1932

Abstract

DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid–liquid phase separation of RNP condensates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-105429
2022-06-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-105429.html?itemId=/content/journals/10.1146/annurev-biochem-032620-105429&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Parsyan A, Svitkin Y, Shahbazian D, Gkogkas C, Lasko P et al. 2011. mRNA helicases: the tacticians of translational control. Nat. Rev. Mol. Cell Bio. 12:4235–45
    [Google Scholar]
  2. 2.
    Hinnebusch AG, Ivanov IP, Sonenberg N. 2016. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:62921413–16
    [Google Scholar]
  3. 3.
    Van Treeck B, Parker R 2018. Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies. Cell 174:4791–802
    [Google Scholar]
  4. 4.
    Buchan JR. 2014. mRNP granules: assembly, function, and connections with disease. RNA Biol 11:81019–30
    [Google Scholar]
  5. 5.
    Singh G, Pratt G, Yeo GW, Moore MJ. 2015. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84:325–54
    [Google Scholar]
  6. 6.
    Gehring NH, Wahle E, Fischer U. 2017. Deciphering the mRNP code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem. Sci. 42:5369–82
    [Google Scholar]
  7. 7.
    Khong A, Parker R. 2020. The landscape of eukaryotic mRNPs. RNA 26:3229–39
    [Google Scholar]
  8. 8.
    Kelly SM, Corbett AH. 2009. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic 10:91199–208
    [Google Scholar]
  9. 9.
    Bourgeois CF, Mortreux F, Auboeuf D. 2016. The multiple functions of RNA helicases as drivers and regulators of gene expression. Nat. Rev. Mol. Cell Bio. 17:7426–38
    [Google Scholar]
  10. 10.
    Björk P, Wieslander L. 2017. Integration of mRNP formation and export. Cell Mol. Life Sci. 74:162875–97
    [Google Scholar]
  11. 11.
    Eliscovich C, Singer RH. 2017. RNP transport in cell biology: the long and winding road. Curr. Opin. Cell Biol. 45:38–46
    [Google Scholar]
  12. 12.
    Wende W, Friedhoff P, Sträßer K. 2019. The Biology of mRNA: Structure and Function Adv. Exp. Med. Biol. 1203 Cham, Switz.: Springer
  13. 13.
    Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M et al. 2020. Dynamic mRNP remodeling in response to internal and external stimuli. Biomolecules 10:91310
    [Google Scholar]
  14. 14.
    Das S, Vera M, Gandin V, Singer RH, Tutucci E. 2021. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Bio. 22:7483–504
    [Google Scholar]
  15. 15.
    Hilbert M, Karow AR, Klostermeier D. 2009. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Biol. Chem. 390:121237–50
    [Google Scholar]
  16. 16.
    Linder P, Jankowsky E. 2011. From unwinding to clamping—the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Bio. 12:8505–16
    [Google Scholar]
  17. 17.
    Jarmoskaite I, Russell R. 2014. RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83:697–725
    [Google Scholar]
  18. 18.
    Fairman-Williams ME, Guenther U-P, Jankowsky E 2010. SF1 and SF2 helicases: family matters. Curr. Opin. Struc. Biol. 20:3313–24
    [Google Scholar]
  19. 19.
    Russon MP, Westerhouse KM, Tran EJ. 2021. Transcription, translation, and DNA repair: new insights from emerging noncanonical substrates of RNA helicases. Biol. Chem. 402:5637–44
    [Google Scholar]
  20. 20.
    Caruthers JM, McKay DB. 2002. Helicase structure and mechanism. Curr. Opin. Struc. Biol. 12:1123–33
    [Google Scholar]
  21. 21.
    Martina V, Patrick L 2021. Happy birthday: 30 years of RNA helicases. RNA Remodeling Proteins: Methods and Protocols M Boudvillain 17–34 Methods Mol. Biol. 2209 New York: Humana Press Inc.
    [Google Scholar]
  22. 22.
    Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E. 2015. The conformational plasticity of eukaryotic RNA-dependent ATPases. FEBS J 282:5850–63
    [Google Scholar]
  23. 23.
    Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ et al. 1989. Birth of the D-E-A-D box. Nature 337:6203121–22
    [Google Scholar]
  24. 24.
    Linder P, Fuller-Pace F. 2015. Happy birthday: 25 years of DEAD-box proteins. RNA Remodeling Proteins: Methods and Protocols M Boudvillain 17–33 Methods Mol. Biol. 1259 New York: Humana Press Inc.
    [Google Scholar]
  25. 25.
    Caruthers JM, Johnson ER, McKay DB. 2000. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. PNAS 97:2413080–85
    [Google Scholar]
  26. 26.
    Bono F, Ebert J, Lorentzen E, Conti E. 2006. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126:4713–25
    [Google Scholar]
  27. 27.
    Andersen CBF, Ballut L, Johansen JS, Chamieh H, Nielsen KH et al. 2006. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:57951968–72
    [Google Scholar]
  28. 28.
    Mallam AL, Campo MD, Gilman B, Sidote DJ, Lambowitz AM. 2012. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490:7418121–25
    [Google Scholar]
  29. 29.
    Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. 2006. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:2287–300
    [Google Scholar]
  30. 30.
    Yang Q, Campo MD, Lambowitz AM, Jankowsky E. 2007. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28:2253–63
    [Google Scholar]
  31. 31.
    Campo MD, Lambowitz AM. 2009. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol. Cell 35:5598–609
    [Google Scholar]
  32. 32.
    Steimer L, Klostermeier D. 2012. RNA helicases in infection and disease. RNA Biol 9:6751–71
    [Google Scholar]
  33. 33.
    Gilman B, Tijerina P, Russell R. 2017. Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs. Biochem. Soc. Trans. 45:61313–21
    [Google Scholar]
  34. 34.
    Liu F, Putnam AA, Jankowsky E. 2014. DEAD-box helicases form nucleotide-dependent, long-lived complexes with RNA. Biochemistry 53:2423–33
    [Google Scholar]
  35. 35.
    Rogers GW, Richter NJ, Merrick WC. 1999. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274:1812236–44
    [Google Scholar]
  36. 36.
    Chamot D, Colvin KR, Kujat-Choy SL, Owttrim GW 2005. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J. Biol. Chem. 280:32036–44
    [Google Scholar]
  37. 37.
    Pérez-Calero C, Bayona-Feliu A, Xue X, Barroso SI, Muñoz S et al. 2020. UAP56/DDX39B is a major cotranscriptional RNA–DNA helicase that unwinds harmful R loops genome-wide. Gene Dev 34:13–14898–912
    [Google Scholar]
  38. 38.
    Fairman ME, Maroney PA, Wang W, Bowers HA, Gollnick P et al. 2004. Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science 304:5671730–34
    [Google Scholar]
  39. 39.
    Bowers HA, Maroney PA, Fairman ME, Kastner B, Lührmann R et al. 2006. Discriminatory RNP remodeling by the DEAD-box protein DED1. RNA 12:5903–12
    [Google Scholar]
  40. 40.
    Hilbert M, Kebbel F, Gubaev A, Klostermeier D. 2011. eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res 39:62260–70
    [Google Scholar]
  41. 41.
    Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. 2011. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472:7342238–42
    [Google Scholar]
  42. 42.
    Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F et al. 2014. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54:5751–65
    [Google Scholar]
  43. 43.
    Chen Y, Boland A, Kuzuoğlu-Öztürk D, Bawankar P, Loh B et al. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54:5737–50
    [Google Scholar]
  44. 44.
    Lin DH, Correia AR, Cai SW, Huber FM, Jette CA, Hoelz A. 2018. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat. Commun. 9:12319
    [Google Scholar]
  45. 45.
    Buchwald G, Schüssler S, Basquin C, Hir HL, Conti E. 2013. Crystal structure of the human eIF4AIII-CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. PNAS 110:48E4611–18
    [Google Scholar]
  46. 46.
    Ballut L, Marchadier B, Baguet A, Tomasetto C, Séraphin B, Hir HL. 2005. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12:10861–69
    [Google Scholar]
  47. 47.
    Hilliker A, Gao Z, Jankowsky E, Parker R 2011. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol. Cell 43:6962–72
    [Google Scholar]
  48. 48.
    Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z et al. 2014. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157:71698–711
    [Google Scholar]
  49. 49.
    Mugler CF, Hondele M, Heinrich S, Sachdev R, Vallotton P et al. 2016. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. eLife 5:e18746
    [Google Scholar]
  50. 50.
    Hondele M, Sachdev R, Heinrich S, Wang J, Vallotton P et al. 2019. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 573:7772144–48
    [Google Scholar]
  51. 51.
    Tauber D, Tauber G, Khong A, Van Treeck B, Pelletier J, Parker R. 2020. Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180:3411–26.e16
    [Google Scholar]
  52. 52.
    Weis K. 2021. Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation. Biol. Chem. 402:5653–61
    [Google Scholar]
  53. 53.
    Tanner NK, Cordin O, Banroques J, Doère M, Linder P. 2003. The Q motif: A newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11:1127–38
    [Google Scholar]
  54. 54.
    Cordin O, Tanner NK, Doère M, Linder P, Banroques J. 2004. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 23:132478–87
    [Google Scholar]
  55. 55.
    Pause A, Méthot N, Sonenberg N. 1993. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13:116789–98
    [Google Scholar]
  56. 56.
    Mohr G, Campo MD, Mohr S, Yang Q, Jia H et al. 2008. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J. Mol. Biol. 375:51344–64
    [Google Scholar]
  57. 57.
    Collins R, Karlberg T, Lehtiö L, Schütz P, van den Berg S et al. 2009. The DEXD/H-box RNA helicase DDX19 is regulated by an α-helical switch. J. Biol. Chem. 284:1610296–300
    [Google Scholar]
  58. 58.
    Floor SN, Condon KJ, Sharma D, Jankowsky E, Doudna JA. 2016. Autoinhibitory interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. J. Biol. Chem. 291:52412–21
    [Google Scholar]
  59. 59.
    Ngo TD, Partin AC, Nam Y 2019. RNA specificity and autoregulation of DDX17, a modulator of microRNA biogenesis. Cell Rep 29:124024–35.e5
    [Google Scholar]
  60. 60.
    Kossen K, Karginov FV, Uhlenbeck OC. 2002. The carboxy-terminal domain of the DExDH protein YxiN is sufficient to confer specificity for 23S rRNA. J. Mol. Biol. 324:4625–36
    [Google Scholar]
  61. 61.
    Mallam AL, Jarmoskaite I, Tijerina P, Campo MD, Seifert S et al. 2011. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. PNAS 108:3012254–59
    [Google Scholar]
  62. 62.
    Steimer L, Wurm JP, Linden MH, Rudolph MG, Wöhnert J, Klostermeier D. 2013. Recognition of two distinct elements in the RNA substrate by the RNA-binding domain of the T. thermophilus DEAD box helicase Hera. Nucleic Acids Res 41:126259–72
    [Google Scholar]
  63. 63.
    Giraud C, Hausmann S, Lemeille S, Prados J, Redder P, Linder P. 2015. The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus. RNA Biol 12:6658–74
    [Google Scholar]
  64. 64.
    Rudolph MG, Klostermeier D. 2015. When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding. Biol. Chem. 396:8849–65
    [Google Scholar]
  65. 65.
    Busa VF, Rector MJ, Russell R. 2017. The DEAD-box protein CYT-19 uses arginine residues in its C-tail to tether RNA substrates. Biochemistry 56:283571–78
    [Google Scholar]
  66. 66.
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:5936–47
    [Google Scholar]
  67. 67.
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:237189–94
    [Google Scholar]
  68. 68.
    Nott TJ, Craggs TD, Baldwin AJ. 2016. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8:6569–75
    [Google Scholar]
  69. 69.
    Faltova L, Küffner AM, Hondele M, Weis K, Arosio P. 2018. Multifunctional protein materials and microreactors using low complexity domains as molecular adhesives. ACS Nano 12:109991–99
    [Google Scholar]
  70. 70.
    Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M et al. 2019. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15:151–61
    [Google Scholar]
  71. 71.
    Iserman C, Altamirano CD, Jegers C, Friedrich U, Zarin T et al. 2020. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell 181:4818–31.e19
    [Google Scholar]
  72. 72.
    Crabtree MD, Holland J, Kompella P, Babl L, Turner N et al. 2021. Repulsive electrostatic interactions modulate dense and dilute phase properties of biomolecular condensates. bioRxiv 2020.10.29.357863. https://doi.org/10.1101/2020.10.29.357863
    [Crossref]
  73. 73.
    Zhang M, Green MR. 2001. Identification and characterization of yUAP/Sub2p, a yeast homolog of the essential human pre-mRNA splicing factor hUAP56. Gene Dev 15:130–35
    [Google Scholar]
  74. 74.
    Shi H, Cordin O, Minder CM, Linder P, Xu R-M. 2004. Crystal structure of the human ATP-dependent splicing and export factor UAP56. PNAS 101:5117628–33
    [Google Scholar]
  75. 75.
    Libri D, Graziani N, Saguez C, Boulay J. 2001. Multiple roles for the yeast SUB2/yUAP56 gene in splicing. Gene Dev 15:136–41
    [Google Scholar]
  76. 76.
    Kistler AL, Guthrie C. 2001. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Gene Dev 15:142–49
    [Google Scholar]
  77. 77.
    Sträßer K, Hurt E. 2001. Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413:6856648–52
    [Google Scholar]
  78. 78.
    Jensen TH, Boulay J, Rosbash M, Libri D. 2001. The DECD box putative ATPase Sub2p is an early mRNA export factor. Curr. Biol. 11:211711–15
    [Google Scholar]
  79. 79.
    Luo M-J, Zhou Z, Magni K, Christoforides C, Rappsilber J et al. 2001. Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413:6856644–47
    [Google Scholar]
  80. 80.
    Heath CG, Viphakone N, Wilson SA. 2016. The role of TREX in gene expression and disease. Biochem. J. 473:192911–35
    [Google Scholar]
  81. 81.
    Köhler A, Hurt E. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Bio. 8:10761–73
    [Google Scholar]
  82. 82.
    Taniguchi I, Ohno M. 2007. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol. Cell. Biol. 28:2601–8
    [Google Scholar]
  83. 83.
    Hautbergue GM, Hung M-L, Golovanov AP, Lian L-Y, Wilson SA. 2008. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. PNAS 105:135154–59
    [Google Scholar]
  84. 84.
    Galganski L, Urbanek MO, Krzyzosiak WJ. 2017. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45:1810350–68
    [Google Scholar]
  85. 85.
    Sträßer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M et al. 2002. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:6886304–8
    [Google Scholar]
  86. 86.
    Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R. 2005. Recruitment of the human TREX complex to mRNA during splicing. Gene Dev 19:131512–17
    [Google Scholar]
  87. 87.
    Cheng H, Dufu K, Lee C-S, Hsu JL, Dias A, Reed R. 2006. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127:71389–400
    [Google Scholar]
  88. 88.
    Rougemaille M, Dieppois G, Kisseleva-Romanova E, Gudipati RK, Lemoine S et al. 2008. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell 135:2308–21
    [Google Scholar]
  89. 89.
    Domínguez-Sánchez MS, Barroso S, Gómez-González B, Luna R, Aguilera A 2011. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLOS Genet 7:12e1002386
    [Google Scholar]
  90. 90.
    Saguez C, Gonzales FA, Schmid M, Bøggild A, Latrick CM et al. 2013. Mutational analysis of the yeast RNA helicase Sub2p reveals conserved domains required for growth, mRNA export, and genomic stability. RNA 19:101363–71
    [Google Scholar]
  91. 91.
    Luna R, Rondón AG, Pérez-Calero C, Salas-Armenteros I, Aguilera A. 2020. The THO complex as a paradigm for the prevention of cotranscriptional R-loops. Cold Spring Harb. Symp. 84:039594
    [Google Scholar]
  92. 92.
    Schuller SK, Schuller JM, Prabu JR, Baumgärtner M, Bonneau F et al. 2020. Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex. eLife 9:e61467
    [Google Scholar]
  93. 93.
    Pühringer T, Hohmann U, Fin L, Pacheco-Fiallos B, Schellhaas U et al. 2020. Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife 9:e61503
    [Google Scholar]
  94. 94.
    Xie Y, Clarke BP, Kim YJ, Ivey AL, Hill PS et al. 2021. Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2. eLife 10:e65699
    [Google Scholar]
  95. 95.
    Ren Y, Schmiege P, Blobel G. 2017. Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. eLife 6:e20070
    [Google Scholar]
  96. 96.
    Ilık İA, Aktaş T. 2021. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J https://doi.org/10.1111/febs.16117
    [Crossref] [Google Scholar]
  97. 97.
    Ford MJ, Anton IA, Lane DP 1988. Nuclear protein with sequence homology to translation initiation factor eIF-4A. Nature 332:6166736–38
    [Google Scholar]
  98. 98.
    Xing Z, Wang S, Tran EJ. 2017. Characterization of the mammalian DEAD-box protein DDX5 reveals functional conservation with S. cerevisiae ortholog Dbp2 in transcriptional control and glucose metabolism. RNA 23:71125–38
    [Google Scholar]
  99. 99.
    Xing Z, Ma WK, Tran EJ. 2019. The DDX5/Dbp2 subfamily of DEAD-box RNA helicases. WIREs RNA 10:2e1519
    [Google Scholar]
  100. 100.
    Gao J, Byrd AK, Zybailov BL, Marecki JC, Guderyon MJ et al. 2019. DEAD-box RNA helicases Dbp2, Ded1 and Mss116 bind to G-quadruplex nucleic acids and destabilize G-quadruplex RNA. Chem. Commun. 55:314467–70
    [Google Scholar]
  101. 101.
    Yan KK-P, Obi I, Sabouri N. 2021. The RGG domain in the C-terminus of the DEAD box helicases Dbp2 and Ded1 is necessary for G-quadruplex destabilization. Nucleic Acids Res 49:148339–54
    [Google Scholar]
  102. 102.
    Tedeschi FA, Cloutier SC, Tran EJ, Jankowsky E. 2018. The DEAD-box protein Dbp2p is linked to noncoding RNAs, the helicase Sen1p, and R-loops. RNA 24:121693–705
    [Google Scholar]
  103. 103.
    Hodroj D, Recolin B, Serhal K, Martinez S, Tsanov N et al. 2017. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J 36:91182–98
    [Google Scholar]
  104. 104.
    Ma WK, Cloutier SC, Tran EJ. 2013. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J. Mol. Biol. 425:203824–38
    [Google Scholar]
  105. 105.
    Tseng SS-I, Weaver PL, Liu Y, Hitomi M, Tartakoff AM, Chang T. 1998. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J 17:92651–62
    [Google Scholar]
  106. 106.
    Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN. 1998. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J 17:92663–76
    [Google Scholar]
  107. 107.
    Tran EJ, Zhou Y, Corbett AH, Wente SR. 2007. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell 28:5850–59
    [Google Scholar]
  108. 108.
    Lund MK, Guthrie C. 2005. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20:4645–51
    [Google Scholar]
  109. 109.
    Rajan AAN, Montpetit B. 2021. Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Cell Mol. Life Sci. 78:52019–30
    [Google Scholar]
  110. 110.
    Weirich CS, Erzberger JP, Flick JS, Berger JM, Thorner J, Weis K. 2006. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 8:7668–76
    [Google Scholar]
  111. 111.
    Alcazar-Roman AR, Tran EJ, Guo S, Wente SR. 2006. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat. Cell Biol. 8:7711–16
    [Google Scholar]
  112. 112.
    Hodge CA, Colot HV, Stafford P, Cole CN. 1999. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J 18:205778–88
    [Google Scholar]
  113. 113.
    Schmitt C, von Kobbe C, Bachi A, Panté N, Rodrigues JP et al. 1999. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J 18:154332–47
    [Google Scholar]
  114. 114.
    Weirich CS, Erzberger JP, Berger JM, Weis K. 2004. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16:5749–60
    [Google Scholar]
  115. 115.
    Folkmann AW, Noble KN, Cole CN, Wente SR. 2011. Dbp5, Gle1-IP6 and Nup159. Nucleus 2:6540–48
    [Google Scholar]
  116. 116.
    Noble KN, Tran EJ, Alcázar-Román AR, Hodge CA, Cole CN, Wente SR. 2011. The Dbp5 cycle at the nuclear pore complex during mRNA export II: Nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev 25:101065–77
    [Google Scholar]
  117. 117.
    Derrer CP, Mancini R, Vallotton P, Huet S, Weis K, Dultz E. 2019. The RNA export factor Mex67 functions as a mobile nucleoporin. J. Cell Biol. 218:123967–76
    [Google Scholar]
  118. 118.
    York JD, Odom AR, Murphy R, Ives EB, Wente SR. 1999. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:542496–100
    [Google Scholar]
  119. 119.
    Takemura R, Inoue Y, Izawa S. 2004. Stress response in yeast mRNA export factor: Reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J. Cell Sci. 117:184189–97
    [Google Scholar]
  120. 120.
    Izawa S, Takemura R, Ikeda K, Fukuda K, Wakai Y, Inoue Y. 2005. Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Appl. Microbiol. Biotechnol. 69:186–91
    [Google Scholar]
  121. 121.
    Adams RL, Wente SR. 2020. Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability. PLOS Genet 16:10e1009033
    [Google Scholar]
  122. 122.
    Wu H, Becker D, Krebber H. 2014. Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance. Cell Rep 8:61630–38
    [Google Scholar]
  123. 123.
    Neumann B, Wu H, Hackmann A, Krebber H. 2016. Nuclear export of pre-ribosomal subunits requires Dbp5, but not as an RNA-helicase as for mRNA export. PLOS ONE 11:2e0149571
    [Google Scholar]
  124. 124.
    Lari A, Rajan AAN, Sandhu R, Reiter T, Montpetit R et al. 2019. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 8:e48410
    [Google Scholar]
  125. 125.
    Serpeloni M, Vidal NM, Goldenberg S, Ávila AR, Hoffmann FG. 2011. Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol. Biol. 11:17
    [Google Scholar]
  126. 126.
    Obado SO, Field MC, Rout MP. 2017. Comparative interactomics provides evidence for functional specialization of the nuclear pore complex. Nucleus 8:4340–52
    [Google Scholar]
  127. 127.
    Gatfield D, Hir HL, Schmitt C, Braun IC, Köcher T et al. 2001. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11:211716–21
    [Google Scholar]
  128. 128.
    Hampoelz B, Andres-Pons A, Kastritis P, Beck M. 2019. Structure and assembly of the nuclear pore complex. Annu. Rev. Biophys. 48:515–36
    [Google Scholar]
  129. 129.
    Nielsen PJ, McMaster GK, Trachsel H. 1985. Cloning of eukaryotic protein synthesis initiation factor genes: isolation and characterization of cDNA clones encoding factor eIF-4A. Nucleic Acids Res 13:196867–80
    [Google Scholar]
  130. 130.
    Rogers GW, Komar AA, Merrick WC. 2002. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. 72:307–31
    [Google Scholar]
  131. 131.
    Gingras A-C, Raught B, Sonenberg N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–63
    [Google Scholar]
  132. 132.
    Andreou AZ, Klostermeier D. 2012. The DEAD-box helicase eIF4A. RNA Biol 10:119–32
    [Google Scholar]
  133. 133.
    Grifo JA, Abramson RD, Satler CA, Merrick WC. 1984. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259:138648–54
    [Google Scholar]
  134. 134.
    Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA et al. 1985. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260:127651–58
    [Google Scholar]
  135. 135.
    Lorsch JR, Herschlag D. 1998. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37:82180–93
    [Google Scholar]
  136. 136.
    Lorsch JR, Herschlag D. 1998. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37:82194–206
    [Google Scholar]
  137. 137.
    Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N. 1990. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10:31134–44
    [Google Scholar]
  138. 138.
    Johnson ER, McKay DB. 1999. Crystallographic structure of the amino terminal domain of yeast initiation factor 4A, a representative DEAD-box RNA helicase. RNA 5:121526–34
    [Google Scholar]
  139. 139.
    Benz J, Trachsel H, Baumann U. 1999. Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae—the prototype of the DEAD box protein family. Structure 7:6671–79
    [Google Scholar]
  140. 140.
    Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G et al. 2001. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:3382–94
    [Google Scholar]
  141. 141.
    Linder P. 2003. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol. Cell 95:3–4157–67
    [Google Scholar]
  142. 142.
    Marsden S, Nardelli M, Linder P, McCarthy JEG. 2006. Unwinding single RNA molecules using helicases involved in eukaryotic translation initiation. J. Mol. Biol. 361:2327–35
    [Google Scholar]
  143. 143.
    Sen ND, Zhou F, Ingolia NT, Hinnebusch AG. 2015. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res 25:81196–205
    [Google Scholar]
  144. 144.
    Gao Z, Putnam AA, Bowers HA, Guenther U-P, Ye X et al. 2016. Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. eLife 5:e16408
    [Google Scholar]
  145. 145.
    Guenther U-P, Weinberg DE, Zubradt MM, Tedeschi FA, Stawicki BN et al. 2018. The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature 559:7712130–34
    [Google Scholar]
  146. 146.
    Gulay S, Gupta N, Lorsch JR, Hinnebusch AG. 2020. Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo. eLife 9:e58243
    [Google Scholar]
  147. 147.
    Yourik P, Aitken CE, Zhou F, Gupta N, Hinnebusch AG, Lorsch JR. 2017. Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. eLife 6:e31476
    [Google Scholar]
  148. 148.
    Sokabe M, Fraser CS. 2017. A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome. PNAS 114:246304–9
    [Google Scholar]
  149. 149.
    Balagopal V, Parker R. 2009. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 21:3403–8
    [Google Scholar]
  150. 150.
    Buchan JR, Parker R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36:6932–41
    [Google Scholar]
  151. 151.
    Ivanov P, Kedersha N, Anderson P 2018. Stress granules and processing bodies in translational control. Cold Spring Harb. Perspect. Biol. 11:5a032813
    [Google Scholar]
  152. 152.
    Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R. 2018. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. PNAS 115:11201800038
    [Google Scholar]
  153. 153.
    Begovich K, Wilhelm JE. 2020. An in vitro assembly system identifies roles for RNA nucleation and ATP in yeast stress granule formation. Mol. Cell 79:6991–1007.e4
    [Google Scholar]
  154. 154.
    Tauber D, Tauber G, Parker R. 2020. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45:9764–78
    [Google Scholar]
  155. 155.
    Matheny T, Van Treeck B, Huynh TN, Parker R. 2020. RNA partitioning into stress granules is based on the summation of multiple interactions. RNA 27:2174–89
    [Google Scholar]
  156. 156.
    Tian S, Curnutte HA, Trcek T. 2020. RNA granules: a view from the RNA perspective. Molecules 25:143130
    [Google Scholar]
  157. 157.
    Hir HL, Saulière J, Wang Z. 2016. The exon junction complex as a node of post-transcriptional networks. Nat. Rev. Mol. Cell Bio. 17:141–54
    [Google Scholar]
  158. 158.
    Boehm V, Gehring NH. 2016. Exon junction complexes: supervising the gene expression assembly line. Trends Genet 32:11724–35
    [Google Scholar]
  159. 159.
    Nielsen KH, Chamieh H, Andersen CBF, Fredslund F, Hamborg K et al. 2009. Mechanism of ATP turnover inhibition in the EJC. RNA 15:167–75
    [Google Scholar]
  160. 160.
    Coller J, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7:121717–27
    [Google Scholar]
  161. 161.
    Fischer N, Weis K. 2002. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 21:112788–97
    [Google Scholar]
  162. 162.
    Ladomery M, Wade E, Sommerville J 1997. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res 25:5965–73
    [Google Scholar]
  163. 163.
    Weston A, Sommerville J. 2006. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34:103082–94
    [Google Scholar]
  164. 164.
    Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122:6875–86
    [Google Scholar]
  165. 165.
    Carroll JS, Munchel SE, Weis K. 2011. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell Biol. 194:4527–37
    [Google Scholar]
  166. 166.
    Sweet T, Kovalak C, Coller J. 2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLOS Biol 10:6e1001342
    [Google Scholar]
  167. 167.
    Hu W, Sweet TJ, Chamnongpol S, Baker KE, Coller J. 2009. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461:7261225–29
    [Google Scholar]
  168. 168.
    Pelechano V, Wei W, Steinmetz LM. 2015. Widespread co-translational RNA decay reveals ribosome dynamics. Cell 161:61400–12
    [Google Scholar]
  169. 169.
    Radhakrishnan A, Chen Y-H, Martin S, Alhusaini N, Green R, Coller J. 2016. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 167:1122–32.e9
    [Google Scholar]
  170. 170.
    Chan LY, Mugler CF, Heinrich S, Vallotton P, Weis K. 2018. Non-invasive measurement of mRNA decay reveals translation initiation as the major determinant of mRNA stability. eLife 7:e32536
    [Google Scholar]
  171. 171.
    Ostareck DH, Vries ISN, Ostareck-Lederer A. 2014. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WIREs RNA 5:5659–78
    [Google Scholar]
  172. 172.
    Jung D, Ahn J, Rhee B, Kim J. 2017. Mutational analysis of the RNA helicase Dhh1 in Ste12 expression and yeast mating. J. Microbiol. 55:5373–78
    [Google Scholar]
  173. 173.
    Núñez RD, Budt M, Saenger S, Paki K, Arnold U et al. 2018. The RNA helicase DDX6 associates with RIG-I to augment induction of antiviral signaling. Int. J. Mol. Sci. 19:71877
    [Google Scholar]
  174. 174.
    Freimer JW, Hu T, Blelloch R. 2018. Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. eLife 7:e38014
    [Google Scholar]
  175. 175.
    Stefano BD, Luo E-C, Haggerty C, Aigner S, Charlton J et al. 2019. The RNA helicase DDX6 controls cellular plasticity by modulating P-body homeostasis. Cell Stem Cell 25:5622–38.e13
    [Google Scholar]
  176. 176.
    Sheth U, Parker R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:5620805–8
    [Google Scholar]
  177. 177.
    Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:4371–82
    [Google Scholar]
  178. 178.
    Parker R, Sheth U. 2007. P bodies and the control of mRNA translation and degradation. Mol. Cell 25:5635–46
    [Google Scholar]
  179. 179.
    Ernoult-Lange M, Baconnais S, Harper M, Minshall N, Souquere S et al. 2012. Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA 18:91702–15
    [Google Scholar]
  180. 180.
    Linsenmeier M, Hondele M, Grigolato F, Secchi E, Weis K, Arosio P. 2021. Dynamic arrest and aging of biomolecular condensates are regulated by low-complexity domains, RNA and biochemical activity. bioRxiv 2021.02.26.433003. https://doi.org/10.1101/2021.02.26.433003
    [Crossref]
  181. 181.
    Sharma D, Jankowsky E. 2014. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit. Rev. Biochem. Mol. 49:4343–60
    [Google Scholar]
  182. 182.
    Iost I, Dreyfus M, Linder P. 1999. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274:2517677–83
    [Google Scholar]
  183. 183.
    Yang Q, Jankowsky E. 2005. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44:4113591–601
    [Google Scholar]
  184. 184.
    Pugh TJ, Weeraratne SD, Archer TC, Krummel DAP, Auclair D et al. 2012. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:7409106–10
    [Google Scholar]
  185. 185.
    Bol GM, Xie M, Raman V. 2015. DDX3, a potential target for cancer treatment. Mol. Cancer 14:1188
    [Google Scholar]
  186. 186.
    Oh S, Flynn RA, Floor SN, Purzner J, Martin L et al. 2016. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget 7:1928169–82
    [Google Scholar]
  187. 187.
    Valentin-Vega YA, Wang Y-D, Parker M, Patmore DM, Kanagaraj A et al. 2016. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci. Rep. 6:125996
    [Google Scholar]
  188. 188.
    Blok LS, Madsen E, Juusola J, Gilissen C, Baralle D et al. 2015. Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. Am. J. Hum. Genet. 97:2343–52
    [Google Scholar]
  189. 189.
    Valiente-Echeverría F, Hermoso MA, Soto-Rifo R. 2015. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev. Med. Virol. 25:5286–99
    [Google Scholar]
  190. 190.
    Hernández-Díaz T, Valiente-Echeverría F, Soto-Rifo R. 2021. RNA helicase DDX3: a double-edged sword for viral replication and immune signaling. Microorganisms 9:61206
    [Google Scholar]
  191. 191.
    Chuang R-Y, Weaver PL, Liu Z, Chang T-H. 1997. Requirement of the DEAD-box protein Ded1p for messenger RNA translation. Science 275:53051468–71
    [Google Scholar]
  192. 192.
    de la Cruz J, Iost I, Kressler D, Linder P. 1997. The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomycescerevisiae. PNAS 94:105201–6
    [Google Scholar]
  193. 193.
    Calviello L, Venkataramanan S, Rogowski KJ, Wyler E, Wilkins K et al. 2021. DDX3 depletion represses translation of mRNAs with complex 5′ UTRs. Nucleic Acids Res 49:95336–50
    [Google Scholar]
  194. 194.
    Sen ND, Gupta N, Archer SK, Preiss T, Lorsch JR, Hinnebusch AG. 2019. Functional interplay between DEAD-box RNA helicases Ded1 and Dbp1 in preinitiation complex attachment and scanning on structured mRNAs in vivo. Nucleic Acids Res 47:168785–806
    [Google Scholar]
  195. 195.
    Gupta N, Lorsch JR, Hinnebusch AG. 2018. Yeast Ded1 promotes 48S translation pre-initiation complex assembly in an mRNA-specific and eIF4F-dependent manner. eLife 7:e38892
    [Google Scholar]
  196. 196.
    Aryanpur PP, Renner DM, Rodela E, Mittelmeier TM, Byrd A, Bolger TA. 2019. The DEAD-box RNA helicase Ded1 has a role in the translational response to TORC1 inhibition. Mol. Biol. Cell 30:172171–84
    [Google Scholar]
  197. 197.
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:6357eaaf4382
    [Google Scholar]
  198. 198.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Bio. 18:5285–98
    [Google Scholar]
  199. 199.
    Jain A, Vale RD. 2017. RNA phase transitions in repeat expansion disorders. Nature 546:7657243–47
    [Google Scholar]
  200. 200.
    Langdon EM, Qiu Y, Niaki AG, McLaughlin GA, Weidmann C et al. 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:6391eaar7432
    [Google Scholar]
  201. 201.
    Ma W, Zheng G, Xie W, Mayr C. 2021. In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates. eLife 10:e64252
    [Google Scholar]
  202. 202.
    Roden C, Gladfelter AS. 2021. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Bio. 22:3183–95
    [Google Scholar]
  203. 203.
    Wiedner HJ, Giudice J. 2021. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28:6465–73
    [Google Scholar]
  204. 204.
    Kato M, McKnight SL. 2016. A solid-state conceptualization of information transfer from gene to message to protein. Annu. Rev. Biochem. 87:351–90
    [Google Scholar]
  205. 205.
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:113–23
    [Google Scholar]
  206. 206.
    McKnight SL. 2019. Passing through. Trends Biochem. Sci. 44:11899–901
    [Google Scholar]
  207. 207.
    Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G. 1999. Gemin3: a novel dead box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J. Cell Biol. 147:61181–94
    [Google Scholar]
  208. 208.
    Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW et al. 2002. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12:11–11
    [Google Scholar]
  209. 209.
    Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL. 2004. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15:83876–90
    [Google Scholar]
  210. 210.
    Dias AP, Dufu K, Lei H, Reed R 2010. A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat. Commun. 1:197
    [Google Scholar]
  211. 211.
    Tu Y-T, Barrientos A. 2015. The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:6854–64
    [Google Scholar]
  212. 212.
    Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. 2015. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518:7538249–53
    [Google Scholar]
  213. 213.
    Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 2016. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:3487–98
    [Google Scholar]
  214. 214.
    Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M et al. 2017. P-Body purification reveals the condensation of repressed mRNA regulons. Mol. Cell 68:1144–57.e5
    [Google Scholar]
  215. 215.
    Markmiller S, Soltanieh S, Server KL, Mak R, Jin W et al. 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172:3590–604.e13
    [Google Scholar]
  216. 216.
    Youn J-Y, Dunham WH, Hong SJ, Knight JDR, Bashkurov M et al. 2018. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69:3517–32.e11
    [Google Scholar]
  217. 217.
    Mier P, Paladin L, Tamana S, Petrosian S, Hajdu-Soltész B et al. 2019. Disentangling the complexity of low complexity proteins. Brief. Bioinform. 21:2bbz007
    [Google Scholar]
  218. 218.
    Balcerak A, Trebinska-Stryjewska A, Konopinski R, Wakula M, Grzybowska EA. 2019. RNA–protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open. Biol. 9:6190096
    [Google Scholar]
  219. 219.
    Franzmann TM, Alberti S. 2019. Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior. J. Biol. Chem. 294:187128–36
    [Google Scholar]
  220. 220.
    Hondele M, Heinrich S, Rios PDL, Weis K. 2020. Membraneless organelles: phasing out of equilibrium. Emerg. Top. Life Sci. 4:3343–54
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-105429
Loading
/content/journals/10.1146/annurev-biochem-032620-105429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error