol. Cell 76:938–52.e5
    [Google Scholar]
  54. 54. 
    Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M et al. 2019. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Nat. Commun. 10:2806
    [Google Scholar]
  55. 55. 
    Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B et al. 2019. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nat. Struct. Mol. Biol. 26:315–21
    [Google Scholar]
  56. 56. 
    Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L 2019. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins. Cell Host Microbe 25:815–26.e4
    [Google Scholar]
  57. 57. 
    Dong L, Guan X, Li N, Zhang F, Zhu Y et al. 2019. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat. Struct. Mol. Biol. 26:308–14
    [Google Scholar]
  58. 58. 
    Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ et al. 2019. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 8:e49110
    [Google Scholar]
  59. 59. 
    Wang HC, Chou CC, Hsu KC, Lee CH, Wang AH 2019. New paradigm of functional regulation by DNA mimic proteins: recent updates. IUBMB Life 71:539–48
    [Google Scholar]
  60. 60. 
    Wang HC, Ho CH, Hsu KC, Yang JM, Wang AH 2014. DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry 53:2865–74
    [Google Scholar]
  61. 61. 
    Ka D, An SY, Suh JY, Bae E 2018. Crystal structure of an anti-CRISPR protein, AcrIIA1. Nucleic Acids Res 46:485–92
    [Google Scholar]
  62. 62. 
    Stanley SY, Borges AL, Chen K-H, Swaney DL, Krogan NJ et al. 2019. Anti-CRISPR associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178:1452–64.e13
    [Google Scholar]
  63. 63. 
    Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J 2018. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174:917–25.e10
    [Google Scholar]
  64. 64. 
    Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A et al. 2018. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174:908–16.e12
    [Google Scholar]
  65. 65. 
    van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B et al. 2016. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–88
    [Google Scholar]
  66. 66. 
    Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y et al. 2019. A compact, high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing. Mol. Cell 73:714–26.e4
    [Google Scholar]
  67. 67. 
    Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML et al. 2018. Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Mol. Cell 69:146–57.e3
    [Google Scholar]
  68. 68. 
    Labrie SJ, Samson JE, Moineau S 2010. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8:317–27
    [Google Scholar]
  69. 69. 
    Kim D, Luk K, Wolfe SA, Kim JS 2019. Evaluating and enhancing target specificity of gene-editing nucleases and deaminases. Annu. Rev. Biochem. 88:191–220
    [Google Scholar]
  70. 70. 
    Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ 2019. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16:887–93
    [Google Scholar]
  71. 71. 
    Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. 2016. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol 34:78–83
    [Google Scholar]
  72. 72. 
    Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A et al. 2018. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36:1062–66
    [Google Scholar]
  73. 73. 
    Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E et al. 2018. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464–74
    [Google Scholar]
  74. 74. 
    Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 9:1911
    [Google Scholar]
  75. 75. 
    Liu XS, Wu H, Krzisch M, Wu X, Graef J et al. 2018. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–92.e6
    [Google Scholar]
  76. 76. 
    Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA et al. 2019. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10:194
    [Google Scholar]
  77. 77. 
    Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A et al. 2018. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9. Nat. Methods 15:924–27
    [Google Scholar]
  78. 78. 
    Hirosawa M, Fujita Y, Saito H 2019. Cell-type-specific CRISPR activation with microRNA-responsive AcrllA4 switch. ACS Synth. Biol. 8:1575–82
    [Google Scholar]
  79. 79. 
    Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C et al. 2019. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 47:e75
    [Google Scholar]
  80. 80. 
    Lee J, Mou H, Ibraheim R, Liang S-Q, Liu P et al. 2019. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25:1421–31
    [Google Scholar]
  81. 81. 
    Palmer DJ, Turner DL, Ng P 2019. Production of CRISPR/Cas9-mediated self-cleaving helper-dependent adenoviruses. Mol. Ther. Methods Clin. Dev. 13:432–39
    [Google Scholar]
  82. 82. 
    Nobrega FL, Costa AR, Kluskens LD, Azeredo J 2015. Revisiting phage therapy: new applications for old resources. Trends Microbiol 23:185–91
    [Google Scholar]
  83. 83. 
    van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB et al. 2015. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 6:e01796–15
    [Google Scholar]
  84. 84. 
    Zhang Y. 2017. The CRISPR-Cas9 system in Neisseria spp. Pathog. Dis. 75:4ftx036
    [Google Scholar]
  85. 85. 
    Li R, Fang L, Tan S, Yu M, Li X et al. 2016. Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Res 26:1273–87
    [Google Scholar]
  86. 86. 
    Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G et al. 2013. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 32:207–26
    [Google Scholar]
  87. 87. 
    Sampson TR, Napier BA, Schroeder MR, Louwen R, Zhao J et al. 2014. A CRISPR-Cas system enhances envelope integrity mediating antibiotic resistance and inflammasome evasion. PNAS 111:11163–68
    [Google Scholar]
  88. 88. 
    Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–57
    [Google Scholar]
  89. 89. 
    Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S et al. 2015. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34:169–83
    [Google Scholar]
  90. 90. 
    Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S et al. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat. Microbiol. 3:90–98
    [Google Scholar]
  91. 91. 
    Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–61
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011420-111224
Loading
/content/journals/10.1146/annurev-biochem-011420-111224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error