1932

Abstract

The persistence of the coronavirus disease 2019 (COVID-19) pandemic has resulted in increasingly disruptive impacts, and it has become the most devastating challenge to global health in a century. The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants challenges the currently available therapeutics for clinical application. Nonstructural proteins (also known as replicase proteins) with versatile biological functions play central roles in viral replication and transcription inside the host cells, and they are the most conserved target proteins among the SARS-CoV-2 variants. Specifically, they constitute the replication–transcription complexes (RTCs) dominating the synthesis of viral RNA. Knowledge of themolecular mechanisms of nonstructural proteins and their assembly into RTCs will benefit the development of antivirals targeting them against existing or potentially emerging variants. In this review, we summarize current knowledge of the structures and functions of coronavirus nonstructural proteins as well as the assembly and functions of RTCs in the life cycle of the virus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-052521-115653
2022-06-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-052521-115653.html?itemId=/content/journals/10.1146/annurev-biochem-052521-115653&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    WHO (World Health Organ.) 2022. WHO coronavirus disease (COVID-19) dashboard. World Health Organ. https://covid19.who.int/
    [Google Scholar]
  2. 2.
    Zhou P, Yang XL, Wang XG, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–73
    [Google Scholar]
  3. 3.
    Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121:190–93
    [Google Scholar]
  4. 4.
    McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. PNAS 57:933–40
    [Google Scholar]
  5. 5.
    Sola I, Almazán F, Zúñiga S, Enjuanes L. 2015. Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2:265–88
    [Google Scholar]
  6. 6.
    Robson F, Khan KS, Le TK, Paris C, Demirbag S et al. 2020. Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol. Cell 79:710–27
    [Google Scholar]
  7. 7.
    Lai MM, Stohlman SA. 1981. Comparative analysis of RNA genomes of mouse hepatitis viruses. J. Virol. 38:661–70
    [Google Scholar]
  8. 8.
    van Vliet ALW, Smits SL, Rottier PJM, de Groot RJ. 2002. Discontinuous and non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J 21:6571–80
    [Google Scholar]
  9. 9.
    Peng YH, Lin CH, Lin CN, Lo CY, Tsai TL, Wu HY. 2016. Characterization of the role of hexamer AGUAAA and poly(A) tail in coronavirus polyadenylation. PLOS ONE 11:e0165077
    [Google Scholar]
  10. 10.
    Bouvet M, Debarnot C, Imbert I, Selisko B, Snijder EJ et al. 2010. In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLOS Pathog 6:e1000863
    [Google Scholar]
  11. 11.
    Chen Y, Su C, Ke M, Jin X, Xu L et al. 2011. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLOS Pathog 7:e1002294
    [Google Scholar]
  12. 12.
    Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–56
    [Google Scholar]
  13. 13.
    Yan L, Ge J, Zheng L, Zhang Y, Gao Y et al. 2021. Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell 184:184–93.e10
    [Google Scholar]
  14. 14.
    Ivanov KA, Ziebuhr J. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J. Virol. 78:7833–38
    [Google Scholar]
  15. 15.
    Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78:5619–32
    [Google Scholar]
  16. 16.
    Chen Y, Cai H, Pan J, Xiang N, Tien P et al. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. PNAS 106:3484–89
    [Google Scholar]
  17. 17.
    Decroly E, Imbert I, Coutard B, Bouvet M, Selisko B et al. 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J. Virol. 82:8071–84
    [Google Scholar]
  18. 18.
    Wu A, Peng Y, Huang B, Ding X, Wang X et al. 2020. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27:325–28
    [Google Scholar]
  19. 19.
    Almeida MS, Johnson MA, Herrmann T, Geralt M, Wüthrich K. 2007. Novel β-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J. Virol. 81:3151–61
    [Google Scholar]
  20. 20.
    Semper C, Watanabe N, Savchenko A 2021. Structural characterization of nonstructural protein 1 from SARS-CoV-2. iScience 24:101903
    [Google Scholar]
  21. 21.
    Clark LK, Green TJ, Petit CM. 2021. Structure of nonstructural protein 1 from SARS-CoV-2. J. Virol. 95:e02019–20
    [Google Scholar]
  22. 22.
    Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B et al. 2020. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol. 27:959–66
    [Google Scholar]
  23. 23.
    Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T et al. 2020. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science 369:1249–55
    [Google Scholar]
  24. 24.
    Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC et al. 2020. Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol. Cell 80:1055–66.e6
    [Google Scholar]
  25. 25.
    Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T et al. 2008. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J. Virol. 82:4471–79
    [Google Scholar]
  26. 26.
    Kumar A, Ishida R, Strilets T, Cole J, Lopez-Orozco J et al. 2021. SARS-CoV-2 nonstructural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. J. Virol. 95:e0026621
    [Google Scholar]
  27. 27.
    Vankadari N, Jeyasankar NN, Lopes WJ. 2020. Structure of the SARS-CoV-2 Nsp1/5′-untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence. J. Phys. Chem. Lett. 11:9659–68
    [Google Scholar]
  28. 28.
    Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T et al. 2006. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. PNAS 103:12885–90
    [Google Scholar]
  29. 29.
    Kamitani W, Huang C, Narayanan K, Lokugamage KG, Makino S. 2009. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat. Struct. Mol. Biol. 16:1134–40
    [Google Scholar]
  30. 30.
    Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. 2012. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J. Virol. 86:11128–37
    [Google Scholar]
  31. 31.
    Kilkenny ML, Veale CE, Guppy A, Hardwick SW, Chirgadze DY et al. 2021. Structural basis for the interaction of SARS-CoV-2 virulence factor nsp1 with DNA polymerase α–primase. Protein Sci 31:333–44
    [Google Scholar]
  32. 32.
    Gadlage MJ, Graham RL, Denison MR. 2008. Murine coronaviruses encoding nsp2 at different genomic loci have altered replication, protein expression, and localization. J. Virol. 82:11964–69
    [Google Scholar]
  33. 33.
    Cornillez-Ty CT, Liao L, Yates JR III, Kuhn P, Buchmeier MJ. 2009. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 83:10314–18
    [Google Scholar]
  34. 34.
    Ziebuhr J, Snijder EJ, Gorbalenya AE. 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81:853–79
    [Google Scholar]
  35. 35.
    Imbert I, Snijder EJ, Dimitrova M, Guillemot JC, Lécine P, Canard B. 2008. The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res 133:136–48
    [Google Scholar]
  36. 36.
    Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA et al. 2011. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLOS Pathog 7:e1002331
    [Google Scholar]
  37. 37.
    van Hemert MJ, van den Worm SHE, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. 2008. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLOS Pathog 4:e1000054
    [Google Scholar]
  38. 38.
    Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. 2013. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio 4:e00524–13
    [Google Scholar]
  39. 39.
    Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J et al. 2006. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80:5927–40
    [Google Scholar]
  40. 40.
    Lei J, Kusov Y, Hilgenfeld R. 2018. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir. Res. 149:58–74
    [Google Scholar]
  41. 41.
    Clementz MA, Kanjanahaluethai A, O'Brien TE, Baker SC 2008. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. Virology 375:118–29
    [Google Scholar]
  42. 42.
    Oostra M, te Lintelo EG, Deijs M, Verheije MH, Rottier PJM, de Haan CAM. 2007. Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. J. Virol. 81:12323–36
    [Google Scholar]
  43. 43.
    Xu X, Lou Z, Ma Y, Chen X, Yang Z et al. 2009. Crystal structure of the C-terminal cytoplasmic domain of non-structural protein 4 from mouse hepatitis virus A59. PLOS ONE 4:e6217
    [Google Scholar]
  44. 44.
    Manolaridis I, Wojdyla JA, Panjikar S, Snijder EJ, Gorbalenya AE et al. 2009. Structure of the C-terminal domain of nsp4 from feline coronavirus. Acta Crystallogr. D Biol. Crystallogr. 65:839–46
    [Google Scholar]
  45. 45.
    Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P et al. 2011. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 7:1335–47
    [Google Scholar]
  46. 46.
    Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S et al. 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369:1395–98
    [Google Scholar]
  47. 47.
    Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–67
    [Google Scholar]
  48. 48.
    Yang H, Yang M, Ding Y, Liu Y, Lou Z et al. 2003. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. PNAS 100:13190–95
    [Google Scholar]
  49. 49.
    Xue X, Yu H, Yang H, Xue F, Wu Z et al. 2008. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol. 82:2515–27
    [Google Scholar]
  50. 50.
    Zhao Q, Li S, Xue F, Zou Y, Chen C et al. 2008. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J. Virol. 82:8647–55
    [Google Scholar]
  51. 51.
    Ren Z, Yan L, Zhang N, Guo Y, Yang C et al. 2013. The newly emerged SARS-like coronavirus HCoV-EMC also has an “Achilles' heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell 4:248–50
    [Google Scholar]
  52. 52.
    Lai MM, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48:1–100
    [Google Scholar]
  53. 53.
    Lu Y, Lu X, Denison MR. 1995. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J. Virol. 69:3554–59
    [Google Scholar]
  54. 54.
    Snijder EJ, Decroly E, Ziebuhr J. 2016. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96:59–126
    [Google Scholar]
  55. 55.
    Jin Z, Du X, Xu Y, Deng Y, Liu M et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289–93
    [Google Scholar]
  56. 56.
    Jin Z, Zhao Y, Sun Y, Zhang B, Wang H et al. 2020. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol. 27:529–32
    [Google Scholar]
  57. 57.
    Yang H, Xie W, Xue X, Yang K, Ma J et al. 2005. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLOS Biol 3:e324
    [Google Scholar]
  58. 58.
    Ghosh AK, Gong G, Grum-Tokars V, Mulhearn DC, Baker SC et al. 2008. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett. 18:5684–88
    [Google Scholar]
  59. 59.
    Yang H, Bartlam M, Rao Z. 2006. Drug design targeting the main protease, the Achilles' heel of coronaviruses. Curr. Pharm. Des. 12:4573–90
    [Google Scholar]
  60. 60.
    Bartlam M, Yang HT, Rao ZH. 2005. Structural insights into SARS coronavirus proteins. Curr. Opin. Struct. Biol. 15:664–72
    [Google Scholar]
  61. 61.
    Lou Z, Sun Y, Rao Z. 2014. Current progress in antiviral strategies. Trends Pharmacol. Sci. 35:86–102
    [Google Scholar]
  62. 62.
    Owen DR, Allerton CMN, Anderson AS, Aschenbrenner L, Avery M et al. 2021. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 374:1586–93
    [Google Scholar]
  63. 63.
    Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B et al. 2006. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25:4933–42
    [Google Scholar]
  64. 64.
    te Velthuis AJW, van den Worm SHE, Snijder EJ. 2012. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res 40:1737–47
    [Google Scholar]
  65. 65.
    Zhai Y, Sun F, Li X, Pang H, Xu X et al. 2005. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 12:980–86
    [Google Scholar]
  66. 66.
    Li S, Zhao Q, Zhang Y, Zhang Y, Bartlam M et al. 2010. New nsp8 isoform suggests mechanism for tuning viral RNA synthesis. Protein Cell 1:198–204
    [Google Scholar]
  67. 67.
    Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:779–82
    [Google Scholar]
  68. 68.
    Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. 2020. Structure of replicating SARS-CoV-2 polymerase. Nature 584:154–56
    [Google Scholar]
  69. 69.
    Wang Q, Wu J, Wang H, Gao Y, Liu Q et al. 2020. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182:417–28.e13
    [Google Scholar]
  70. 70.
    Egloff MP, Ferron F, Campanacci V, Longhi S, Rancurel C et al. 2004. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. PNAS 101:3792–96
    [Google Scholar]
  71. 71.
    Sutton G, Fry E, Carter L, Sainsbury S, Walter T et al. 2004. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12:341–53
    [Google Scholar]
  72. 72.
    Frieman M, Yount B, Agnihothram S, Page C, Donaldson E et al. 2012. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J. Virol. 86:884–97
    [Google Scholar]
  73. 73.
    Littler DR, Gully BS, Colson RN, Rossjohn J. 2020. Crystal structure of the SARS-CoV-2 non-structural protein 9, Nsp9. iScience 23:101258
    [Google Scholar]
  74. 74.
    Kleiger G, Grothe R, Mallick P, Eisenberg D. 2002. GXXXG and AXXXA: common α-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 41:5990–97
    [Google Scholar]
  75. 75.
    Miknis ZJ, Donaldson EF, Umland TC, Rimmer RA, Baric RS, Schultz LW. 2009. Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth. J. Virol. 83:3007–18
    [Google Scholar]
  76. 76.
    Yan L, Yang Y, Li M, Zhang Y, Zheng L et al. 2021. Coupling of N7-methyltransferase and 3′-5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 184:3474–85.e11
    [Google Scholar]
  77. 77.
    Su D, Lou Z, Sun F, Zhai Y, Yang H et al. 2006. Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J. Virol. 80:7902–8
    [Google Scholar]
  78. 78.
    Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B et al. 2011. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLOS Pathog 7:e1002059
    [Google Scholar]
  79. 79.
    Ma Y, Wu L, Shaw N, Gao Y, Wang J et al. 2015. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. PNAS 112:9436–41
    [Google Scholar]
  80. 80.
    Kirchdoerfer RN, Ward AB. 2019. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10:2342
    [Google Scholar]
  81. 81.
    Ziebuhr J. 2005. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 287:57–94
    [Google Scholar]
  82. 82.
    McDonald SM. 2013. RNA synthetic mechanisms employed by diverse families of RNA viruses. Wiley Interdiscip. Rev. RNA 4:351–67
    [Google Scholar]
  83. 83.
    Lehmann KC, Gulyaeva A, Zevenhoven-Dobbe JC, Janssen GM, Ruben M et al. 2015. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 43:8416–34
    [Google Scholar]
  84. 84.
    Walker AP, Fan H, Keown JR, Grimes JM, Fodor E. 2021. Identification of guanylyltransferase activity in the SARS-CoV-2 RNA polymerase. bioRxiv 2021.03.17.435913. https://doi.org/10.1101/2021.03.17.435913
    [Crossref]
  85. 85.
    Slanina H, Madhugiri R, Bylapudi G, Schultheiß K, Karl N et al. 2021. Coronavirus replication–transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. PNAS 118:e2022310118
    [Google Scholar]
  86. 86.
    Conti BJ, Kirchdoerfer RN, Sussman MR. 2020. Mass spectrometric based detection of protein nucleotidylation in the RNA polymerase of SARS-CoV-2. bioRxiv 2020.10.07.330324. https://doi.org/10.1101/2020.10.07.330324
    [Crossref]
  87. 87.
    Jia Z, Yan L, Ren Z, Wu L, Wang J et al. 2019. Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res 47:6538–50
    [Google Scholar]
  88. 88.
    Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM et al. 2020. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell 182:1560–73.e13
    [Google Scholar]
  89. 89.
    Yan L, Zhang Y, Ge J, Zheng L, Gao Y et al. 2020. Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat. Commun. 11:5874
    [Google Scholar]
  90. 90.
    Seybert A, van Dinten LC, Snijder EJ, Ziebuhr J. 2000. Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J. Virol. 74:9586–93
    [Google Scholar]
  91. 91.
    Seybert A, Hegyi A, Siddell SG, Ziebuhr J. 2000. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6:1056–68
    [Google Scholar]
  92. 92.
    Chen J, Wang Q, Malone B, Llewellyn E, Pechersky Y et al. 2021. Ensemble cryo-electron microscopy reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex. bioRxiv 2021.11.10.468168. https://doi.org/10.1101/2021.11.10.468168
    [Crossref]
  93. 93.
    Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C et al. 2006. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. PNAS 103:5108–13
    [Google Scholar]
  94. 94.
    Eckerle LD, Becker MM, Halpin RA, Li K, Venter E et al. 2010. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLOS Pathog 6:e1000896
    [Google Scholar]
  95. 95.
    Eckerle LD, Lu X, Sperry SM, Choi L, Denison MR. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J. Virol. 81:12135–44
    [Google Scholar]
  96. 96.
    Ferron F, Subissi L, Silveira De Morais AT, Le NTT, Sevajol M et al. 2018. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. PNAS 115:E162–71
    [Google Scholar]
  97. 97.
    Case JB, Ashbrook AW, Dermody TS, Denison MR. 2016. Mutagenesis of S-adenosyl-l-methionine-binding residues in coronavirus nsp14 N7-methyltransferase demonstrates differing requirements for genome translation and resistance to innate immunity. J. Virol. 90:7248–56
    [Google Scholar]
  98. 98.
    Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L et al. 2020. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–72
    [Google Scholar]
  99. 99.
    Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. 2019. The curious case of the nidovirus exoribonuclease: its role in RNA synthesis and replication fidelity. Front. Microbiol. 10:1813
    [Google Scholar]
  100. 100.
    Bouvet M, Imbert I, Subissi L, Gluais L, Canard B, Decroly E. 2012. RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. PNAS 109:9372–77
    [Google Scholar]
  101. 101.
    Pillon MC, Frazier MN, Dillard LB, Williams JG, Kocaman S et al. 2021. Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics. Nat. Commun. 12:636
    [Google Scholar]
  102. 102.
    Xu X, Zhai Y, Sun F, Lou Z, Su D et al. 2006. New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15. J. Virol. 80:7909–17
    [Google Scholar]
  103. 103.
    Zhang L, Li L, Yan L, Ming Z, Jia Z et al. 2018. Structural and biochemical characterization of endoribonuclease Nsp15 encoded by Middle East respiratory syndrome coronavirus. J. Virol. 92:e00893–18
    [Google Scholar]
  104. 104.
    Kang H, Bhardwaj K, Li Y, Palaninathan S, Sacchettini J et al. 2007. Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. J. Virol. 81:13587–97
    [Google Scholar]
  105. 105.
    Bhardwaj K, Guarino L, Kao CC. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J. Virol. 78:12218–24
    [Google Scholar]
  106. 106.
    Hackbart M, Deng X, Baker SC. 2020. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. PNAS 117:8094–103
    [Google Scholar]
  107. 107.
    Deng X, van Geelen A, Buckley AC, O'Brien A, Pillatzki A et al. 2019. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses. J. Virol. 93:e02000–18
    [Google Scholar]
  108. 108.
    Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J et al. 2017. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLOS Pathog 13:e1006195
    [Google Scholar]
  109. 109.
    Viswanathan T, Arya S, Chan SH, Qi S, Dai N et al. 2020. Structural basis of RNA cap modification by SARS-CoV-2. Nat. Commun. 11:3718
    [Google Scholar]
  110. 110.
    Krafcikova P, Silhan J, Nencka R, Boura E. 2020. Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat. Commun. 11:3717
    [Google Scholar]
  111. 111.
    Sun L, Li P, Ju X, Rao J, Huang W et al. 2021. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell 184:1865–83.e20
    [Google Scholar]
  112. 112.
    Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der Meer Y et al. 2008. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLOS Biol 6:e226
    [Google Scholar]
  113. 113.
    Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC et al. 2020. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLOS Biol 18:e3000715
    [Google Scholar]
  114. 114.
    Ulasli M, Verheije MH, de Haan CAM, Reggiori F. 2010. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol 12:844–61
    [Google Scholar]
  115. 115.
    Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–75
    [Google Scholar]
  116. 116.
    Luscombe NM, Austin SE, Berman HM, Thornton JM. 2000. An overview of the structures of protein-DNA complexes. Genome Biol 1:reviews001.1
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-052521-115653
Loading
/content/journals/10.1146/annurev-biochem-052521-115653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error