1932

Abstract

Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs’ central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111843
2020-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-013118-111843.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111843&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hofer A, Crona M, Logan DT, Sjöberg BM 2012. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47:50–63
    [Google Scholar]
  2. 2. 
    Guarino E, Salguero I, Kearsey SE 2014. Cellular regulation of ribonucleotide reductase in eukaryotes. Semin. Cell Dev. Biol. 30:97–103
    [Google Scholar]
  3. 3. 
    Aye Y, Li M, Long MJC, Weiss RS 2014. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34:2011–21
    [Google Scholar]
  4. 4. 
    Le TM, Poddar S, Capri JR, Abt ER, Kim W et al. 2017. ATR inhibition facilitates targeting of leukemia dependence on convergent nucleotide biosynthetic pathways. Nat. Commun. 8:241
    [Google Scholar]
  5. 5. 
    Licht S, Stubbe J. 1999. Mechanistic investigations of ribonucleotide reductases. In Enzymes, Enzyme Mechanisms, and Aspects of NO Chemistryed. CD Poulterpp. 163203Compr. Nat. Prod. Chem. Vol. 5: Kidlington, UK: Pergamon Press
    [Google Scholar]
  6. 6. 
    Cotruvo JA, Stubbe J. 2011. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu. Rev. Biochem. 80:733–67
    [Google Scholar]
  7. 7. 
    Minnihan EC, Nocera DG, Stubbe J 2013. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc. Chem. Res. 46:2524–35
    [Google Scholar]
  8. 8. 
    Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R et al. 2011. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat. Struct. Mol. Biol. 18:316–22
    [Google Scholar]
  9. 9. 
    Bennati M, Weber A, Antonic J, Perlstein DL, Robblee JH, Stubbe J 2003. Pulsed ELDOR spectroscopy measured the distance between the two tyrosyl radicals in the R2 subunit of the E. coli ribonucleotide reductase. J. Am. Chem. Soc. 125:14988–89
    [Google Scholar]
  10. 10. 
    Seyedsayamdost MR, Chan CTY, Mugnaini V, Stubbe J, Bennati M 2007. PELDOR spectroscopy with DOPA-β2 and NH2Y-α2s: distance measurements between residues involved in the radical propagation pathway of E. coli ribonucleotide reductase. J. Am. Chem. Soc. 129:15748–49
    [Google Scholar]
  11. 11. 
    Kang G, Taguchi AT, Stubbe J, Drennan CL 2020. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368:42427
    [Google Scholar]
  12. 12. 
    Zimanyi CM, Chen PY, Kang G, Funk MA, Drennan CL 2016. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. eLife 5:e07141
    [Google Scholar]
  13. 13. 
    Uhlin U, Eklund H. 1994. Structure of ribonucleotide reductase protein R1. Nature 370:533–39
    [Google Scholar]
  14. 14. 
    Stubbe J. 1998. Ribonucleotide reductases in the twenty-first century. PNAS 95:2723–24
    [Google Scholar]
  15. 15. 
    Stubbe J, Seyedsayamdost MR. 2019. Discovery of a new class I ribonucleotide reductase with an essential DOPA radical and NO metal as an initiator of long-range radical transfer. Biochemistry 58:435–37
    [Google Scholar]
  16. 16. 
    Srinivas V, Lebrette H, Lundin D, Kutin Y, Sahlin M et al. 2018. Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens. Nature 563:416–20
    [Google Scholar]
  17. 17. 
    Blaesi EJ, Palowitch GM, Hu K, Kim AJ, Rose HR et al. 2018. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. PNAS 115:10022–27
    [Google Scholar]
  18. 18. 
    Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P 2001. Structure and function of the radical enzyme ribonucleotide reductase. Prog. Biophys. Mol. Biol. 77:177–268
    [Google Scholar]
  19. 19. 
    Nordlund P, Sjöberg BM, Eklund H 1990. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345:593–98
    [Google Scholar]
  20. 20. 
    Jordan A, Reichard P. 1998. Ribonucleotide reductases. Annu. Rev. Biochem. 67:71–98
    [Google Scholar]
  21. 21. 
    Nordlund P, Reichard P. 2006. Ribonucleotide reductases. Annu. Rev. Biochem. 75:681–706
    [Google Scholar]
  22. 22. 
    Ge J, Yu G, Ator MA, Stubbe J 2003. Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Biochemistry 42:10071–83
    [Google Scholar]
  23. 23. 
    Ravichandran KR, Taguchi AT, Wei Y, Nocera DG, Stubbe J 2016. A >200 meV uphill thermodynamic landscape for radical transport in E. coli ribonucleotide reductase determined using fluorotyrosine-substituted enzymes. J. Am. Chem. Soc. 138:13706–16
    [Google Scholar]
  24. 24. 
    Ravichandran KR, Zong AB, Taguchi AT, Nocera DG, Stubbe J, Tommos C 2017. Formal reduction potentials of difluorotyrosine and trifluorotyrosine protein residues: defining the thermodynamics of multistep radical transfer. J. Am. Chem. Soc. 139:2994–3004
    [Google Scholar]
  25. 25. 
    Minnihan EC, Ando N, Brignole EJ, Olshansky L, Chittuluru J et al. 2013. Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. PNAS 110:3835–40
    [Google Scholar]
  26. 26. 
    Yokoyama K, Smith AA, Corzilius B, Griffin RG, Stubbe J 2011. Equilibration of tyrosyl radicals (Y356•, Y731•, Y730•) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase. J. Am. Chem. Soc. 133:18420–32
    [Google Scholar]
  27. 27. 
    Brignole EJ, Tsai K-L, Chittuluru J, Li H, Aye Y et al. 2018. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. eLife 7:e31502
    [Google Scholar]
  28. 28. 
    Ando N, Li H, Brignole EJ, Thompson S, McLaughlin MI et al. 2016. Allosteric inhibition of human ribonucleotide reductase by dATP entails the stabilization of a hexamer. Biochemistry 55:373–81
    [Google Scholar]
  29. 29. 
    Ando N, Brignole EJ, Zimanyi CM, Funk MA, Yokoyama K et al. 2011. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. PNAS 108:21046–51
    [Google Scholar]
  30. 30. 
    Zimanyi CM, Ando N, Brignole EJ, Asturias FJ, Stubbe J, Drennan CL 2012. Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase. Structure 20:1374–83
    [Google Scholar]
  31. 31. 
    Chen PY, Funk MA, Brignole EJ, Drennan CL 2018. Disruption of an oligomeric interface prevents allosteric inhibition of Escherichia coli class Ia ribonucleotide reductase. J. Biol. Chem. 293:10404–12
    [Google Scholar]
  32. 32. 
    Ahluwalia D, Bienstock RJ, Schaaper RM 2012. Novel mutator mutants of E. coli nrdAB ribonucleotide reductase: insight into allosteric regulation and control of mutation rates. DNA Repair 11:480–87
    [Google Scholar]
  33. 33. 
    Aye Y, Brignole EJ, Long MJ, Chittuluru J, Drennan CL et al. 2012. Clofarabine targets the large subunit (α) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem. Biol. 19:799–805
    [Google Scholar]
  34. 34. 
    Wisitpitthaya S, Zhao Y, Long MJC, Li M, Fletcher EA et al. 2016. Cladribine and fludarabine nucleotides induce distinct hexamers defining a common mode of reversible RNR inhibition. ACS Chem. Biol. 11:2021–32
    [Google Scholar]
  35. 35. 
    Fu Y, Long MJC, Wisitpitthaya S, Inayat H, Pierpont TM et al. 2018. Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nat. Chem. Biol. 14:943–54
    [Google Scholar]
  36. 36. 
    Lin Q, Parker MJ, Taguchi AT, Ravichandran K, Kim A et al. 2017. Glutamate 52-β at the α/β subunit interface of Escherichia coli class Ia ribonucleotide reductase is essential for conformational gating of radical transfer. J. Biol. Chem. 292:9229–39
    [Google Scholar]
  37. 37. 
    Erickson HK. 2001. Kinetics in the pre-steady state of the formation of cystines in ribonucleoside diphosphate reductase: evidence for an asymmetric complex. Biochemistry 40:9631–37
    [Google Scholar]
  38. 38. 
    Lou M, Liu Q, Ren GP, Zeng JL, Xiang XP et al. 2017. Physical interaction between human ribonucleotide reductase large subunit and thioredoxin increases colorectal cancer malignancy. J. Biol. Chem. 292:9136–49
    [Google Scholar]
  39. 39. 
    Makhlynets O, Boal AK, Rhodes DV, Kitten T, Rosenzweig AC, Stubbe J 2014. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. J. Biol. Chem. 289:6259–72
    [Google Scholar]
  40. 40. 
    Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66:75–87
    [Google Scholar]
  41. 41. 
    Parker MJ, Stubbe J. 2014. Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions. Biochemistry 53:766–76
    [Google Scholar]
  42. 42. 
    Ravichandran KR, Olshansky L, Nocera DG, Stubbe J 2020. Subunit interaction dynamics of class Ia ribonucleotide reductases: in search of a robust assay. Biochemistry 59:144253
    [Google Scholar]
  43. 43. 
    Stubbe J, van der Donk WA 1998. Protein radicals in enzyme catalysis. Chem. Rev. 98:705–62
    [Google Scholar]
  44. 44. 
    Stubbe J, Ackles D. 1980. On the mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3′-C=H bond cleavage. J. Biol. Chem. 255:8027–30
    [Google Scholar]
  45. 45. 
    Lenz R, Giese B. 1997. Studies on the mechanism of ribonucleotide reductases. J. Am. Chem. Soc. 119:2784–94
    [Google Scholar]
  46. 46. 
    Licht SS, Booker S, Stubbe J 1999. Studies on the catalysis of carbon-cobalt bond homolysis by ribonucleoside triphosphate reductase: evidence for concerted carbon-cobalt bond homolysis and thiyl radical formation. Biochemistry 38:1221–33
    [Google Scholar]
  47. 47. 
    Licht S, Gerfen GJ, Stubbe J 1996. Thiyl radicals in ribonucleotide reductases. Science 271:477–81
    [Google Scholar]
  48. 48. 
    Lawrence CC, Bennati M, Obias HV, Bar G, Griffin RG, Stubbe J 1999. High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5′-diphosphate by the E441Q-R1 mutant of Escherichia coli ribonucleotide reductase. PNAS 96:8979–84
    [Google Scholar]
  49. 49. 
    Pizano AA, Lutterman DA, Holder PG, Teets TS, Stubbe J, Nocera DG 2011. Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. PNAS 109:39–43
    [Google Scholar]
  50. 50. 
    Chang MCY, Yee CS, Stubbe J, Nocera DG 2004. Turning on ribonucleotide reductase by light-initiated amino acid radical generation. PNAS 101:6882–87
    [Google Scholar]
  51. 51. 
    Olshansky L, Pizano AA, Wei Y, Stubbe J, Nocera DG 2014. Kinetics of hydrogen atom abstraction from substrate by an active site thiyl radical in ribonucleotide reductase. J. Am. Chem. Soc. 136:16210–16
    [Google Scholar]
  52. 52. 
    Licht SS, Lawrence CC, Stubbe J 1999. Class II ribonucleotide reductases catalyze carbon-cobalt bond reformation on every turnover. J. Am. Chem. Soc. 121:7463–68
    [Google Scholar]
  53. 53. 
    Stubbe J, van der Donk WA 1995. Ribonucleotide reductases: radical enzymes with suicidal tendencies. Chem. Biol. 2:793–801
    [Google Scholar]
  54. 54. 
    Thelander L, Larsson B, Hobbs J, Eckstein F 1976. Active site of ribonucleoside diphosphate reductase from Escherichia coli.J. Biol. Chem 251:1396–405
    [Google Scholar]
  55. 55. 
    van der Donk WA, Yu G, Silva DJ, Stubbe J, McCarthy JR et al. 1996. Inactivation of ribonucleotide reductase by (E)-2′-fluoromethylene-2′-deoxycytidine 5′-diphosphate: a paradigm for nucleotide mechanism-based inhibitors. Biochemistry 35:8381–91
    [Google Scholar]
  56. 56. 
    Bitonti AJ, Dumont JA, Bush TL, Cashman EA, Cross-Doersen DE et al. 1994. Regression of human breast tumor xenografts in response to (E)-2′-deoxy-2′-(fluoromethylene)cytidine, an inhibitor of ribonucleoside diphosphate reductase. Cancer Res 54:1485–90
    [Google Scholar]
  57. 57. 
    Zhou Y, Achanta G, Pelicano H, Gandhi V, Plunkett W, Huang P 2002. Action of (E)-2′-deoxy-2′-(fluoromethylene)cytidine on DNA metabolism: incorporation, excision, and cellular response. Mol. Pharmacol. 61:222–29
    [Google Scholar]
  58. 58. 
    Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V et al. 1991. 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J. Med. Chem. 34:1879–84
    [Google Scholar]
  59. 59. 
    Xie KC, Plunkett W. 1996. Deoxynucleotide pool depletion and sustained inhibition of ribonucleotide reductase and DNA synthesis after treatment of human lymphoblastoid cells with 2-chloro-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl) adenine. Cancer Res 56:3030–37
    [Google Scholar]
  60. 60. 
    Xie C, Plunkett W. 1995. Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 55:2847–52
    [Google Scholar]
  61. 61. 
    Aye Y, Stubbe J. 2011. Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. PNAS 108:9815–20
    [Google Scholar]
  62. 62. 
    Fritscher J, Artin E, Wnuk S, Bar G, Robblee JH et al. 2005. Structure of the nitrogen-centered radical formed during inactivation of E. coli ribonucleotide reductase by 2′-azido-2′-deoxyuridine-5′-diphosphate: trapping of the 3′-ketonucleotide. J. Am. Chem. Soc. 127:7729–38
    [Google Scholar]
  63. 63. 
    Sjöberg BM, Gräslund A, Eckstein F 1983. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2′-azido-2′-deoxynucleoside diphosphates. J. Biol. Chem. 258:8060–67
    [Google Scholar]
  64. 64. 
    Ewald B, Sampath D, Plunkett W 2008. Nucleoside analogs: molecular mechanisms signaling cell death. Oncogene 27:6522–37
    [Google Scholar]
  65. 65. 
    Murai J. 2017. Targeting DNA repair and replication stress in the treatment of ovarian cancer. Int. J. Clin. Oncol. 22:619–28
    [Google Scholar]
  66. 66. 
    Bonate PL, Arthaud L, Cantrell WR Jr, Stephenson K, Secrist JA, Weitman S 2006. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat. Rev. Drug Discov 5:855–63
    [Google Scholar]
  67. 67. 
    Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA et al. 1990. Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res 50:4417–22
    [Google Scholar]
  68. 68. 
    Ewald B, Sampath D, Plunkett W 2007. H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol. Cancer Ther. 6:1239–48
    [Google Scholar]
  69. 69. 
    Plunkett W, Huang P, Searcy CE, Gandhi V 1996. Gemcitabine: preclinical pharmacology and mechanisms of action. Semin. Oncol. 23:3–15
    [Google Scholar]
  70. 70. 
    van der Donk WA, Yu GX, Pérez L, Sanchez RJ, Stubbe J et al. 1998. Detection of a new substrate-derived radical during inactivation of ribonucleotide reductase from Escherichia coli by gemcitabine 5′-diphosphate. Biochemistry 37:6419–26
    [Google Scholar]
  71. 71. 
    Artin E, Wang J, Lohman GJ, Yokoyama K, Yu G et al. 2009. Insight into the mechanism of inactivation of ribonucleotide reductase by gemcitabine 5′-diphosphate in the presence or absence of reductant. Biochemistry 48:11622–29
    [Google Scholar]
  72. 72. 
    Wang J, Lohman GJ, Stubbe J 2009. Mechanism of inactivation of human ribonucleotide reductase with p53R2 by gemcitabine 5′-diphosphate. Biochemistry 48:11612–21
    [Google Scholar]
  73. 73. 
    Chen Z, Zhou J, Zhang Y, Bepler G 2011. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide. Biochem. Biophys. Res. Commun. 413:383–88
    [Google Scholar]
  74. 74. 
    Wang J, Lohman GJ, Stubbe J 2007. Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases. PNAS 104:14324–29
    [Google Scholar]
  75. 75. 
    Thomas WC, Brooks FP, Burnim AA, Bacik JP, Stubbe J et al. 2019. Convergent allostery in ribonucleotide reductase. Nat. Commun. 10:2653
    [Google Scholar]
  76. 76. 
    Ghanem H, Jabbour E, Faderl S, Ghandhi V, Plunkett W, Kantarjian H 2010. Clofarabine in leukemia. Expert Rev. Hematol. 3:15–22
    [Google Scholar]
  77. 77. 
    Wong A, Soo RA, Yong WP, Innocenti F 2009. Clinical pharmacology and pharmacogenetics of gemcitabine. Drug Metab. Rev. 41:77–88
    [Google Scholar]
  78. 78. 
    Xie C, Plunkett W. 1995. Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-β-d- arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 55:2847–52
    [Google Scholar]
  79. 79. 
    Warren NJH, Eastman A. 2019. Inhibition of checkpoint kinase 1 following gemcitabine-mediated S phase arrest results in CDC7- and CDK2-dependent replication catastrophe. J. Biol. Chem. 294:1763–78
    [Google Scholar]
  80. 80. 
    Liu Y, Li Y, Wang X, Liu F, Gao P et al. 2017. Gemcitabine and Chk1 inhibitor AZD7762 synergistically suppress the growth of Lkb1-deficient lung adenocarcinoma. Cancer Res 77:5068–76
    [Google Scholar]
  81. 81. 
    Fordham SE, Blair HJ, Elstob CJ, Plummer R, Drew Y et al. 2018. Inhibition of ATR acutely sensitizes acute myeloid leukemia cells to nucleoside analogs that target ribonucleotide reductase. Blood Adv 2:1157–69
    [Google Scholar]
  82. 82. 
    Chen YR, Tsou B, Hu S, Ma H, Liu X et al. 2016. Autophagy induction causes a synthetic lethal sensitization to ribonucleotide reductase inhibition in breast cancer cells. Oncotarget 7:1984–99
    [Google Scholar]
  83. 83. 
    Mannargudi MB, Deb S. 2017. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: Is it a viable cancer therapy. J. Cancer Res. Clin. Oncol. 143:1499–529
    [Google Scholar]
  84. 84. 
    Long MJC, Van Hall-Beauvais A, Aye Y 2019. The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Curr. Opin. Chem. Biol. 54:10–18
    [Google Scholar]
  85. 85. 
    Labroli MA, Dwyer MP, Shen R, Popovici-Muller J, Pu Q et al. 2014. The identification of novel 5′-amino gemcitabine analogs as potent RRM1 inhibitors. Bioorg. Med. Chem. 22:2303–10
    [Google Scholar]
  86. 86. 
    Misko TA, Liu YT, Harris ME, Oleinick NL, Pink J et al. 2019. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. J. Enzym. Inhib. Med. Chem. 34:438–50
    [Google Scholar]
  87. 87. 
    Ahmad MF, Alam I, Huff SE, Pink J, Flanagan SA et al. 2017. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. PNAS 114:8241–46
    [Google Scholar]
  88. 88. 
    Backus KM, Cao J, Maddox SM 2019. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg. Med. Chem. 27:3421–39
    [Google Scholar]
  89. 89. 
    Moss N, Beaulieu P, Duceppe JS, Ferland JM, Gauthier J et al. 1995. Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase: a new class of antiviral agents. J. Med. Chem. 38:3617–23
    [Google Scholar]
  90. 90. 
    Climent I, Sjöberg BM, Huang CY 1991. Carboxyl-terminal peptides as probes for Escherichia coli ribonucleotide reductase subunit interaction: kinetic analysis of inhibition studies. Biochemistry 30:5164–71
    [Google Scholar]
  91. 91. 
    Climent I, Sjöberg BM, Huang CY 1992. Site-directed mutagenesis and deletion of the carboxyl terminus of Escherichia coli ribonucleotide reductase protein R2—effects on catalytic activity and subunit interaction. Biochemistry 31:4801–7
    [Google Scholar]
  92. 92. 
    Xu H, Fairman JW, Wijerathna SR, Kreischer NR, LaMacchia J et al. 2008. The structural basis for peptidomimetic inhibition of eukaryotic ribonucleotide reductase: a conformationally flexible pharmacophore. J. Med. Chem. 51:4653–59
    [Google Scholar]
  93. 93. 
    Cooperman BS, Gao Y, Tan C, Kashlan OB, Kaur J 2005. Peptide inhibitors of mammalian ribonucleotide reductase. Adv. Enzym. Regul. 45:112–25
    [Google Scholar]
  94. 94. 
    Cohen EA, Gaudreau P, Brazeau P, Langelier Y 1986. Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature 321:441–43
    [Google Scholar]
  95. 95. 
    Dutia BM, Frame MC, Subak-Sharpe JH, Clark WN, Marsden HS 1986. Specific inhibition of herpesvirus ribonucleotide reductase by synthetic peptides. Nature 321:439–41
    [Google Scholar]
  96. 96. 
    Liuzzi M, Déziel R, Moss N, Beaulieu P, Bonneau A-M et al. 1994. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 372:695–98
    [Google Scholar]
  97. 97. 
    Zhou B, Su L, Hu S, Hu W, Yip ML et al. 2013. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance. Cancer Res 73:6484–93
    [Google Scholar]
  98. 98. 
    Chen MC, Zhou B, Zhang K, Yuan YC, Un F et al. 2015. The novel ribonucleotide reductase inhibitor COH29 inhibits DNA repair in vitro. Mol. Pharmacol. 87:996–1005
    [Google Scholar]
  99. 99. 
    Singh A, Xu YJ. 2016. The cell killing mechanisms of hydroxyurea. Genes 7:99
    [Google Scholar]
  100. 100. 
    Heffeter P, Pape VF, Enyedy EA, Keppler BK, Szakacs G, Kowol CR 2019. Anticancer thiosemicarbazones: chemical properties, interaction with iron metabolism, and resistance development. Antioxid. Redox Signal. 30:1062–82
    [Google Scholar]
  101. 101. 
    Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC 2009. Hydroxyurea induces hydroxyl radical–mediated cell death in Escherichia coli. Mol. Cell 36:845–60
    [Google Scholar]
  102. 102. 
    Huang ME, Facca C, Fatmi Z, Baille D, Benakli S, Vernis L 2016. DNA replication inhibitor hydroxyurea alters Fe-S centers by producing reactive oxygen species in vivo. Sci. Rep. 6:29361
    [Google Scholar]
  103. 103. 
    Stubbe J, Cotruvo JA. 2011. Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese. Curr. Opin. Chem. Biol. 15:284–90
    [Google Scholar]
  104. 104. 
    Atkin CL, Thelander L, Reichard P, Lang G 1973. Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J. Biol. Chem. 248:7464–72
    [Google Scholar]
  105. 105. 
    Mühlenhoff U, Molik S, Godoy JR, Uzarska MA, Richter N et al. 2010. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab 12:373–85
    [Google Scholar]
  106. 106. 
    Sluder IT, Nitika, Knighton LE, Truman AW 2018. The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLOS Genet 14:e1007462
    [Google Scholar]
  107. 107. 
    Zhang Y, Li H, Zhang C, An X, Liu L et al. 2014. Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. PNAS 111:E1695–704
    [Google Scholar]
  108. 108. 
    Hristova D, Wu CH, Jiang W, Krebs C, Stubbe J 2008. Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry 47:3989–99
    [Google Scholar]
  109. 109. 
    Ortigosa AD, Hristova D, Perlstein DL, Zhang Z, Huang M, Stubbe J 2006. Determination of the in vivo stoichiometry of tyrosyl radical per ββ′ in Saccharomyces cerevisiae ribonucleotide reductase. Biochemistry 45:12282–94
    [Google Scholar]
  110. 110. 
    Lassmann G, Thelander L, Gräslund A 1992. EPR stopped-flow studies of the reaction of the tyrosyl radical of protein R2 from ribonucleotide reductase with hydroxyurea. Biochem. Biophys. Res. Commun. 188:879–87
    [Google Scholar]
  111. 111. 
    Swarts JC, Aquino MA, Han JY, Lam KY, Sykes AG 1995. Kinetic studies on the reduction of the tyrosyl radical of the R2 subunit of E. coli ribonucleotide reductase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1247:215–24
    [Google Scholar]
  112. 112. 
    Jiang W, Xie J, Varano PT, Krebs C, Bollinger JM 2010. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Biochemistry 49:5340–49
    [Google Scholar]
  113. 113. 
    Karlsson M, Sahlin M, Sjöberg BM 1992. Escherichia coli ribonucleotide reductase. Radical susceptibility to hydroxyurea is dependent on the regulatory state of the enzyme. J. Biol. Chem. 267:12622–26
    [Google Scholar]
  114. 114. 
    Bollinger JM Jr, Jiang W, Green MT, Krebs C. 2008. The manganese(IV)/iron(III) cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical initiation, and evolution. Curr. Opin. Struct. Biol. 18:650–57
    [Google Scholar]
  115. 115. 
    Aye Y, Long MJ, Stubbe J 2012. Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J. Biol. Chem. 287:35768–78
    [Google Scholar]
  116. 116. 
    Popović-Bijelić A, Kowol CR, Lind ME, Luo J, Himo F et al. 2011. Ribonucleotide reductase inhibition by metal complexes of triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J. Inorg. Biochem. 105:1422–31
    [Google Scholar]
  117. 117. 
    Boal AK, Cotruvo JA Jr, Stubbe J, Rosenzweig AC 2010. Structural basis for activation of class Ib ribonucleotide reductase. Science 329:1526–30
    [Google Scholar]
  118. 118. 
    Parker MJ, Maggiolo AO, Thomas WC, Kim A, Meisburger SP et al. 2018. An endogenous dAMP ligand in Bacillus subtilis class Ib RNR promotes assembly of a noncanonical dimer for regulation by dATP. PNAS 115:E4594–603
    [Google Scholar]
  119. 119. 
    Johansson R, Jonna Venkateswara R, Kumar R, Nayeri N, Lundin D et al. 2016. Structural mechanism of allosteric activity regulation in a ribonucleotide reductase with double ATP cones. Structure 24:906–17
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111843
Loading
/content/journals/10.1146/annurev-biochem-013118-111843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error