1932

Abstract

Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and -linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-040320-105145
2022-06-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-040320-105145.html?itemId=/content/journals/10.1146/annurev-biochem-040320-105145&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rush JS. 2015. Role of flippases in protein glycosylation in the endoplasmic reticulum. Lipid Insights 8:45–53
    [Google Scholar]
  2. 2.
    Ruiz N. 2015. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights 8:21–31
    [Google Scholar]
  3. 3.
    Segawa K, Nagata S. 2015. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol 25:639–50
    [Google Scholar]
  4. 4.
    Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG et al. 2016. The power of asymmetry: architecture and assembly of the gram-negative outer membrane lipid bilayer. Annu. Rev. Microbiol. 70:255–78
    [Google Scholar]
  5. 5.
    Pomorski T, Menon AK. 2006. Lipid flippases and their biological functions. Cell Mol. Life Sci. 63:2908–21
    [Google Scholar]
  6. 6.
    Hvorup RN, Winnen B, Chang AB, Jiang Y, Zhou XF, Saier MH Jr. 2003. The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur. J. Biochem. 270:799–813
    [Google Scholar]
  7. 7.
    Ruiz N. 2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PNAS 105:15553–57
    [Google Scholar]
  8. 8.
    Inoue A, Murata Y, Takahashi H, Tsuji N, Fujisaki S, Kato J. 2008. Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J. Bacteriol. 190:7298–301
    [Google Scholar]
  9. 9.
    Sham L-T, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 2014. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:220–22
    [Google Scholar]
  10. 10.
    Liu D, Cole RA, Reeves PR. 1996. An O-antigen processing function for Wzx (RfbX): a promising candidate for O-unit flippase. J. Bacteriol. 178:2102–7
    [Google Scholar]
  11. 11.
    Islam ST, Fieldhouse RJ, Anderson EM, Taylor VL, Keates RA et al. 2012. A cationic lumen in the Wzx flippase mediates anionic O-antigen subunit translocation in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 84:1165–76
    [Google Scholar]
  12. 12.
    Islam ST, Eckford PD, Jones ML, Nugent T, Bear CE et al. 2013. Proton-dependent gating and proton uptake by Wzx support O-antigen-subunit antiport across the bacterial inner membrane. mBio 4:e00678–13
    [Google Scholar]
  13. 13.
    Liu MA, Morris P, Reeves PR. 2018. Wzx flippases exhibiting complex O-unit preferences require a new model for Wzx-substrate interactions. MicrobiologyOpen 8:e00655
    [Google Scholar]
  14. 14.
    Hong Y, Liu MA, Reeves PR. 2018. Progress in our understanding of Wzx flippase for translocation of bacterial membrane lipid-linked oligosaccharide. J. Bacteriol. 200:e00154–17
    [Google Scholar]
  15. 15.
    Helenius J, Ng DT, Marolda CL, Walter P, Valvano MA, Aebi M. 2002. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447–50
    [Google Scholar]
  16. 16.
    Frank CG, Sanyal S, Rush JS, Waechter CJ, Menon AK. 2008. Does Rft1 flip an N-glycan lipid precursor?. Nature 454:E3–4; discussion E4–5
    [Google Scholar]
  17. 17.
    Sanyal S, Frank CG, Menon AK. 2008. Distinct flippases translocate glycerophospholipids and oligosaccharide diphosphate dolichols across the endoplasmic reticulum. Biochemistry 47:7937–46
    [Google Scholar]
  18. 18.
    Jelk J, Gao N, Serricchio M, Signorell A, Schmidt RSet al 2013. Glycoprotein biosynthesis in a eukaryote lacking the membrane protein Rft1. J. Biol. Chem 288:2061623
    [Google Scholar]
  19. 19.
    Kusakizako T, Miyauchi H, Ishitani R, Nureki O. 2020. Structural biology of the multidrug and toxic compound extrusion superfamily transporters. Biochim. Biophys. Acta Biomembr. 1862:183154
    [Google Scholar]
  20. 20.
    Morita Y, Kodama K, Shiota S, Mine T, Kataoka A et al. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42:1778–82
    [Google Scholar]
  21. 21.
    Kim JG, Park BK, Kim SU, Choi D, Nahm BH et al. 2006. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. PNAS 103:8846–51
    [Google Scholar]
  22. 22.
    Nurnberg P, Thiele H, Chandler D, Hohne W, Cunningham ML et al. 2001. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat. Genet. 28:37–41
    [Google Scholar]
  23. 23.
    El Zoeiby A, Sanschagrin F, Levesque RC. 2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47:1–12
    [Google Scholar]
  24. 24.
    Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M. 1991. The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide transferase. J. Bacteriol. 173:1021–26
    [Google Scholar]
  25. 25.
    Chung BC, Zhao J, Gillespie RA, Kwon DY, Guan Z et al. 2013. Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341:1012–16
    [Google Scholar]
  26. 26.
    Mengin-Lecreulx D, Texier L, Rousseau M, van Heijenoort J. 1991. The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J. Bacteriol. 173:4625–36
    [Google Scholar]
  27. 27.
    Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ et al. 2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:634–38
    [Google Scholar]
  28. 28.
    Cho H, Wivagg CN, Kapoor M, Barry Z, Rohs PD et al. 2016. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1:16172
    [Google Scholar]
  29. 29.
    Emami K, Guyet A, Kawai Y, Devi J, Wu LJ et al. 2017. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2:16253
    [Google Scholar]
  30. 30.
    Jackson GE, Strominger JL. 1984. Synthesis of peptidoglycan by high molecular weight penicillin-binding proteins of Bacillus subtilis and Bacillus stearothermophilus. J. Biol. Chem. 259:1483–90
    [Google Scholar]
  31. 31.
    Pollock JJ, Ghuysen JM, Linder R, Salton MR, Perkins HR et al. 1972. Transpeptidase activity of Streptomycesd-alanyl-d carboxypeptidases. PNAS 69:662–66
    [Google Scholar]
  32. 32.
    El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D. 2004. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem. 279:30106–13
    [Google Scholar]
  33. 33.
    Manat G, Roure S, Auger R, Bouhss A, Barreteau H et al. 2014. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb. Drug Resist. 20:199–214
    [Google Scholar]
  34. 34.
    El Ghachi M, Howe N, Huang CY, Olieric V, Warshamanage R et al. 2018. Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis. Nat. Commun. 9:1078
    [Google Scholar]
  35. 35.
    Workman SD, Worrall LJ, Strynadka NCJ. 2018. Crystal structure of an intramembranal phosphatase central to bacterial cell-wall peptidoglycan biosynthesis and lipid recycling. Nat. Commun. 9:1159
    [Google Scholar]
  36. 36.
    Butler EK, Davis RM, Bari V, Nicholson PA, Ruiz N. 2013. Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. J. Bacteriol. 195:4639–49
    [Google Scholar]
  37. 37.
    Butler EK, Tan WB, Joseph H, Ruiz N. 2014. Charge requirements of lipid II flippase activity in Escherichia coli. J. Bacteriol. 196:4111–19
    [Google Scholar]
  38. 38.
    Mohamed YF, Valvano MA. 2014. A Burkholderia cenocepacia MurJ (MviN) homolog is essential for cell wall peptidoglycan synthesis and bacterial viability. Glycobiology 24:564–76
    [Google Scholar]
  39. 39.
    Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N et al. 2017. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat. Chem. Biol. 13:793–98
    [Google Scholar]
  40. 40.
    Rubino FA, Kumar S, Ruiz N, Walker S, Kahne DE. 2018. Membrane potential is required for MurJ function. J. Am. Chem. Soc. 140:4481–84
    [Google Scholar]
  41. 41.
    Kuk ACY, Hao A, Guan Z, Lee SY. 2019. Visualizing conformation transitions of the Lipid II flippase MurJ. Nat. Commun. 10:1736
    [Google Scholar]
  42. 42.
    Bolla JR, Sauer JB, Wu D, Mehmood S, Allison TM, Robinson CV 2018. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10:363–71
    [Google Scholar]
  43. 43.
    Bolla JR, Corey RA, Sahin C, Gault J, Hummer A et al. 2020. A mass-spectrometry-based approach to distinguish annular and specific lipid binding to membrane proteins. Angew. Chem. Int. Ed. Engl. 59:3523–28
    [Google Scholar]
  44. 44.
    Liu X, Meiresonne NY, Bouhss A, den Blaauwen T. 2018. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol. Microbiol. 109:855–84
    [Google Scholar]
  45. 45.
    Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB et al. 2018. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554:528–32
    [Google Scholar]
  46. 46.
    Miyauchi H, Moriyama S, Kusakizako T, Kumazaki K, Nakane T et al. 2017. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 8:1633
    [Google Scholar]
  47. 47.
    He X, Szewczyk P, Karyakin A, Evin M, Hong WX et al. 2010. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–94
    [Google Scholar]
  48. 48.
    Tanaka Y, Hipolito CJ, Maturana AD, Ito K, Kuroda T et al. 2013. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature 496:247–51
    [Google Scholar]
  49. 49.
    Lu M, Radchenko M, Symersky J, Nie R, Guo Y. 2013. Structural insights into H+-coupled multidrug extrusion by a MATE transporter. Nat. Struct. Mol. Biol. 20:1310–17
    [Google Scholar]
  50. 50.
    Lu M, Symersky J, Radchenko M, Koide A, Guo Y et al. 2013. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. PNAS 110:2099–104
    [Google Scholar]
  51. 51.
    Steed PR, Stein RA, Mishra S, Goodman MC, McHaourab HS. 2013. Na+–substrate coupling in the multidrug antiporter NorM probed with a spin-labeled substrate. Biochemistry 52:5790–99
    [Google Scholar]
  52. 52.
    Claxton DP, Jagessar KL, Steed PR, Stein RA, McHaourab HS. 2018. Sodium and proton coupling in the conformational cycle of a MATE antiporter from Vibrio cholerae. PNAS 115:E6182–90
    [Google Scholar]
  53. 53.
    Kumar S, Rubino FA, Mendoza AG, Ruiz N. 2019. The bacterial lipid II flippase MurJ functions by an alternating-access mechanism. J. Biol. Chem. 294:981–90
    [Google Scholar]
  54. 54.
    Kuk ACY, Mashalidis EH, Lee SY. 2017. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24:171–76
    [Google Scholar]
  55. 55.
    Mousa JJ, Yang Y, Tomkovich S, Shima A, Newsome RC et al. 2016. MATE transport of the E. coli-derived genotoxin colibactin. Nat. Microbiol. 1:15009
    [Google Scholar]
  56. 56.
    Zheng S, Sham LT, Rubino FA, Brock KP, Robins WP et al. 2018. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. PNAS 115:6709–14
    [Google Scholar]
  57. 57.
    Deleted in proof
  58. 58.
    Perez C, Gerber S, Boilevin J, Bucher M, Darbre T et al. 2015. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524:433–38
    [Google Scholar]
  59. 59.
    Zakrzewska S, Mehdipour AR, Malviya VN, Nonaka T, Koepke J et al. 2019. Inward-facing conformation of a multidrug resistance MATE family transporter. PNAS 116:12275–84
    [Google Scholar]
  60. 60.
    Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T. 2000. NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J. Bacteriol. 182:6694–97
    [Google Scholar]
  61. 61.
    Otsuka M, Yasuda M, Morita Y, Otsuka C, Tsuchiya T et al. 2005. Identification of essential amino acid residues of the NorM Na+/multidrug antiporter in Vibrio parahaemolyticus. J. Bacteriol. 187:1552–58
    [Google Scholar]
  62. 62.
    Jin Y, Nair A, van Veen HW. 2014. Multidrug transport protein NorM from vibrio cholerae simultaneously couples to sodium- and proton-motive force. J. Biol. Chem. 289:14624–32
    [Google Scholar]
  63. 63.
    Ficici E, Zhou W, Castellano S, Faraldo-Gomez JD. 2018. Broadly conserved Na+-binding site in the N-lobe of prokaryotic multidrug MATE transporters. PNAS 115:E6172–81
    [Google Scholar]
  64. 64.
    Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ et al. 2016. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol. 12:1004–6
    [Google Scholar]
  65. 65.
    Chu J, Vila-Farres X, Inoyama D, Gallardo-Macias R, Jaskowski M et al. 2018. Human Microbiome inspired antibiotics with improved β-lactam synergy against MDR Staphylococcus aureus. ACS Infect. Dis. 4:33–38
    [Google Scholar]
  66. 66.
    Chamakura KR, Sham LT, Davis RM, Min L, Cho H et al. 2017. A viral protein antibiotic inhibits lipid II flippase activity. Nat. Microbiol. 2:1480–84
    [Google Scholar]
  67. 67.
    Rumnieks J, Tars K. 2012. Diversity of pili-specific bacteriophages: genome sequence of IncM plasmid-dependent RNA phage M. BMC Microbiol 12:277
    [Google Scholar]
  68. 68.
    Chamakura K, Young R. 2019. Phage single-gene lysis: finding the weak spot in the bacterial cell wall. J. Biol. Chem. 294:3350–58
    [Google Scholar]
  69. 69.
    Mott JE, Shaw BA, Smith JF, Bonin PD, Romero DL et al. 2008. Resistance mapping and mode of action of a novel class of antibacterial anthranilic acids: evidence for disruption of cell wall biosynthesis. J. Antimicrob. Chemother. 62:720–29
    [Google Scholar]
  70. 70.
    Huber J, Donald RG, Lee SH, Jarantow LW, Salvatore MJ et al. 2009. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem. Biol. 16:837–48
    [Google Scholar]
  71. 71.
    Ruiz N. 2009. Streptococcus pyogenes YtgP (Spy_0390) complements Escherichia coli strains depleted of the putative peptidoglycan flippase MurJ. Antimicrob. Agents Chemother. 53:3604–5
    [Google Scholar]
  72. 72.
    Mashalidis EH, Lee SY. 2020. Structures of bacterial MraY and human GPT provide insights into rational antibiotic design. J. Mol. Biol. 432:4946–63
    [Google Scholar]
  73. 73.
    Iguchi A, Iyoda S, Kikuchi T, Ogura Y, Katsura K et al. 2015. A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster. DNA Res 22:101–7
    [Google Scholar]
  74. 74.
    Islam ST, Lam JS. 2013. Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ. Microbiol. 15:1001–15
    [Google Scholar]
  75. 75.
    Marolda CL, Li B, Lung M, Yang M, Hanuszkiewicz A et al. 2010. Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J. Bacteriol. 192:6160–71
    [Google Scholar]
  76. 76.
    Elhenawy W, Davis RM, Fero J, Salama NR, Felman MF, Ruiz N. 2016. The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLOS ONE 11:e0161587
    [Google Scholar]
  77. 77.
    Sham LT, Zheng S, Yakhnina AA, Kruse AC, Bernhardt TG. 2018. Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Mol. Microbiol. 109:633–41
    [Google Scholar]
  78. 78.
    Damjanovic M, Kharat AS, Eberhardt A, Tomasz A, Vollmer W. 2007. The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J. Bacteriol. 189:7105–11
    [Google Scholar]
  79. 79.
    Percy MG, Grundling A. 2014. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 68:81–100
    [Google Scholar]
  80. 80.
    Alaimo C, Catrein I, Morf L, Marolda CL, Callewaert N et al. 2006. Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J 25:967–76
    [Google Scholar]
  81. 81.
    Hong Y, Reeves PR. 2014. Diversity of O-Antigen repeat unit structures can account for the substantial sequence variation of Wzx translocases. J. Bacteriol. 196:1713–22
    [Google Scholar]
  82. 82.
    Grundling A, Schneewind O. 2007. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189:2521–30
    [Google Scholar]
  83. 83.
    Zhang B, Liu X, Lambert E, Mas G, Hiller S et al. 2020. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat. Struct. Mol. Biol. 27:561–69
    [Google Scholar]
  84. 84.
    Caffalette CA, Corey RA, Sansom MSP, Stansfeld PJ, Zimmer J. 2019. A lipid gating mechanism for the channel-forming O antigen ABC transporter. Nat. Commun. 10:824
    [Google Scholar]
  85. 85.
    Bi Y, Mann E, Whitfield C, Zimmer J. 2018. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553:361–65
    [Google Scholar]
  86. 86.
    Caffalette CA, Zimmer J. 2021. Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport. PNAS 118:e2016144118
    [Google Scholar]
  87. 87.
    Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635–700
    [Google Scholar]
  88. 88.
    Hug I, Feldman MF. 2011. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 21:138–51
    [Google Scholar]
  89. 89.
    Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. 2020. Biosynthesis and export of bacterial glycolipids. Annu. Rev. Biochem. 89:741–68
    [Google Scholar]
  90. 90.
    Perez C, Mehdipour AR, Hummer G, Locher KP. 2019. Structure of outward-facing PglK and molecular dynamics of lipid-linked oligosaccharide recognition and translocation. Structure 27:669–78.e5
    [Google Scholar]
  91. 91.
    Rubino FA, Mollo A, Kumar S, Butler EK, Ruiz N et al. 2020. Detection of transport intermediates in the peptidoglycan flippase MurJ identifies residues essential for conformational cycling. J. Am. Chem. Soc. 142:5482–86
    [Google Scholar]
  92. 92.
    Boes A, Olatunji S, Mohammadi T, Breukink E, Terrak M. 2020. Fluorescence anisotropy assays for high throughput screening of compounds binding to lipid II, PBP1b, FtsW and MurJ. Sci. Rep. 10:6280
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-040320-105145
Loading
/content/journals/10.1146/annurev-biochem-040320-105145
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error