1932

Abstract

Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly -glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011520-105053
2020-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011520-105053.html?itemId=/content/journals/10.1146/annurev-biochem-011520-105053&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Corfield AP. 2015. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim. Biophys. Acta Gen. Subj. 1850:236–52
    [Google Scholar]
  2. 2. 
    Johansson MEV, Sjovall H, Hansson GC 2013. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10:352–61
    [Google Scholar]
  3. 3. 
    Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA 2008. Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–97
    [Google Scholar]
  4. 4. 
    Johansson MEV, Hansson GC. 2016. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16:639–49
    [Google Scholar]
  5. 5. 
    Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N et al. 1990. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265:15286–93
    [Google Scholar]
  6. 6. 
    Gum JR, Hicks JW, Toribara NW, Rothe EM, Lagace RE, Kim YS 1992. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267:21375–83
    [Google Scholar]
  7. 7. 
    Lancaster CA, Peat N, Duhig T, Wilson D, Taylor-Papadimitriou J, Gendler SJ 1990. Structure and expression of the human polymorphic epithelial mucin gene: an expressed VNTR unit. Biochem. Biophys. Res. Commun. 173:1019–29
    [Google Scholar]
  8. 8. 
    Silverman HS, Sutton-Smith M, McDermott K, Heal P, Leir SH et al. 2003. The contribution of tandem repeat number to the O-glycosylation of mucins. Glycobiology 13:265–77
    [Google Scholar]
  9. 9. 
    Lang T, Hansson GC, Samuelsson T 2007. Gel-forming mucins appeared early in metazoan evolution. PNAS 104:16209–14
    [Google Scholar]
  10. 10. 
    Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA 2012. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22:736–56
    [Google Scholar]
  11. 11. 
    Carlstedt I, Herrmann A, Karlsson H, Sheehan JK, Fransson L, Hansson GC 1993. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J. Biol. Chem. 268:18771–81
    [Google Scholar]
  12. 12. 
    Shogren R, Gerken TA, Jentoft N 1989. Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28:5525–36
    [Google Scholar]
  13. 13. 
    Sheehan JK, Oates K, Carlstedt I 1986. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem. J. 239:147–53
    [Google Scholar]
  14. 14. 
    Cohen M, Varki A. 2014. Modulation of glycan recognition by clustered saccharide patches. Int. Rev. Cell Mol. Biol. 30875–125
    [Google Scholar]
  15. 15. 
    Varki A. 1994. Selectin ligands. PNAS 91:7390–97
    [Google Scholar]
  16. 16. 
    Hughes GW, Ridley C, Collins R, Roseman A, Ford R, Thornton DJ 2019. The MUC5B mucin polymer is dominated by repeating structural motifs and its topology is regulated by calcium and pH. Sci. Rep. 9:17350
    [Google Scholar]
  17. 17. 
    Karlsson KA. 1989. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58:309–50
    [Google Scholar]
  18. 18. 
    de las Rivas M, Lira-Navarrete E, Gerken TA, Hurtado-Guerrero R 2019. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 56:87–96
    [Google Scholar]
  19. 19. 
    Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB et al. 2013. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32:1478–88
    [Google Scholar]
  20. 20. 
    de las Rivas M, Daniel EJP, Coelho H, Lira-Navarrete E, Raich L et al. 2018. Structural and mechanistic insights into the catalytic-domain-mediated short-range glycosylation preferences of GalNAc-T4. ACS Cent. Sci. 4:1274–90
    [Google Scholar]
  21. 21. 
    Revoredo L, Wang S, Bennett EP, Clausen H, Moremen KW et al. 2016. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360–76
    [Google Scholar]
  22. 22. 
    Arike L, Hansson GC. 2016. The densely O-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J. Mol. Biol. 428:3221–29
    [Google Scholar]
  23. 23. 
    Brockhausen I, Stanley P. 2017. O-GalNAc glycans. Essentials of Glycobiology A Varki, RD Cummings, JD Esko 113–24 Cold Spring Harbor, NY: Cold Spring Harb. Lab.
    [Google Scholar]
  24. 24. 
    Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M 2012. Protein O-glycosylation analysis. Biol. Chem. 393:687–708
    [Google Scholar]
  25. 25. 
    Gerken TA, Owens CL, Pasumarthy M 1998. Site-specific core 1 O-glycosylation pattern of the porcine submaxillary gland mucin tandem repeat—evidence for the modulation of glycan length by peptide sequence. J. Biol. Chem. 273:26580–88
    [Google Scholar]
  26. 26. 
    Holmén Larsson JM, Thomsson KA, Rodríguez-Pineiro AM, Karlsson H, Hansson GC 2013. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G357–63
    [Google Scholar]
  27. 27. 
    Robbe C, Capon C, Coddeville B, Michalski JC 2004. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem. J. 384:307–16
    [Google Scholar]
  28. 28. 
    Robbe C, Capon C, Maes E, Rousset M, Zweibaum A et al. 2003. Evidence of regio-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the gastrointestinal tract. J. Biol. Chem. 278:46337–48
    [Google Scholar]
  29. 29. 
    Schauer R. 2009. Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 19:507–14
    [Google Scholar]
  30. 30. 
    Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B et al. 2017. Structural diversity of human gastric mucin glycans. Mol. Cell Proteom. 16:743–58
    [Google Scholar]
  31. 31. 
    Rossez Y, Maes E, Lefebvre DT, Gosset P, Ecobichon C et al. 2012. Almost all human gastric mucin O-glycans harbor blood group A. B or H antigens and are potential binding sites for Helicobacter pylori. Glycobiology 22:1193–206
    [Google Scholar]
  32. 32. 
    van der Post S, Hansson GC 2014. Membrane protein profiling of human colon reveals distinct regional differences. Mol. Cell. Proteom. 13:2277–87
    [Google Scholar]
  33. 33. 
    Holmén Larsson JM, Karlsson H, Sjovall H, Hansson GC 2009. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19:756–66
    [Google Scholar]
  34. 34. 
    Holmén Larsson JM, Karlsson H, Gråberg Crespo J, Johansson MEV, Eklund L et al. 2011. An altered O-glycosylation profile of the MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17:2299–307
    [Google Scholar]
  35. 35. 
    Karlsson NG, Herrmann A, Karlsson H, Johansson MEV, Carlstedt I, Hansson GC 1997. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J. Biol. Chem. 272:27025–34
    [Google Scholar]
  36. 36. 
    Bry L, Falk PG, Midtvedt T, Gordon JI 1996. A model of host–microbial interactions in an open mammalian ecosystem. Science 273:1380–83
    [Google Scholar]
  37. 37. 
    Holmén JM, Olson FJ, Karlsson H, Hansson GC 2002. Two glycosylation alterations of mouse intestinal mucins due to infection caused by the parasite Nippostrongylus brasiliensis. Glycoconj. J 19:67–75
    [Google Scholar]
  38. 38. 
    Olson FJ, Johansson MEV, Klinga-Levan K, Bouhours D, Enerback L et al. 2002. Blood group A glycosyltransferase occurring as alleles with high sequence difference is transiently induced during Nippostrongylus brasiliensis parasite infection. J. Biol. Chem. 277:15044–52
    [Google Scholar]
  39. 39. 
    Capon C, Maes E, Michalski JC, Leffler H, Kim YS 2001. Sda-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem. J. 358:657–64
    [Google Scholar]
  40. 40. 
    Gagneux P, Varki A. 1999. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9:747–55
    [Google Scholar]
  41. 41. 
    Breimer ME, Hansson GC, Karlsson KA, Leffler H 1982. Glycosphingolipids of rat tissues. Different composition of epithelial and nonepithelial cells of small intestine. J. Biol. Chem. 257:557–68
    [Google Scholar]
  42. 42. 
    Bobek LA, Liu JH, Sait SNJ, Shows TB, Bobek YA, Levine MJ 1996. Structure and chromosomal localization of the human salivary mucin gene. MUC7. Genomics 31:277–82
    [Google Scholar]
  43. 43. 
    Higuchi T, Orita T, Nakanishi S, Katsuya K, Watanabe H et al. 2004. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J. Biol. Chem. 279:1968–79
    [Google Scholar]
  44. 44. 
    Lang T, Klasson S, Larsson E, Johansson MEV, Hansson GC, Samuelsson T 2016. Searching the evolutionary origin of epithelial mucus protein components—mucins and FCGBP. Mol. Biol. Evol. 33:1921–36
    [Google Scholar]
  45. 45. 
    Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U 2007. A role for hemolectin in coagulation and immunity in Drosophila melanogaster. Dev. Comp. Immunol 31:1255–63
    [Google Scholar]
  46. 46. 
    Chen Y, Zhao YH, Kalaslavadi TB, Hamati E, Nehrke K et al. 2004. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 30:155–65
    [Google Scholar]
  47. 47. 
    Eckhardt AE, Timpte CS, DeLuca AW, Hill RL 1997. The complete cDNA sequence and structural polymorphism of the polypeptide chain of porcine submaxillary mucin. J. Biol. Chem. 272:33204–10
    [Google Scholar]
  48. 48. 
    Rousseau K, Kirkham S, Johnson L, Fitzpatrick B, Howard M et al. 2008. Proteomic analysis of polymeric salivary mucins: no evidence for MUC19 in human saliva. Biochem. J. 413:545–52
    [Google Scholar]
  49. 49. 
    Asker N, Axelsson MAB, Olofsson SO, Hansson GC 1998. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J. Biol. Chem. 273:18857–63
    [Google Scholar]
  50. 50. 
    Dong X, Leksa NC, Chhabra ES, Arndt JW, Lu Q et al. 2019. The von Willebrand factor D′D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood 133:1523–33
    [Google Scholar]
  51. 51. 
    Javitt G, Calvo MLG, Albert L, Reznik N, Ilani T et al. 2019. Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. J. Mol. Biol. 431:3740–52
    [Google Scholar]
  52. 52. 
    O'Leary JM, Hamilton JM, Deane CM, Valeyev NV, Sandell LJ, Downing AK 2004. Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand factor type C module) from collagen IIA. J. Biol. Chem. 279:53857–66
    [Google Scholar]
  53. 53. 
    Carlstedt I, Karlsson H, Sundler F, Fransson L 1982. An insoluble mucin complex from rat small intestine. Adv. Exp. Med. Biol. 144:155–57
    [Google Scholar]
  54. 54. 
    Herrmann A, Davies JR, Lindell G, Martensson S, Packer NH et al. 1999. Studies on the “insoluble” glycoprotein complex from human colon. J. Biol. Chem. 274:15828–36
    [Google Scholar]
  55. 55. 
    Axelsson MAB, Asker N, Hansson GC 1998. O-Glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J. Biol. Chem. 273:18864–70
    [Google Scholar]
  56. 56. 
    Recktenwald CV, Hansson GC. 2016. The reduction-insensitive bonds of the MUC2 mucin are isopeptide bonds. J. Biol. Chem. 291:13580–90
    [Google Scholar]
  57. 57. 
    Lorand L, Graham RM. 2003. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4:140–56
    [Google Scholar]
  58. 58. 
    Fernández-Blanco JA, Fakih D, Arike L, Rodríguez-Pineiro A, Martinez-Abad B et al. 2018. Attached stratified mucus separates bacteria from the epithelial cells in COPD lungs. J. Clin. Investig. Insights 3:e120994
    [Google Scholar]
  59. 59. 
    Rodríguez-Pineiro AM, Bergström JH, Ermund A, Gustafsson JK, Schütte A et al. 2013. Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G348–56
    [Google Scholar]
  60. 60. 
    Desseyn JL, Guyonnet-Dupérat V, Porchet N, Aubert JP, Laine A 1997. Human mucin gene MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. J. Biol. Chem. 272:3168–78
    [Google Scholar]
  61. 61. 
    Escande F, Porchet N, Aubert JP, Buisine MP 2002. The mouse Muc5b mucin gene: cDNA and genomic structures, chromosomal localization and expression. Biochem. J. 363:589–98
    [Google Scholar]
  62. 62. 
    Ridley C, Kouvatsos N, Raynal BD, Howard M, Collins RF et al. 2014. Assembly of the respiratory mucin MUC5B: a new model for gel-forming mucin. J. Biol. Chem. 289:16409–20
    [Google Scholar]
  63. 63. 
    Thornton DJ, Rousseau K, McGuckin MA 2008. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70:459–86
    [Google Scholar]
  64. 64. 
    Klomp LWJ, Van Rens L, Strous GJ 1995. Cloning and analysis of human gastric mucin cDNA reveals two types of conserved cysteine-rich domains. Biochem. J. 308:831–38
    [Google Scholar]
  65. 65. 
    Li DZ, Gallup M, Fan N, Szymkowski DE, Basbaum CB 1998. Cloning of the amino-terminal and 5′-flanking region of the human MUC5AC mucin gene and transcriptional up-regulation by bacterial exoproducts. J. Biol. Chem. 273:6812–20
    [Google Scholar]
  66. 66. 
    Gum JR, Hicks JW, Toribara NW, Siddiki B, Kim YS 1994. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J. Biol. Chem. 269:2440–46
    [Google Scholar]
  67. 67. 
    Ambort D, Johansson MEV, Gustafsson JK, Nilsson H, Ermund A et al. 2012. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. PNAS 109:5645–50
    [Google Scholar]
  68. 68. 
    Svensson F, Lang T, Johansson MEV, Hansson GC 2018. The central exons of the human MUC2 and MUC6 mucins are highly repetitive and variable in sequence between individuals. Sci. Rep. 8:17503
    [Google Scholar]
  69. 69. 
    Toribara NW, Roberton AM, Ho SB, Kuo WL, Gum E et al. 1993. Human gastric mucin. J. Biol. Chem. 268:5879–85
    [Google Scholar]
  70. 70. 
    Hijikata M, Matsushita I, Tanaka G, Tsuchiya T, Ito H et al. 2011. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum. Genet. 129:117–28
    [Google Scholar]
  71. 71. 
    Pallesen LT, Berglund L, Rasmussen LK, Petersen TE, Rasmussen JT 2002. Isolation and characterization of MUC15, a novel cell membrane–associated mucin. Eur. J. Biochem. 269:2755–63
    [Google Scholar]
  72. 72. 
    Desseyn JL, Clavereau I, Laine A 2002. Cloning, chromosomal localization and characterization of the murine mucin gene orthologous to human MUC4. Eur. J. Biochem 269:3150–59
    [Google Scholar]
  73. 73. 
    Rossi EA, McNeer RR, Price-Schiavi SA, van den Brande JMH, Komatsu M et al. 1996. Sialomucin complex, a heterodimeric glycoprotein complex. J. Biol. Chem. 271:33476–85
    [Google Scholar]
  74. 74. 
    Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK 2004. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 64:622–30
    [Google Scholar]
  75. 75. 
    Macao B, Johansson DGA, Hansson GC, Härd T 2006. Auto-proteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13:71–76
    [Google Scholar]
  76. 76. 
    Beatson R, Tajadura-Ortega V, Achkova D, Picco G, Tsourouktsoglou TD et al. 2016. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol. 17:1273–81
    [Google Scholar]
  77. 77. 
    O'Brien TJ, Beard JB, Underwood LJ, Shigemasa K 2004. The CA125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumor Biol 23:154–69
    [Google Scholar]
  78. 78. 
    Yin BWT, Dnistrian A, Lloyd KO 2002. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int. J. Cancer 98:737–40
    [Google Scholar]
  79. 79. 
    Gum JR Jr., Crawley SC, Hicks JW, Szymkowski DE, Kim YS 2002. MUC17, a novel membrane-tethered mucin. Biochem. Biophys. Res. Commun. 291:466–75
    [Google Scholar]
  80. 80. 
    Gum JR Jr., Hicks JW, Lagace RE, Byrd JC, Toribara NW et al. 1991. Molecular cloning of rat intestinal mucin. Lack of conservation between mammalian species. J. Biol. Chem. 266:22733–38
    [Google Scholar]
  81. 81. 
    Williams SJ. 1999. The novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res 59:4083–89
    [Google Scholar]
  82. 82. 
    Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA 2001. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276:18327–36
    [Google Scholar]
  83. 83. 
    Pelaseyed T, Gustafsson JK, Gustafsson IJ, Ermund A, Hansson GC 2013. Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes. Am. J. Physiol. Cell Physiol. 305:C457–67
    [Google Scholar]
  84. 84. 
    Knowles MR, Boucher RC. 2002. Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Investig. 109:571–77
    [Google Scholar]
  85. 85. 
    Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB 2016. The microbiome and the respiratory tract. Annu. Rev. Physiol. 78:481–504
    [Google Scholar]
  86. 86. 
    Button B, Cai LH, Ehre C, Kesimer M, Hill DB et al. 2012. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–41
    [Google Scholar]
  87. 87. 
    Ermund A, Meiss LN, Rodríguez-Pineiro AM, Bähr A, Nilsson HE et al. 2017. The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin. Biochem. Biophys. Res. Commun. 492:331–37
    [Google Scholar]
  88. 88. 
    Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ et al. 2014. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818–22
    [Google Scholar]
  89. 89. 
    Trillo-Muyo S, Nilsson HE, Recktenwald CV, Ermund A, Ridley C et al. 2018. Granule-stored MUC5B mucins are packed by the non-covalent formation of N-terminal head-to-head tetramers. J. Biol. Chem. 293:5746–54
    [Google Scholar]
  90. 90. 
    Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK 2010. Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L15–22
    [Google Scholar]
  91. 91. 
    Ermund A, Meiss LN, Dolan B, Bahr A, Klymiuk N, Hansson GC 2018. The mucin bundles responsible for airway cleaning are retained in cystic fibrosis and by cholinergic stimulation. Eur. Respir. J. 52:1800457
    [Google Scholar]
  92. 92. 
    Hansson GC. 2019. Mucus and mucins in diseases of the intestinal and respiratory tracts. J. Intern. Med. 285:479–90
    [Google Scholar]
  93. 93. 
    Johansson MEV, Phillipson M, Petersson J, Holm L, Velcich A, Hansson GC 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:15064–69
    [Google Scholar]
  94. 94. 
    Schütte A, Ermund A, Becker-Pauly C, Johansson MEV, Rodríguez-Pineiro AM et al. 2014. Microbial-induced meprin β cleavage in MUC2 mucin and functional CFTR channel are required to release anchored small intestinal mucus. PNAS 111:12396–401
    [Google Scholar]
  95. 95. 
    Springer TA. 2014. von Willebrand factor, Jedi knight of the bloodstream. Blood 124:1412–25
    [Google Scholar]
  96. 96. 
    Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA 2009. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–34
    [Google Scholar]
  97. 97. 
    Van As A. 1977. Pulmonary airway clearance mechanisms: a reappraisal. Am. Rev. Respir. Dis. 115:721–26
    [Google Scholar]
  98. 98. 
    Fakih D, Rodríguez-Pineiro AM, Trillo-Muyo S, Evans CM, Ermund E, Hansson GC 2020. Normal murine respiratory tract has its mucus concentrated in clouds based on the Muc5b mucin. Am. J. Physiol. Lung Cell. Mol. Physiol. https://doi.org/10.1152/ajplung.00485.2019
    [Crossref] [Google Scholar]
  99. 99. 
    Ma J, Rubin BK, Voynow JA 2018. Mucins, mucus, and goblet cells. Chest 154:169–76
    [Google Scholar]
  100. 100. 
    Boucher RC. 2019. Muco-obstructive lung diseases. N. Engl. J. Med. 380:1941–53
    [Google Scholar]
  101. 101. 
    Ermund A, Schütte A, Johansson MEV, Gustafsson JK, Hansson GC 2013. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G341–47
    [Google Scholar]
  102. 102. 
    Schade C, Flemstrom G, Holm L 1994. Hydrogen ion concentration in the mucus layer on top of acid-stimulated and -inhibited rat gastric mucosa. Gastroenterology 107:180–88
    [Google Scholar]
  103. 103. 
    Johansson M, Synnerstad I, Holm L 2000. Acid transport through channels in the mucous layer of rat stomach. Gastroenterology 119:1297–304
    [Google Scholar]
  104. 104. 
    Gustafsson JK, Ermund A, Ambort D, Johansson MEV, Nilsson HE et al. 2012. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209:1263–72
    [Google Scholar]
  105. 105. 
    Clevers HC, Bevins CL. 2013. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75:289–311
    [Google Scholar]
  106. 106. 
    Propheter DC, Chara AL, Harris TA, Ruhn KA, Hooper LV 2017. Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium. PNAS 114:11027–33
    [Google Scholar]
  107. 107. 
    Pelaseyed T, Zäch M, Petersson AC, Svensson F, Johansson DG, Hansson GC 2013. Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell-protective device. FEBS J 280:1491–501
    [Google Scholar]
  108. 108. 
    Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ 2008. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J. Cell Biol. 181:1073–81
    [Google Scholar]
  109. 109. 
    Johansson MEV, Jacobsson HE, Holmén Larsson J, Schütte A, Ermund A et al. 2015. Normalization of the host intestinal mucus systems requires long-term colonization. Cell Host Microbe 18:582–92
    [Google Scholar]
  110. 110. 
    Jakobsson HE, Rodríguez-Pineiro AM, Schütte A, Ermund A, Boysen P et al. 2015. The gut microbiota composition impairs the colon inner mucus layer barrier. EMBO Rep. 16:164–77
    [Google Scholar]
  111. 111. 
    De Lisle RC. 2007. Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G104–11
    [Google Scholar]
  112. 112. 
    Houwen RH, van der Doef HP, Sermet I, Munck A, Hauser B et al. 2010. Defining DIOS and constipation in cystic fibrosis with a multicentre study on the incidence, characteristics, and treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 50:38–42
    [Google Scholar]
  113. 113. 
    Koropatkin NM, Cameron EA, Martens EC 2012. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10:323–35
    [Google Scholar]
  114. 114. 
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI 2005. Obesity alters gut microbial ecology. PNAS 102:11070–75
    [Google Scholar]
  115. 115. 
    Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71:8228–35
    [Google Scholar]
  116. 116. 
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB et al. 2019. A new genomic blueprint of the human gut microbiota. Nature 568:499–504
    [Google Scholar]
  117. 117. 
    Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al. 2019. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37:186–92
    [Google Scholar]
  118. 118. 
    Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A et al. 2019. The integrative human microbiome project. Nature 569:641–48
    [Google Scholar]
  119. 119. 
    Human Microbiome Project Consortium 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  120. 120. 
    Xiao L, Feng Q, Liang S, Sonne SB, Xia Z et al. 2015. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33:1103–8
    [Google Scholar]
  121. 121. 
    Martens EC, Chiang HC, Gordon JI 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–57
    [Google Scholar]
  122. 122. 
    Derrien M, Vaughan EE, Plugge CM, de Vos WM 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin–degrading bacterium. Int. J. Syst. Evol. Biol. 54:1469–76
    [Google Scholar]
  123. 123. 
    van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M et al. 2011. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLOS ONE 6:e16876
    [Google Scholar]
  124. 124. 
    Bergström JH, Birchenough GMH, Katona G, Schroeder BO, Schütte A et al. 2016. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. PNAS 113:13833–38
    [Google Scholar]
  125. 125. 
    Nyström EEL, Arike L, Ehrencrona E, Hansson GC, Johansson MEV 2019. Calcium-activated chloride channel regulator 1 (CLCA1) forms non-covalent oligomers in colonic mucus and has mucin 2–processing properties. J. Biol. Chem. 294:17075–89
    [Google Scholar]
  126. 126. 
    Nyström EEL, Birchenough GMH, van der Post S, Arike L, Gruber AD et al. 2018. Calcium-activated chloride channel regulator 1 (CLCA1) controls mucus expansion in colon by proteolytic activity. eBioMed 33:134–43
    [Google Scholar]
  127. 127. 
    Rawls JF, Mahowald MA, Ley RE, Gordon JI 2006. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–33
    [Google Scholar]
  128. 128. 
    Corfield A. 2018. The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms 6:78
    [Google Scholar]
  129. 129. 
    Juge N. 2019. Special issue: Gut bacteria–mucus interaction. Microorganisms 7:6
    [Google Scholar]
  130. 130. 
    Hultgren SJ, Abraham S, Caparon M, Falk P, St. Geme JW 3rd, Normark S 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73:887–901
    [Google Scholar]
  131. 131. 
    Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–26
    [Google Scholar]
  132. 132. 
    Round AN, Rigby NM, Garcia de la Torre A, Macierzanka A, Mills ENC, Mackie AR 2012. Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules 13:3253–61
    [Google Scholar]
  133. 133. 
    Furter M, Sellin ME, Hansson GC, Hardt WD 2019. Mucus architecture and near-surface swimming affect distinct Salmonella typhimurium infection patterns along the murine intestinal tract. Cell Rep 27:2665–78
    [Google Scholar]
  134. 134. 
    Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. 2016. A dietary fiber–deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–53
    [Google Scholar]
  135. 135. 
    Schroeder BO, Birchenough GMH, Stahlman M, Arike L, Johansson MEV et al. 2018. Bifidobacterium or fiber protect against diet-induced deterioration of the inner colonic mucus layer. Cell Host Microbe 23:27–40
    [Google Scholar]
  136. 136. 
    Johansson MEV, Gustafsson JK, Holmén Larsson J, Jabbar KS, Xia L et al. 2014. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and in patients with ulcerative colitis. Gut 213:281–91
    [Google Scholar]
  137. 137. 
    van der Post S, Jabbar KS, Birchenough GMH, Arike L, Akhtar N et al. 2019. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68:2142–51
    [Google Scholar]
  138. 138. 
    Birchenough GMH, Nyström ELN, Johansson MEV, Hansson GC 2016. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352:1535–42
    [Google Scholar]
  139. 139. 
    Grootjans J, Hundscheild IH, Lenaerts K, Boonen B, Renes IB et al. 2013. Ischemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut 62:250–58
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011520-105053
Loading
/content/journals/10.1146/annurev-biochem-011520-105053
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error