1932

Abstract

Transcription in several organisms from certain bacteria to humans has been observed to be stochastic in nature: toggling between active and inactive states. Periods of active nascent RNA synthesis known as bursts represent individual gene activation events in which multiple polymerases are initiated. Therefore, bursting is the single locus illustration of both gene activation and repression. Although transcriptional bursting was originally observed decades ago, only recently have technological advances enabled the field to begin elucidating gene regulation at the single-locus level. In this review, we focus on how biochemical, genomic, and single-cell data describe the regulatory steps of transcriptional bursts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-011520-105250
2020-06-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-011520-105250.html?itemId=/content/journals/10.1146/annurev-biochem-011520-105250&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Miller OL, Beatty BR. 1969. Visualization of nucleolar genes. Science 164:955–57
    [Google Scholar]
  2. 2. 
    McKnight SL, Miller OL Jr 1979. Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell 17:551–63
    [Google Scholar]
  3. 3. 
    Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM et al. 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome. PNAS 109:17454–59
    [Google Scholar]
  4. 4. 
    Ko MS. 1991. A stochastic model for gene induction. J. Theor. Biol. 153:181–94
    [Google Scholar]
  5. 5. 
    Ko MS, Nakauchi H, Takahashi N 1990. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J 9:2835–42
    [Google Scholar]
  6. 6. 
    Tokunaga M, Imamoto N, Sakata-Sogawa K 2008. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5:159–61
    [Google Scholar]
  7. 7. 
    Chen B-C, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  8. 8. 
    Chen J, Zhang Z, Li L, Chen BC, Revyakin A et al. 2014. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–85
    [Google Scholar]
  9. 9. 
    Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL et al. 2017. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat. Commun. 8:15896
    [Google Scholar]
  10. 10. 
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Meth 12:244–50
    [Google Scholar]
  11. 11. 
    Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I et al. 2016. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165:593–605
    [Google Scholar]
  12. 12. 
    Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X 2017. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6:e25776
    [Google Scholar]
  13. 13. 
    Liu Z, Legant WR, Chen B-C, Li L, Grimm JB et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236
    [Google Scholar]
  14. 14. 
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM 1998. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2:437–45
    [Google Scholar]
  15. 15. 
    Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R et al. 2004. From silencing to gene expression: real-time analysis in single cells. Cell 116:683–98
    [Google Scholar]
  16. 16. 
    Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH 2011. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–78
    [Google Scholar]
  17. 17. 
    Dolgosheina EV, Jeng SCY, Panchapakesan SS, Cojocaru R, Chen PSK et al. 2014. RNA Mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9:2412–20
    [Google Scholar]
  18. 18. 
    Trachman RJ III, Autour A, Jeng SCY, Abdolahzadeh A, Andreoni A et al. 2019. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer. Nat. Chem. Biol. 15:472–79
    [Google Scholar]
  19. 19. 
    Braselmann E, Wierzba AJ, Polaski JT, Chrominski M, Holmes ZE et al. 2018. A multicolor riboswitch-based platform for imaging of RNA in live mammalian cells. Nat. Chem. Biol. 14:964–71
    [Google Scholar]
  20. 20. 
    Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–96
    [Google Scholar]
  21. 21. 
    Yang LZ, Wang Y, Li SQ, Yao RW, Luan PF et al. 2019. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 76:981–97.e7
    [Google Scholar]
  22. 22. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  23. 23. 
    Gall JG, Pardue ML. 1969. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. PNAS 63:378–83
    [Google Scholar]
  24. 24. 
    Hornung G, Bar-Ziv R, Rosin D, Tokuriki N, Tawfik DS et al. 2012. Noise-mean relationship in mutated promoters. Genome Res 22:2409–17
    [Google Scholar]
  25. 25. 
    Dadiani M, van Dijk D, Segal B, Field Y, Ben-Artzi G et al. 2013. Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Res 23:966–76
    [Google Scholar]
  26. 26. 
    Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L et al. 2012. Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat. Genet. 44:743–50
    [Google Scholar]
  27. 27. 
    van Dijk D, Sharon E, Lotan-Pompan M, Weinberger A, Segal E, Carey LB 2017. Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators. Genome Res 27:87–94
    [Google Scholar]
  28. 28. 
    Donovan BT, Huynh A, Ball DA, Patel HP, Poirier MG et al. 2019. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J 38:e100809
    [Google Scholar]
  29. 29. 
    Radman-Livaja M, Rando OJ. 2010. Nucleosome positioning: How is it established, and why does it matter?. Dev. Biol. 339:258–66
    [Google Scholar]
  30. 30. 
    Condamin S, Bénichou O, Tejedor V, Voituriez R, Klafter J 2007. First-passage times in complex scale-invariant media. Nature 450:77–80
    [Google Scholar]
  31. 31. 
    Senecal A, Munsky B, Proux F, Ly N, Braye FE et al. 2014. Transcription factors modulate c-Fos transcriptional bursts. Cell Rep 8:75–83
    [Google Scholar]
  32. 32. 
    Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF et al. 2019. Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75:1161–77.e11
    [Google Scholar]
  33. 33. 
    Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA et al. 2004. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704–8
    [Google Scholar]
  34. 34. 
    Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ et al. 2004. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36:147–50
    [Google Scholar]
  35. 35. 
    Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F 2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:47274
    [Google Scholar]
  36. 36. 
    Hendy O, Campbell J, Weissman JD, Larson DR, Singer DS 2017. Differential context-specific impact of individual core promoter elements on transcriptional dynamics. Mol. Biol. Cell 28:3360–70
    [Google Scholar]
  37. 37. 
    Tunnacliffe E, Corrigan AM, Chubb JR 2018. Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. PNAS 115:8364–69
    [Google Scholar]
  38. 38. 
    Banerji J, Rusconi S, Schaffner W 1981. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308
    [Google Scholar]
  39. 39. 
    Catarino RR, Stark A. 2018. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev 32:202–23
    [Google Scholar]
  40. 40. 
    Fang B, Everett LJ, Jager J, Briggs E, Armour SM et al. 2014. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159:1140–52
    [Google Scholar]
  41. 41. 
    Hah N, Danko CG, Core L, Waterfall JJ, Siepel A et al. 2011. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145:622–34
    [Google Scholar]
  42. 42. 
    Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P et al. 2003. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 12:1725–35
    [Google Scholar]
  43. 43. 
    Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D et al. 2017. Intragenic enhancers attenuate host gene expression. Mol. Cell 68:104–17.e6
    [Google Scholar]
  44. 44. 
    Dufourt J, Trullo A, Hunter J, Fernandez C, Lazaro J et al. 2018. Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat. Commun. 9:5194
    [Google Scholar]
  45. 45. 
    Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G 2013. Enhancers: five essential questions. Nat. Rev. Genet. 14:288–95
    [Google Scholar]
  46. 46. 
    Thanos D, Maniatis T. 1995. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:1091–100
    [Google Scholar]
  47. 47. 
    Fukaya T, Lim B, Levine M 2016. Enhancer control of transcriptional bursting. Cell 166:358–68
    [Google Scholar]
  48. 48. 
    Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, Martin DI 1995. Enhancers increase the probability but not the level of gene expression. PNAS 92:7125–29
    [Google Scholar]
  49. 49. 
    Bartman CR, Hsu SC, Hsiung CC, Raj A, Blobel GA 2016. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol. Cell 62:237–47
    [Google Scholar]
  50. 50. 
    Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T 2018. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50:1296–303
    [Google Scholar]
  51. 51. 
    Rodriguez J, Ren G, Day CR, Zhao K, Chow CC, Larson DR 2019. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176:213–26.e18
    [Google Scholar]
  52. 52. 
    Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I et al. 2017. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017.bax028
    [Google Scholar]
  53. 53. 
    Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR et al. 2006. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38:1289–97
    [Google Scholar]
  54. 54. 
    Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H et al. 2009. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64
    [Google Scholar]
  55. 55. 
    Alexander JM, Guan J, Li B, Maliskova L, Song M et al. 2019. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8:e41769
    [Google Scholar]
  56. 56. 
    Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M et al. 2018. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 32:42–57
    [Google Scholar]
  57. 57. 
    Hah N, Murakami S, Nagari A, Danko CG, Kraus WL 2013. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23:1210–23
    [Google Scholar]
  58. 58. 
    Rahman S, Zorca CE, Traboulsi T, Noutahi E, Krause MR et al. 2017. Single-cell profiling reveals that eRNA accumulation at enhancer-promoter loops is not required to sustain transcription. Nucleic Acids Res 45:3017–30
    [Google Scholar]
  59. 59. 
    Li W, Notani D, Ma Q, Tanasa B, Nunez E et al. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–20
    [Google Scholar]
  60. 60. 
    Mousavi K, Zare H, Dell'Orso S, Grontved L, Gutierrez-Cruz G et al. 2013. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51:606–17
    [Google Scholar]
  61. 61. 
    Hsieh CL, Fei T, Chen Y, Li T, Gao Y et al. 2014. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. PNAS 111:7319–24
    [Google Scholar]
  62. 62. 
    Lam MTY, Cho H, Lesch HP, Gosselin D, Heinz S et al. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–15
    [Google Scholar]
  63. 63. 
    Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A et al. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58
    [Google Scholar]
  64. 64. 
    Paralkar VR, Taborda CC, Huang P, Yao Y, Kossenkov AV et al. 2016. Unlinking an lncRNA from its associated cis element. Mol. Cell 62:104–10
    [Google Scholar]
  65. 65. 
    Schaukowitch K, Joo JY, Liu X, Watts JK, Martinez C, Kim TK 2014. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56:29–42
    [Google Scholar]
  66. 66. 
    Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD 2006. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–84
    [Google Scholar]
  67. 67. 
    Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E et al. 2013. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49:524–35
    [Google Scholar]
  68. 68. 
    Tsai PF, Dell'Orso S, Rodriguez J, Vivanco KO, Ko KD et al. 2018. A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans. Mol. Cell 71:129–41.e8
    [Google Scholar]
  69. 69. 
    De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S et al. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLOS Biol 8:e1000384
    [Google Scholar]
  70. 70. 
    Core L, Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33:960–82
    [Google Scholar]
  71. 71. 
    Gilmour DS, Lis JT. 1986. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol. Cell. Biol. 6:3984–89
    [Google Scholar]
  72. 72. 
    Bentley DL. 2014. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15:163–75
    [Google Scholar]
  73. 73. 
    O'Brien T, Lis JT. 1991. RNA polymerase II pauses at the 5′ end of the transcriptionally induced Drosophila hsp70 gene. Mol. Cell. Biol. 11:5285–90
    [Google Scholar]
  74. 74. 
    Steurer B, Janssens RC, Geverts B, Geijer ME, Wienholz F et al. 2018. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. PNAS 115:E4368–76
    [Google Scholar]
  75. 75. 
    Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:796–806
    [Google Scholar]
  76. 76. 
    Henriques T, Scruggs BS, Inouye MO, Muse GW, Williams LH et al. 2018. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev 32:26–41
    [Google Scholar]
  77. 77. 
    Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schubeler D 2017. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67:411–22.e4
    [Google Scholar]
  78. 78. 
    Bartman CR, Hamagami N, Keller CA, Giardine B, Hardison RC et al. 2019. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73:519–32.e4
    [Google Scholar]
  79. 79. 
    Levens D, Baranello L, Kouzine F 2016. Controlling gene expression by DNA mechanics: emerging insights and challenges. Biophys. Rev. 8:259–68
    [Google Scholar]
  80. 80. 
    Liu LF, Wang JC. 1987. Supercoiling of the DNA template during transcription. PNAS 84:7024–27
    [Google Scholar]
  81. 81. 
    Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz R 1987. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326:414–16
    [Google Scholar]
  82. 82. 
    Yamagishi M, Nomura M. 1988. Deficiency in both type I and type II DNA topoisomerase activities differentially affect rRNA and ribosomal protein synthesis in Schizosaccharomyces pombe. Curr. Genet 13:305–14
    [Google Scholar]
  83. 83. 
    Joshi RS, Pina B, Roca J 2010. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes. EMBO J 29:740–48
    [Google Scholar]
  84. 84. 
    Chong S, Chen C, Ge H, Xie XS 2014. Mechanism of transcriptional bursting in bacteria. Cell 158:314–26
    [Google Scholar]
  85. 85. 
    Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW et al. 2006. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312:1798–802
    [Google Scholar]
  86. 86. 
    Trotter KW, King HA, Archer TK 2015. Glucocorticoid receptor transcriptional activation via the BRG1-dependent recruitment of TOP2β and Ku70/86. Mol. Cell. Biol. 35:2799–817
    [Google Scholar]
  87. 87. 
    Tantale K, Mueller F, Kozulic-Pirher A, Lesne A, Victor J-M et al. 2016. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7:12248
    [Google Scholar]
  88. 88. 
    Zenklusen D, Larson DR, Singer RH 2008. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15:1263–71
    [Google Scholar]
  89. 89. 
    Fritzsch C, Baumgartner S, Kuban M, Steinshorn D, Reid G, Legewie S 2018. Estrogen-dependent control and cell-to-cell variability of transcriptional bursting. Mol. Syst. Biol. 14:e7678
    [Google Scholar]
  90. 90. 
    Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S et al. 2011. Dynamic analysis of stochastic transcription cycles. PLOS Biol 9:e1000607
    [Google Scholar]
  91. 91. 
    Pedraza JM, Paulsson J. 2008. Effects of molecular memory and bursting on fluctuations in gene expression. Science 319:339–43
    [Google Scholar]
  92. 92. 
    Lenstra TL, Coulon A, Chow CC, Larson DR 2015. Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol. Cell 60:597–610
    [Google Scholar]
  93. 93. 
    Cho W-K, Jayanth N, English BP, Inoue T, Andrews JO et al. 2016. RNA Polymerase II cluster dynamics predict mRNA output in living cells. eLife 5:e13617
    [Google Scholar]
  94. 94. 
    Larsson AJM, Johnsson P, Hagemann-Jensen M, Hartmanis L, Faridani OR et al. 2019. Genomic encoding of transcriptional burst kinetics. Nature 565:251–54
    [Google Scholar]
  95. 95. 
    Zhang Z, English BP, Grimm JB, Kazane SA, Hu W et al. 2016. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev 30:2106–18
    [Google Scholar]
  96. 96. 
    Zhang Z, Revyakin A, Grimm JB, Lavis LD, Tjian R 2014. Single-molecule tracking of the transcription cycle by sub-second RNA detection. eLife 3:e01775
    [Google Scholar]
  97. 97. 
    Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C et al. 2012. Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 26:1691–702
    [Google Scholar]
  98. 98. 
    Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E 2005. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89:4275–85
    [Google Scholar]
  99. 99. 
    Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH 2013. Direct observation of frequency modulated transcription in single cells using light activation. eLife 2:e00750
    [Google Scholar]
  100. 100. 
    Hahn S. 1998. Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb. Symp. Quant. Biol. 63:181–88
    [Google Scholar]
  101. 101. 
    Jiang Y, Gralla JD. 1993. Uncoupling of initiation and reinitiation rates during HeLa RNA polymerase II transcription in vitro. Mol. Cell. Biol. 13:4572–77
    [Google Scholar]
  102. 102. 
    Szentirmay MN, Sawadogo M. 1991. Transcription factor requirement for multiple rounds of initiation by human RNA polymerase II. PNAS 88:10691–95
    [Google Scholar]
  103. 103. 
    Zawel L, Kumar KP, Reinberg D 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 9:1479–90
    [Google Scholar]
  104. 104. 
    Kraus WL, Kadonaga JT. 1998. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 12:331–42
    [Google Scholar]
  105. 105. 
    Sheridan PL, Mayall TP, Verdin E, Jones KA 1997. Histone acetyltransferases regulate HIV-1 enhancer activity invitro. Genes Dev 11:3327–40
    [Google Scholar]
  106. 106. 
    Yudkovsky N, Ranish JA, Hahn S 2000. A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–29
    [Google Scholar]
  107. 107. 
    Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M et al. 2018. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783
    [Google Scholar]
  108. 108. 
    Li J, Dong A, Saydaminova K, Chang H, Wang G et al. 2019. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178:491–506.e28
    [Google Scholar]
  109. 109. 
    Kimura H, Cook PR. 2001. Kinetics of core histones in living human cells. J. Cell Biol. 153:1341–54
    [Google Scholar]
  110. 110. 
    Misteli T, Gunjan A, Hock R, Bustin M, Brown DT 2000. Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–81
    [Google Scholar]
  111. 111. 
    Deal RB, Henikoff JG, Henikoff S 2010. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328:1161–64
    [Google Scholar]
  112. 112. 
    Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ 2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–8
    [Google Scholar]
  113. 113. 
    Kraushaar DC, Jin W, Maunakea A, Abraham B, Ha M, Zhao K 2013. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol 14:R121
    [Google Scholar]
  114. 114. 
    Deaton AM, Gómez-Rodríguez M, Mieczkowski J, Tolstorukov MY, Kundu S et al. 2016. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5:e15316
    [Google Scholar]
  115. 115. 
    Mito Y, Henikoff JG, Henikoff S 2005. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37:1090–97
    [Google Scholar]
  116. 116. 
    Henikoff S, Shilatifard A. 2011. Histone modification: cause or cog. Trends Genet 27:389–96
    [Google Scholar]
  117. 117. 
    Bowman GD, Poirier MG. 2015. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 115:2274–95
    [Google Scholar]
  118. 118. 
    Nicolas D, Zoller B, Suter DM, Naef F 2018. Modulation of transcriptional burst frequency by histone acetylation. PNAS 115:7153–58
    [Google Scholar]
  119. 119. 
    Chen LF, Lin YT, Gallegos DA, Hazlett MF, Gomez-Schiavon M et al. 2019. Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep 26:1174–88.e5
    [Google Scholar]
  120. 120. 
    Allis CD, Berger SL, Cote J, Dent S, Jenuwien T et al. 2007. New nomenclature for chromatin-modifying enzymes. Cell 131:633–36
    [Google Scholar]
  121. 121. 
    Downey M, Baetz K. 2016. Building a KATalogue of acetyllysine targeting and function. Brief. Funct. Genom. 15:109–18
    [Google Scholar]
  122. 122. 
    Waterborg JH. 1993. Histone synthesis and turnover in alfalfa: fast loss of highly acetylated replacement histone variant H3.2. J. Biol. Chem. 268:4912–17
    [Google Scholar]
  123. 123. 
    Bintu L, Yong J, Antebi YE, McCue K, Kazuki Y et al. 2016. Dynamics of epigenetic regulation at the single-cell level. Science 351:720–24
    [Google Scholar]
  124. 124. 
    Muramoto T, Müller I, Thomas G, Melvin A, Chubb JR 2010. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol. 20:397–406
    [Google Scholar]
  125. 125. 
    Ng KKH, Yui MA, Mehta A, Siu S, Irwin B et al. 2018. A stochastic epigenetic switch controls the dynamics of T-cell lineage commitment. eLife 7:e37851
    [Google Scholar]
  126. 126. 
    Dey SS, Foley JE, Limsirichai P, Schaffer DV, Arkin AP 2015. Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Mol. Syst. Biol. 11:806
    [Google Scholar]
  127. 127. 
    Luo Y, North JA, Rose SD, Poirier MG 2014. Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res 42:3017–27
    [Google Scholar]
  128. 128. 
    Parmar JJ, Das D, Padinhateeri R 2015. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics. Nucleic Acids Res 44:1630–41
    [Google Scholar]
  129. 129. 
    Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H 2013. Linking stochastic fluctuations in chromatin structure and gene expression. PLOS Biol 11:e1001621
    [Google Scholar]
  130. 130. 
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80
    [Google Scholar]
  131. 131. 
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–85
    [Google Scholar]
  132. 132. 
    Mirny LA, Imakaev M, Abdennur N 2019. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58:142–52
    [Google Scholar]
  133. 133. 
    Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR et al. 2019. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570:395–99
    [Google Scholar]
  134. 134. 
    Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. PNAS 112:E6456–65
    [Google Scholar]
  135. 135. 
    Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S et al. 2014. Functional and topological characteristics of mammalian regulatory domains. Genome Res 24:390–400
    [Google Scholar]
  136. 136. 
    Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E et al. 2014. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46:205–12
    [Google Scholar]
  137. 137. 
    Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S et al. 2015. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47:598–606
    [Google Scholar]
  138. 138. 
    Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R et al. 2015. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res 25:582–97
    [Google Scholar]
  139. 139. 
    Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ et al. 2015. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163:1611–27
    [Google Scholar]
  140. 140. 
    Finn EH, Pegoraro G, Brandao HB, Valton AL, Oomen ME et al. 2019. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502–15.e10
    [Google Scholar]
  141. 141. 
    Rao SSP, Huang S-C St, Hilaire BG, Engreitz JM, Perez EM et al. 2017. Cohesin loss eliminates all loop domains. Cell 171:305–20.e24
    [Google Scholar]
  142. 142. 
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  143. 143. 
    Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN 2019. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568:49–54
    [Google Scholar]
  144. 144. 
    Cardozo Gizzi AM, Cattoni DI, Fiche J-B, Espinola SM, Gurgo J et al. 2019. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74:212–22.e5
    [Google Scholar]
  145. 145. 
    Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS et al. 2016. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–14
    [Google Scholar]
  146. 146. 
    Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F et al. 2015. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–25
    [Google Scholar]
  147. 147. 
    Ren G, Jin W, Cui K, Rodrigez J, Hu G et al. 2017. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol. Cell 67:1049–58.e6
    [Google Scholar]
  148. 148. 
    Jackson DA, Hassan AB, Errington RJ, Cook PR 1993. Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059–65
    [Google Scholar]
  149. 149. 
    Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A et al. 2010. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42:53–61
    [Google Scholar]
  150. 150. 
    Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM 2013. Chromosomal contact permits transcription between coregulated genes. Cell 155:606–20
    [Google Scholar]
  151. 151. 
    Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:664–67
    [Google Scholar]
  152. 152. 
    Papantonis A, Larkin JD, Wada Y, Ohta Y, Ihara S et al. 2010. Active RNA polymerases: mobile or immobile molecular machines?. PLOS Biol 8:e1000419
    [Google Scholar]
  153. 153. 
    Spudich JL, Koshland DE Jr 1976. Non-genetic individuality: chance in the single cell. Nature 262:467–71
    [Google Scholar]
  154. 154. 
    Peccoud J, Ycart B. 1995. Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48:222–34
    [Google Scholar]
  155. 155. 
    Chubb JR, Trcek T, Shenoy SM, Singer RH 2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:1018–25
    [Google Scholar]
  156. 156. 
    Golding I, Paulsson J, Zawilski SM, Cox EC 2005. Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–36
    [Google Scholar]
  157. 157. 
    Kim JK, Marioni JC. 2013. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14:R7
    [Google Scholar]
  158. 158. 
    Palangat M, Larson DR. 2012. Complexity of RNA polymerase II elongation dynamics. Biochim. Biophys. Acta 1819:667–72
    [Google Scholar]
  159. 159. 
    Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106
    [Google Scholar]
  160. 160. 
    Love MI, Huber W, Anders S 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
    [Google Scholar]
  161. 161. 
    Robinson MD, Smyth GK. 2007. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23:2881–87
    [Google Scholar]
  162. 162. 
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S 2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol 4:e309
    [Google Scholar]
  163. 163. 
    Corrigan AM, Tunnacliffe E, Cannon D, Chubb JR 2016. A continuum model of transcriptional bursting. eLife 5:e13051
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-011520-105250
Loading
/content/journals/10.1146/annurev-biochem-011520-105250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error