1932

Abstract

Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-105728
2022-06-21
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-105728.html?itemId=/content/journals/10.1146/annurev-biochem-032620-105728&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nyhan WL. 2014. Nucleotide synthesis via salvage pathway. eLS San Francisco: John Wiley and Sons Ltd.
    [Google Scholar]
  2. 2.
    Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. 2018. Potential mechanisms connecting purine metabolism and cancer therapy. Front. Immunol. 9:1697
    [Google Scholar]
  3. 3.
    Ashihara H, Ludwig IA, Crozier A 2020. Salvage pathways of purine nucleotide biosynthesis. Plant Nucleotide Metabolism—Biosynthesis, Degradation, and Alkaloid Formation H Ashihara, IA Ludwig, A Crozier 55–69 Hoboken, NJ: John Wiley & Sons Ltd.
    [Google Scholar]
  4. 4.
    Pareek V, Pedley AM, Benkovic SJ. 2021. Human de novo purine biosynthesis. Crit. Rev. Biochem. Mol. Biol. 56:1–16
    [Google Scholar]
  5. 5.
    Henderson JF, Khoo KY. 1965. On the mechanism of feedback inhibition of purine biosynthesis de novo in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240:3104–9
    [Google Scholar]
  6. 6.
    Lane AN, Fan TW. 2015. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43:2466–85
    [Google Scholar]
  7. 7.
    Murray AW. 1971. The biological significance of purine salvage. Annu. Rev. Biochem. 40:811–26
    [Google Scholar]
  8. 8.
    Yamaoka T, Kondo M, Honda S, Iwahana H, Moritani M et al. 1997. Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis. J. Biol. Chem. 272:17719–25
    [Google Scholar]
  9. 9.
    Villa E, Ali ES, Sahu U, Ben-Sahra I. 2019. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers 11:688
    [Google Scholar]
  10. 10.
    Fu R, Sutcliffe D, Zhao H, Huang X, Schretlen DJ et al. 2015. Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways. Mol. Genet. Metab. 114:55–61
    [Google Scholar]
  11. 11.
    Zoref E, Sperling O. 1979. Increased de novo purine synthesis in cultured skin fibroblasts from heterozygotes for the Lesch-Nyhan syndrome: a sensitive marker for carrier detection. Hum. Hered 29:64–68
    [Google Scholar]
  12. 12.
    Fridman A, Saha A, Chan A, Casteel DE, Pilz RB, Boss GR. 2013. Cell cycle regulation of purine synthesis by phosphoribosyl pyrophosphate and inorganic phosphate. Biochem. J. 454:91–99
    [Google Scholar]
  13. 13.
    Zalkin H, Dixon JE. 1992. De novo purine nucleotide biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 42:259–87
    [Google Scholar]
  14. 14.
    Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. 2017. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiol. Mol. Biol. Rev. 81:e00040–16
    [Google Scholar]
  15. 15.
    An S, Kumar R, Sheets ED, Benkovic SJ. 2008. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320:103–6
    [Google Scholar]
  16. 16.
    Schmitt DL, Sundaram A, Jeon M, Luu BT, An S 2018. Spatial alterations of de novo purine biosynthetic enzymes by Akt-independent PDK1 signaling pathways. PLOS ONE 13:e0195989
    [Google Scholar]
  17. 17.
    Doigneaux C, Pedley AM, Mistry IN, Papayova M, Benkovic SJ, Tavassoli A. 2020. Hypoxia drives the assembly of the multienzyme purinosome complex. J. Biol. Chem. 295:9551–66
    [Google Scholar]
  18. 18.
    French JB, Zhao H, An S, Niessen S, Deng Y et al. 2013. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. PNAS 110:2528–33
    [Google Scholar]
  19. 19.
    Baresova V, Skopova V, Sikora J, Patterson D, Sovova J et al. 2012. Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum. Mol. Genet. 21:1534–43
    [Google Scholar]
  20. 20.
    Mangold CA, Yao PJ, Du M, Freeman WM, Benkovic SJ, Szpara ML. 2018. Expression of the purine biosynthetic enzyme phosphoribosyl formylglycinamidine synthase in neurons. J. Neurochem. 144:723–35
    [Google Scholar]
  21. 21.
    Yamada S, Sato A, Sakakibara SI. 2020. Nwd1 regulates neuronal differentiation and migration through purinosome formation in the developing cerebral cortex. iScience 23:101058
    [Google Scholar]
  22. 22.
    Williamson J, Petralia RS, Wang YX, Mattson MP, Yao PJ. 2017. Purine biosynthesis enzymes in hippocampal neurons. Neuromol. Med. 19:518–24
    [Google Scholar]
  23. 23.
    Chan CY, Pedley AM, Kim D, Xia C, Zhuang X, Benkovic SJ. 2018. Microtubule-directed transport of purine metabolons drives their cytosolic transit to mitochondria. PNAS 115:13009–14
    [Google Scholar]
  24. 24.
    Zhao A, Tsechansky M, Ellington AD, Marcotte EM. 2014. Revisiting and revising the purinosome. Mol. Biosyst. 10:369–74
    [Google Scholar]
  25. 25.
    Zhao A, Tsechansky M, Swaminathan J, Cook L, Ellington AD, Marcotte EM. 2013. Transiently transfected purine biosynthetic enzymes form stress bodies. PLOS ONE 8:e56203
    [Google Scholar]
  26. 26.
    Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O'Connell JD et al. 2009. Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. PNAS 106:10147–52
    [Google Scholar]
  27. 27.
    Chan CY, Zhao H, Pugh RJ, Pedley AM, French J et al. 2015. Purinosome formation as a function of the cell cycle. PNAS 112:1368–73
    [Google Scholar]
  28. 28.
    French JB, Jones SA, Deng H, Pedley AM, Kim D et al. 2016. Spatial colocalization and functional link of purinosomes with mitochondria. Science 351:733–37
    [Google Scholar]
  29. 29.
    Pedley AM, Boylan JP, Chan CY, Kennedy EL, Kyoung M, Benkovic SJ. 2022. Purine biosynthetic enzymes assemble into liquid-like condensates dependent on the activity of chaperone protein HSP90. J. Biol. Chem. 298:101845
    [Google Scholar]
  30. 30.
    Kyoung M, Russell SJ, Kohnhorst CL, Esemoto NN, An S 2015. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis. Biochemistry 54:870–80
    [Google Scholar]
  31. 31.
    Baresova V, Krijt M, Skopova V, Souckova O, Kmoch S, Zikanova M. 2016. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation. Mol. Genet. Metab. 119:270–77
    [Google Scholar]
  32. 32.
    Baresova V, Skopova V, Souckova O, Krijt M, Kmoch S, Zikanova M. 2018. Study of purinosome assembly in cell-based model systems with de novo purine synthesis and salvage pathway deficiencies. PLOS ONE 13:e0201432
    [Google Scholar]
  33. 33.
    Pareek V, Tian H, Winograd N, Benkovic SJ. 2020. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368:283–90
    [Google Scholar]
  34. 34.
    Zhao H, Chiaro CR, Zhang L, Smith PB, Chan CY et al. 2015. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J. Biol. Chem. 290:6705–13
    [Google Scholar]
  35. 35.
    He J, Zou L-N, Pareek V, Benkovic SJ. 2022. Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling. J. Biol. Chem. 298:101853
    [Google Scholar]
  36. 36.
    Wan C, Borgeson B, Phanse S, Tu F, Drew K et al. 2015. Panorama of ancient metazoan macromolecular complexes. Nature 525:339–44
    [Google Scholar]
  37. 37.
    An S, Deng Y, Tomsho JW, Kyoung M, Benkovic SJ. 2010. Microtubule-assisted mechanism for functional metabolic macromolecular complex formation. PNAS 107:12872–76
    [Google Scholar]
  38. 38.
    Rudolph J, Stubbe J. 1995. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry 34:2241–50
    [Google Scholar]
  39. 39.
    Mazzarino RC, Baresova V, Zikanova M, Duval N, Wilkinson TG 2nd et al. 2021. Transcriptome and metabolome analysis of crGART, a novel cell model of de novo purine synthesis deficiency: alterations in CD36 expression and activity. PLOS ONE 16:e0247227
    [Google Scholar]
  40. 40.
    Pedley AM, Benkovic SJ. 2017. A new view into the regulation of purine metabolism: the purinosome. Trends Biochem. Sci. 42:141–54
    [Google Scholar]
  41. 41.
    Bulock KG, Beardsley GP, Anderson KS. 2002. The kinetic mechanism of the human bifunctional enzyme ATIC (5-amino-4-imidazolecarboxamide ribonucleotide transformylase/inosine 5′-monophosphate cyclohydrolase). A surprising lack of substrate channeling. J. Biol. Chem. 277:22168–74
    [Google Scholar]
  42. 42.
    Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. 2021. Metabolic channeling: predictions, deductions, and evidence. Mol. Cell 81:3775–85
    [Google Scholar]
  43. 43.
    Diehl FF, Lewis CA, Fiske BP, Vander Heiden MG 2019. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat. Metab. 1:861–67
    [Google Scholar]
  44. 44.
    Tibbetts AS, Appling DR. 2010. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30:57–81
    [Google Scholar]
  45. 45.
    Ducker GS, Rabinowitz JD. 2017. One-carbon metabolism in health and disease. Cell Metab 25:27–42
    [Google Scholar]
  46. 46.
    Newman AC, Maddocks ODK. 2017. One-carbon metabolism in cancer. Br. J. Cancer 116:1499–504
    [Google Scholar]
  47. 47.
    Verrier F, An S, Ferrie AM, Sun H, Kyoung M et al. 2011. GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis. Nat. Chem. Biol. 7:909–15
    [Google Scholar]
  48. 48.
    Fang Y, French J, Zhao H, Benkovic S. 2013. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol. Genet. Eng. Rev. 29:31–48
    [Google Scholar]
  49. 49.
    Fang Y. 2014. Label-free drug discovery. Front. Pharmacol. 5:52
    [Google Scholar]
  50. 50.
    Fang Y. 2014. Label-free cell phenotypic drug discovery. Comb. Chem. High Throughput Screen. 17:566–78
    [Google Scholar]
  51. 51.
    Ferrie AM, Goral V, Wang C, Fang Y. 2015. Label-free functional selectivity assays. Methods Mol. Biol. 1272:227–46
    [Google Scholar]
  52. 52.
    Zhang W, Liu HT. 2002. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18
    [Google Scholar]
  53. 53.
    Ali ES, Sahu U, Villa E, O'Hara BP, Gao P et al. 2020. ERK2 phosphorylates PFAS to mediate posttranslational control of de novo purine synthesis. Mol. Cell 78:1178–91.e6
    [Google Scholar]
  54. 54.
    Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD. 2016. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351:728–33
    [Google Scholar]
  55. 55.
    Liu C, Knudsen GM, Pedley AM, He J, Johnson JL et al. 2019. Mapping post-translational modifications of de novo purine biosynthetic enzymes: implications for pathway regulation. J. Proteome Res. 18:2078–87
    [Google Scholar]
  56. 56.
    Pedley AM, Karras GI, Zhang X, Lindquist S, Benkovic SJ. 2018. Role of HSP90 in the regulation of de novo purine biosynthesis. Biochemistry 57:3217–21
    [Google Scholar]
  57. 57.
    Calvo-Vidal MN, Zamponi N, Krumsiek J, Stockslager MA, Revuelta MV et al. 2021. Oncogenic HSP90 facilitates metabolic alterations in aggressive B-cell lymphomas. Cancer Res 81:5202–16
    [Google Scholar]
  58. 58.
    Bassard JE, Halkier BA. 2018. How to prove the existence of metabolons?. Phytochem. Rev. 17:211–27
    [Google Scholar]
  59. 59.
    Reed LJ. 1974. Multienzyme complexes. Acc. Chem. Res. 7:40–46
    [Google Scholar]
  60. 60.
    McConkey EH. 1982. Molecular evolution, intracellular organization, and the quinary structure of proteins. PNAS 79:3236–40
    [Google Scholar]
  61. 61.
    Wilson JE. 1978. Ambiquitous enzymes: variation in intracellular distribution as a regulatory mechanism. Trends Biochem. Sci. 3:124–25
    [Google Scholar]
  62. 62.
    Srere PA. 1985. The metabolon. Trends Biochem. Sci. 10:109–10
    [Google Scholar]
  63. 63.
    Srere PA. 1987. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56:89–124
    [Google Scholar]
  64. 64.
    Pedley AM, Benkovic SJ. 2018. Detecting purinosome metabolon formation with fluorescence microscopy. Methods Mol. Biol. 1764:279–89
    [Google Scholar]
  65. 65.
    Lu A, Disoma C, Zhou Y, Chen Z, Zhang Let al 2019. Protein interactome of the deamidase phosphoribosylformylglycinamidine synthetase (PFAS) by LC-MS/MS. Biochem. Biophys. Res. Commun 513:74652
    [Google Scholar]
  66. 66.
    Huang X, Holden HM, Raushel FM 2001. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem 70:14980
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-105728
Loading
/content/journals/10.1146/annurev-biochem-032620-105728
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error