1932

Abstract

Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology–informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Chemical Biology Framework to Illuminate Proteostasis
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111552
2020-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-013118-111552.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111552&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Åkerfelt M, Morimoto RI, Sistonen L 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11:545–55
    [Google Scholar]
  2. 2. 
    Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–86
    [Google Scholar]
  3. 3. 
    Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM 2016. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26:2037–43
    [Google Scholar]
  4. 4. 
    Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S 1994. Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13:6076–86
    [Google Scholar]
  5. 5. 
    Ron I, Horowitz M. 2005. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum. Mol. Genet. 14:2387–98
    [Google Scholar]
  6. 6. 
    Mirigian LS, Makareeva E, Mertz EL, Omari S, Roberts-Pilgrim AM et al. 2016. Osteoblast malfunction caused by cell stress response to procollagen misfolding in α2(I)-G610C mouse model of osteogenesis imperfecta. J. Bone Miner. Res. 31:1608–16
    [Google Scholar]
  7. 7. 
    Wong MY, Shoulders MD. 2019. Targeting defective proteostasis in the collagenopathies. Curr. Opin. Chem. Biol. 50:80–88
    [Google Scholar]
  8. 8. 
    Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM et al. 2010. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. PNAS 107:19573–78
    [Google Scholar]
  9. 9. 
    Tang Z, Dai S, He Y, Doty RA, Shultz LD et al. 2015. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell 160:729–44
    [Google Scholar]
  10. 10. 
    Calderwood SK, Gong J. 2016. Heat shock proteins promote cancer: It's a protection racket. Trends Biochem. Sci. 41:311–23
    [Google Scholar]
  11. 11. 
    Rodina A, Wang T, Yan P, Gomes ED, Dunphy MP et al. 2016. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401
    [Google Scholar]
  12. 12. 
    Chauhan D, Hideshima T, Anderson KC 2005. Proteasome inhibition in multiple myeloma: therapeutic implication. Annu. Rev. Pharmacol. Toxicol. 45:465–76
    [Google Scholar]
  13. 13. 
    Naito T, Momose F, Kawaguchi A, Nagata K 2007. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J. Virol. 81:1339–49
    [Google Scholar]
  14. 14. 
    Phillips AM, Gonzalez LO, Nekongo EE, Ponomarenko AI, McHugh SM et al. 2017. Host proteostasis modulates influenza evolution. eLife 6:e28652
    [Google Scholar]
  15. 15. 
    Geller R, Pechmann S, Acevedo A, Andino R, Frydman J 2018. Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat. Commun. 9:e1781
    [Google Scholar]
  16. 16. 
    Phillips AM, Doud MB, Gonzalez LO, Butty VL, Lin YS et al. 2018. Enhanced ER proteostasis and temperature differentially impact the mutational tolerance of influenza hemagglutinin. eLife 7:e38795
    [Google Scholar]
  17. 17. 
    Phillips AM, Ponomarenko AI, Chen K, Ashenberg O, Miao J et al. 2018. Destabilized adaptive influenza variants critical for innate immune system escape are potentiated by host chaperones. PLOS Biol 16:e3000008
    [Google Scholar]
  18. 18. 
    Heaton NS, Moshkina N, Fenouil R, Gardner TJ, Aguirre S et al. 2016. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 44:46–58
    [Google Scholar]
  19. 19. 
    Taguwa S, Maringer K, Li X, Bernal-Rubio D, Rauch JN et al. 2015. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163:1108–23
    [Google Scholar]
  20. 20. 
    DiChiara AS, Taylor RJ, Wong MY, Doan ND, Del Rosario AM, Shoulders MD 2016. Mapping and exploring the collagen-I proteostasis network. ACS Chem. Biol. 11:1408–21
    [Google Scholar]
  21. 21. 
    Forrester A, De Leonibus C, Grumati P, Fasana E, Piemontese M et al. 2019. A selective ER-phagy exerts procollagen quality control via a calnexin-FAM134B complex. EMBO J 38:e99847
    [Google Scholar]
  22. 22. 
    Okiyoneda T, Barrière H, Bagdány M, Rabeh WM, Du K et al. 2010. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329:805–10
    [Google Scholar]
  23. 23. 
    Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K 2003. Enhancement of endoplasmic reticulum (ER) degradation of misfolded null Hong Kong α1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278:26287–94
    [Google Scholar]
  24. 24. 
    Brehme M, Voisine C, Rolland T, Wachi S, Soper JH et al. 2014. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–50
    [Google Scholar]
  25. 25. 
    Mok SA, Condello C, Freilich R, Gillies A, Arhar T et al. 2018. Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat. Struct. Mol. Biol. 25:384–93
    [Google Scholar]
  26. 26. 
    Cox DW, Billingsley GD, Callahan JW 1986. Aggregation of plasma Z type α1-antitrypsin suggests basic defect for the deficiency. FEBS Lett 205:255–60
    [Google Scholar]
  27. 27. 
    Fregno I, Fasana E, Bergmann TJ, Raimondi A, Loi M et al. 2018. ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport. EMBO J 37:e99259
    [Google Scholar]
  28. 28. 
    Cooley CB, Ryno LM, Plate L, Morgan GJ, Hulleman JD et al. 2014. Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain. PNAS 111:13046–51
    [Google Scholar]
  29. 29. 
    Chen JJ, Genereux JC, Suh EH, Vartabedian VF, Rius B et al. 2016. Endoplasmic reticulum proteostasis influences the oligomeric state of an amyloidogenic protein secreted from mammalian cells. Cell Chem. Biol. 23:1282–93
    [Google Scholar]
  30. 30. 
    Wood RJ, Ormsby AR, Radwan M, Cox D, Sharma A et al. 2018. A biosensor-based framework to measure latent proteostasis capacity. Nat. Commun. 9:e287
    [Google Scholar]
  31. 31. 
    Gupta R, Kasturi P, Bracher A, Loew C, Zheng M et al. 2011. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8:879–84
    [Google Scholar]
  32. 32. 
    Liu Y, Tan YL, Zhang X, Bhabha G, Ekiert DC et al. 2014. Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts. PNAS 111:4449–54
    [Google Scholar]
  33. 33. 
    Apaja PM, Xu H, Lukacs GL 2010. Quality control for unfolded proteins at the plasma membrane. J. Cell Biol. 191:553–70
    [Google Scholar]
  34. 34. 
    Frottin F, Schueder F, Tiwary S, Gupta R, Körner R et al. 2019. The nucleolus functions as a phase-separated protein quality control compartment. Science 365:342–47
    [Google Scholar]
  35. 35. 
    Liu Y, Fares M, Dunham NP, Gao Z, Miao K et al. 2017. AgHalo: a facile fluorogenic sensor to detect drug-induced proteome stress. Angew. Chem. Int. Ed. Engl. 56:8672–76
    [Google Scholar]
  36. 36. 
    Liu Y, Miao K, Li Y, Fares M, Chen S, Zhang X 2018. A HaloTag-based multicolor fluorogenic sensor visualizes and quantifies proteome stress in live cells using solvatochromic and molecular rotor-based fluorophores. Biochemistry 57:4663–74
    [Google Scholar]
  37. 37. 
    Tokuriki N, Tawfik DS. 2009. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–73
    [Google Scholar]
  38. 38. 
    Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336–42
    [Google Scholar]
  39. 39. 
    Whitesell L, Santagata S, Mendillo ML, Lin NU, Proia DA, Lindquist S 2014. HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. PNAS 111:18297–302
    [Google Scholar]
  40. 40. 
    Berman CM, Papa LJ III, Hendel SJ, Moore CL, Suen PH et al. 2018. An adaptable platform for directed evolution in human cells. J. Am. Chem. Soc. 140:18093–103
    [Google Scholar]
  41. 41. 
    English JG, Olsen RHJ, Lansu K, Patel M, White K et al. 2019. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178:748–61
    [Google Scholar]
  42. 42. 
    Moore CL, Papa LJ III, Shoulders MD 2018. A processive protein chimera introduces mutations across defined DNA regions in vivo. J. Am. Chem. Soc. 140:11560–64
    [Google Scholar]
  43. 43. 
    Hess GT, Frésard L, Han K, Lee CH, Li A et al. 2016. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13:1036–42
    [Google Scholar]
  44. 44. 
    Chen H, Liu S, Padula S, Lesman D, Griswold K et al. 2019. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat. Biotechnol. 38:16568
    [Google Scholar]
  45. 45. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  46. 46. 
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83
    [Google Scholar]
  47. 47. 
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–88
    [Google Scholar]
  48. 48. 
    Maji B, Moore CL, Zetsche B, Volz SE, Zhang F et al. 2017. Multidimensional chemical control of CRISPR-Cas9. Nat. Chem. Biol. 13:9–11
    [Google Scholar]
  49. 49. 
    Maji B, Gangopadhyay SA, Lee M, Shi M, Wu P et al. 2019. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9. Cell 177:1067–79
    [Google Scholar]
  50. 50. 
    Bao Z, Jain S, Jaroenpuntaruk V, Zhao H 2017. Orthogonal genetic regulation in human cells using chemically induced CRISPR/Cas9 activators. ACS Synth. Biol. 6:686–93
    [Google Scholar]
  51. 51. 
    Pellegrino MW, Nargund AM, Haynes CM 2013. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta Mol. Cell Res. 1833:410–16
    [Google Scholar]
  52. 52. 
    Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP 2016. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife 5:e11576
    [Google Scholar]
  53. 53. 
    Kijima T, Prince TL, Tigue ML, Yim KH, Schwartz H et al. 2018. HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Sci. Rep. 8:e6976
    [Google Scholar]
  54. 54. 
    Ryno LM, Genereux JC, Naito T, Morimoto RI, Powers ET et al. 2014. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem. Biol. 9:1273–83
    [Google Scholar]
  55. 55. 
    Zheng X, Beyzavi A, Krakowiak J, Patel N, Khalil AS, Pincus D 2018. Hsf1 phosphorylation generates cell-to-cell variation in Hsp90 levels and promotes phenotypic plasticity. Cell Rep 22:3099–106
    [Google Scholar]
  56. 56. 
    Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J et al. 2016. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. eLife 5:e18638
    [Google Scholar]
  57. 57. 
    Anckar J, Hietakangas V, Denessiouk K, Thiele DJ, Johnson MS, Sistonen L 2006. Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol. Cell. Biol. 26:955–64
    [Google Scholar]
  58. 58. 
    Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI 2009. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–66
    [Google Scholar]
  59. 59. 
    Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT 2016. Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol. Cell 62:63–78
    [Google Scholar]
  60. 60. 
    Zuo JR, Baler R, Dahl G, Voellmy R 1994. Activation of the DNA-binding ability of human heat-shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14:7557–68
    [Google Scholar]
  61. 61. 
    Voellmy R. 2005. Dominant-positive and dominant-negative heat shock factors. Methods 35:199–207
    [Google Scholar]
  62. 62. 
    Salamanca HH, Antonyak MA, Cerione RA, Shi H, Lis JT 2014. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLOS ONE 9:e96330
    [Google Scholar]
  63. 63. 
    Ran X, Burchfiel ET, Dong B, Rettko NJ, Dunyak BM et al. 2018. Rational design and screening of peptide-based inhibitors of heat shock factor 1 (HSF1). Bioorg. Med. Chem. 26:5299–306
    [Google Scholar]
  64. 64. 
    Santagata S, Mendillo ML, Tang YC, Subramanian A, Perley CC et al. 2013. Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state. Science 341:1238303
    [Google Scholar]
  65. 65. 
    Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM et al. 2011. KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J. Biol. Chem. 286:1737–47
    [Google Scholar]
  66. 66. 
    Bach M, Lehmann A, Brünnert D, Vanselow JT, Hartung A et al. 2017. Ugi reaction-derived α-acyl aminocarboxamides bind to phosphatidylinositol 3-kinase-related kinases, inhibit HSF1-dependent heat shock response, and induce apoptosis in multiple myeloma cells. J. Med. Chem. 60:4147–60
    [Google Scholar]
  67. 67. 
    Cheeseman MD, Chessum NEA, Rye CS, Pasqua AE, Tucker MJ et al. 2017. Discovery of a chemical probe bisamide (CCT251236): an orally bioavailable efficacious pirin ligand from a heat shock transcription factor 1 (HSF1) phenotypic screen. J. Med. Chem. 60:180–201
    [Google Scholar]
  68. 68. 
    Rye CS, Chessum NEA, Lamont S, Pike KG, Faulder P et al. 2016. Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9. Med. Chem. Commun. 7:1580–86
    [Google Scholar]
  69. 69. 
    Vilaboa N, Boré A, Martin-Saavedra F, Bayford M, Winfield N et al. 2017. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res 45:5797–817
    [Google Scholar]
  70. 70. 
    Neef DW, Turski ML, Thiele DJ 2010. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLOS Biol 8:e1000291
    [Google Scholar]
  71. 71. 
    Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S et al. 2011. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 8:185–96
    [Google Scholar]
  72. 72. 
    Westerheide SD, Bosman JD, Mbadugha BNA, Kawahara TLA, Matsumoto G et al. 2004. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem. 279:56053–60
    [Google Scholar]
  73. 73. 
    Moore CL, Dewal MB, Nekongo EE, Santiago S, Lu NB et al. 2016. Transportable, chemical genetic methodology for the small molecule-mediated inhibition of heat shock factor 1. ACS Chem. Biol. 11:200–10
    [Google Scholar]
  74. 74. 
    Liebelt F, Sebastian RM, Moore CL, Mulder MPC, Ovaa H et al. 2019. SUMOylation and the HSF1-regulated chaperone network converge to promote proteostasis in response to heat shock. Cell Rep 26:236–49
    [Google Scholar]
  75. 75. 
    Shoulders MD, Ryno LM, Cooley CB, Kelly JW, Wiseman RL 2013. Broadly applicable methodology for the rapid and dosable small molecule-mediated regulation of transcription factors in human cells. J. Am. Chem. Soc. 135:8129–32
    [Google Scholar]
  76. 76. 
    Wong MY, DiChiara AS, Suen PH, Chen K, Doan ND, Shoulders MD 2018. Adapting secretory proteostasis and function through the unfolded protein response. Curr. Top. Microbiol. Immunol. 414:1–25
    [Google Scholar]
  77. 77. 
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2:326–32
    [Google Scholar]
  78. 78. 
    Nadanaka S, Okada T, Yoshida H, Mori K 2007. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol. Cell. Biol. 27:1027–43
    [Google Scholar]
  79. 79. 
    Gardner BM, Walter P. 2011. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–94
    [Google Scholar]
  80. 80. 
    Harding HP, Zhang Y, Ron D 1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–74
    [Google Scholar]
  81. 81. 
    Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM 2016. The integrated stress response. EMBO Rep 17:1374–95
    [Google Scholar]
  82. 82. 
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR et al. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96
    [Google Scholar]
  83. 83. 
    Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS 2009. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J. Cell Biol. 186:323–31
    [Google Scholar]
  84. 84. 
    Haze K, Yoshida H, Yanagi H, Yura T, Mori K 1999. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10:3787–99
    [Google Scholar]
  85. 85. 
    Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG et al. 2013. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 3:1279–92
    [Google Scholar]
  86. 86. 
    Blackwood EA, Azizi K, Thuerauf DJ, Paxman RJ, Plate L et al. 2019. Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis. Nat. Commun. 10:187
    [Google Scholar]
  87. 87. 
    Axten JM, Romeril SP, Shu A, Ralph J, Medina JR et al. 2013. Discovery of GSK2656157: an optimized PERK inhibitor selected for preclinical development. ACS Med. Chem. Lett. 4:964–68
    [Google Scholar]
  88. 88. 
    Lu PD, Harding HP, Ron D 2004. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167:27–33
    [Google Scholar]
  89. 89. 
    Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M et al. 2015. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239–42
    [Google Scholar]
  90. 90. 
    Krzyzosiak A, Sigurdardottir A, Luh L, Carrara M, Das I et al. 2018. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174:1216–28
    [Google Scholar]
  91. 91. 
    Crespillo-Casado A, Chambers JE, Fischer PM, Marciniak SJ, Ron D 2017. PPP1R15A-mediated dephosphorylation of eIF2α is unaffected by Sephin1 or Guanabenz. eLife 6:e26109
    [Google Scholar]
  92. 92. 
    Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P et al. 2015. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. eLife 4:e07314
    [Google Scholar]
  93. 93. 
    Plate L, Cooley CB, Chen JJ, Paxman RJ, Gallagher CM et al. 2016. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife 5:e15550
    [Google Scholar]
  94. 94. 
    Paxman R, Plate L, Blackwood EA, Glembotski C, Powers ET et al. 2018. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 7:e37168
    [Google Scholar]
  95. 95. 
    Gallagher CM, Garri C, Cain EL, Ang KKH, Wilson CG et al. 2016. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. eLife 5:e11878
    [Google Scholar]
  96. 96. 
    Torres SE, Gallagher CM, Plate L, Gupta M, Liem CR et al. 2019. Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether. eLife 8:e46595
    [Google Scholar]
  97. 97. 
    Cross BCS, Bond PJ, Sadowski PG, Jha BK, Zak J et al. 2012. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. PNAS 109:E869–78
    [Google Scholar]
  98. 98. 
    Logue SE, McGrath EP, Cleary P, Greene S, Mnich K et al. 2018. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat. Commun. 9:e3267
    [Google Scholar]
  99. 99. 
    Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S et al. 2011. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117:1311–14
    [Google Scholar]
  100. 100. 
    Wang L, Perera BGK, Hari SB, Bhhatarai B, Backes BJ et al. 2012. Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nat. Chem. Biol. 8:982–89
    [Google Scholar]
  101. 101. 
    Lin JH, Li H, Yasumura D, Cohen HR, Zhang C et al. 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–49
    [Google Scholar]
  102. 102. 
    Wong MY, Chen K, Antonopoulos A, Kasper BT, Dewal MB et al. 2018. XBP1s activation can globally remodel N-glycan structure distribution patterns. PNAS 115:E10089–98
    [Google Scholar]
  103. 103. 
    Dewal MB, DiChiara AS, Antonopoulos A, Taylor RJ, Harmon CJ et al. 2015. XBP1s links the unfolded protein response to the molecular architecture of mature N-glycans. Chem. Biol. 22:1301–12
    [Google Scholar]
  104. 104. 
    Lee AH, Iwakoshi NN, Glimcher LH 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23:7448–59
    [Google Scholar]
  105. 105. 
    Ying W, Du Z, Sun L, Foley KP, Proia DA et al. 2012. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol. Cancer Ther. 11:475–84
    [Google Scholar]
  106. 106. 
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. PNAS 91:8324–28
    [Google Scholar]
  107. 107. 
    Ernst JT, Neubert T, Liu M, Sperry S, Zuccola H et al. 2014. Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. Demonstration of potential utility in treating CNS disorders such as Huntington's disease. J. Med. Chem. 57:3382–400
    [Google Scholar]
  108. 108. 
    Patel PD, Yan P, Seidler PM, Patel HJ, Sun W et al. 2013. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat. Chem. Biol. 9:677–84
    [Google Scholar]
  109. 109. 
    Lee C, Park HK, Jeong H, Lim J, Lee AJ et al. 2015. Development of a mitochondria-targeted Hsp90 inhibitor based on the crystal structures of human TRAP1. J. Am. Chem. Soc. 137:4358–67
    [Google Scholar]
  110. 110. 
    Khandelwal A, Kent CN, Balch M, Peng S, Mishra SJ et al. 2018. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat. Commun. 9:425
    [Google Scholar]
  111. 111. 
    Wong MY, Doan ND, DiChiara AS, Papa LJ III, Cheah JH et al. 2018. A high-throughput assay for collagen secretion suggests an unanticipated role for Hsp90 in collagen production. Biochemistry 57:2814–27
    [Google Scholar]
  112. 112. 
    Shao H, Li X, Moses MA, Gilbert LA, Kalyanaraman C et al. 2018. Exploration of benzothiazole rhodacyanines as allosteric inhibitors of protein–protein interactions with heat shock protein 70 (Hsp70). J. Med. Chem. 61:6163–77
    [Google Scholar]
  113. 113. 
    Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P et al. 2004. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J. Biol. Chem. 279:51131–40
    [Google Scholar]
  114. 114. 
    Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ et al. 2001. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3:93–96
    [Google Scholar]
  115. 115. 
    Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A et al. 2015. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524:247–51
    [Google Scholar]
  116. 116. 
    Stiegler SC, Rübbelke M, Korotkov VS, Weiwad M, John C et al. 2017. A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. J. Biol. Chem. 292:17073–83
    [Google Scholar]
  117. 117. 
    Taylor IR, Dunyak BM, Komiyama T, Shao H, Ran X et al. 2018. High-throughput screen for inhibitors of protein-protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. J. Biol. Chem. 293:4014–25
    [Google Scholar]
  118. 118. 
    Manasanch EE, Orlowski RZ. 2017. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14:417–33
    [Google Scholar]
  119. 119. 
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R et al. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–71
    [Google Scholar]
  120. 120. 
    Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV et al. 2005. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7:547–59
    [Google Scholar]
  121. 121. 
    Mizushima N, Yoshimori T, Levine B 2010. Methods in mammalian autophagy research. Cell 140:313–26
    [Google Scholar]
  122. 122. 
    Wu YT, Tan HL, Shui G, Bauvy C, Huang Q et al. 2010. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285:10850–61
    [Google Scholar]
  123. 123. 
    Blommaart EFC, Krause U, Schellens JPM, Vreeling-Sindelárová H, Meijer AJ 1997. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243:240–46
    [Google Scholar]
  124. 124. 
    Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y 1991. Bafilomycin-A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266:17707–12
    [Google Scholar]
  125. 125. 
    Chou TF, Brown SJ, Minond D, Nordin BE, Li K et al. 2011. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. PNAS 108:4834–39
    [Google Scholar]
  126. 126. 
    Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S et al. 2013. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat. Chem. Biol. 9:548–56
    [Google Scholar]
  127. 127. 
    Savitski MM, Zinn N, Faelth-Savitski M, Poeckel D, Gade S et al. 2018. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173:260–74
    [Google Scholar]
  128. 128. 
    Mizukami S, Watanabe S, Akimoto Y, Kikuchi K 2012. No-wash protein labeling with designed fluorogenic probes and application to real-time pulse-chase analysis. J. Am. Chem. Soc. 134:1623–29
    [Google Scholar]
  129. 129. 
    Bojkowska K, Santoni de Sio F, Barde I, Offner S, Verp S et al. 2011. Measuring in vivo protein half-life. Chem. Biol. 18:805–15
    [Google Scholar]
  130. 130. 
    Fuchs J, Böhme S, Oswald F, Hedde PN, Krause M et al. 2010. A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat. Methods 7:627–30
    [Google Scholar]
  131. 131. 
    Barry JD, Donà E, Gilmour D, Huber W 2016. TimerQuant: a modelling approach to tandem fluorescent timer design and data interpretation for measuring protein turnover in embryos. Development 143:174–79
    [Google Scholar]
  132. 132. 
    Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD et al. 2012. Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat. Biotechnol. 30:708–14
    [Google Scholar]
  133. 133. 
    Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ et al. 2017. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355:eaai7825
    [Google Scholar]
  134. 134. 
    Chen MZ, Moily NS, Bridgford JL, Wood RJ, Radwan M et al. 2017. A thiol probe for measuring unfolded protein load and proteostasis in cells. Nat. Commun. 8:474
    [Google Scholar]
  135. 135. 
    LeVine H III 1993. Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–10
    [Google Scholar]
  136. 136. 
    Ramdzan YM, Polling S, Chia CPZ, Ng IHW, Ormsby AR et al. 2012. Tracking protein aggregation and mislocalization in cells with flow cytometry. Nat. Methods 9:467–70
    [Google Scholar]
  137. 137. 
    Jung KH, Kim SF, Liu Y, Zhang X 2019. A fluorogenic AggTag method based on Halo- and SNAP-tags to simultaneously detect aggregation of two proteins in live cells. ChemBioChem 20:1078–87
    [Google Scholar]
  138. 138. 
    Roberti MJ, Jovin TM, Jares-Erijman E 2011. Confocal fluorescence anisotropy and FRAP imaging of α-synuclein amyloid aggregates in living cells. PLOS ONE 6:e23338
    [Google Scholar]
  139. 139. 
    Esbjörner EK, Chan F, Rees E, Erdelyi M, Luheshi LM et al. 2014. Direct observations of amyloid β self-assembly in live cells provide insights into differences in the kinetics of Aβ(1–40) and Aβ(1–42) aggregation. Chem. Biol. 21:732–42
    [Google Scholar]
  140. 140. 
    Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:eaai1255784
    [Google Scholar]
  141. 141. 
    Drake WR, Hou CW, Zachara NE, Grimes CL 2018. New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT. J. Bioenerg. Biomembr. 50:231–40
    [Google Scholar]
  142. 142. 
    Freilich R, Arhar T, Abrams JL, Gestwicki JE 2018. Protein–protein interactions in the molecular chaperone network. Acc. Chem. Res. 51:940–49
    [Google Scholar]
  143. 143. 
    Pankow S, Bamberger C, Calzolari D, Martínez-Bartolomé S, Lavallée-Adam M et al. 2015. ΔF508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528:510–16
    [Google Scholar]
  144. 144. 
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36:880–87
    [Google Scholar]
  145. 145. 
    Hong F, Rachidi SM, Lundgren D, Han D, Huang X et al. 2017. Mapping the interactome of a major mammalian endoplasmic reticulum heat shock protein 90. PLOS ONE 12:e0169260
    [Google Scholar]
  146. 146. 
    Markmiller S, Soltanieh S, Server KL, Mak R, Jin W et al. 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172:590–604
    [Google Scholar]
  147. 147. 
    Lobingier BT, Hüttenhain R, Eichel K, Miller KB, Ting AY et al. 2017. An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:350–60
    [Google Scholar]
  148. 148. 
    Jia S, Peng J, Gao B, Chen Z, Zhou Y et al. 2011. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system. PLOS ONE 6:e26414
    [Google Scholar]
  149. 149. 
    Petrakis S, Raskó T, Russ J, Friedrich RP, Stroedicke M et al. 2012. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1. PLOS Genet 8:e1002897
    [Google Scholar]
  150. 150. 
    Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD et al. 2012. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001
    [Google Scholar]
  151. 151. 
    Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111552
Loading
/content/journals/10.1146/annurev-biochem-013118-111552
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error