1932

Abstract

Nitrogenase is a versatile metalloenzyme that is capable of catalyzing two important reactions under ambient conditions: the reduction of nitrogen (N) to ammonia (NH), a key step in the global nitrogen cycle; and the reduction of carbon monoxide (CO) and carbon dioxide (CO) to hydrocarbons, two reactions useful for recycling carbon waste into carbon fuel. The molybdenum (Mo)- and vanadium (V)-nitrogenases are two homologous members of this enzyme family. Each of them contains a P-cluster and a cofactor, two high-nuclearity metalloclusters that have crucial roles in catalysis. This review summarizes the progress that has been made in elucidating the biosynthetic mechanisms of the P-cluster and cofactor species of nitrogenase, focusing on what is known about the assembly mechanisms of the two metalloclusters in Mo-nitrogenase and giving a brief account of the possible assembly schemes of their counterparts in V-nitrogenase, which are derived from the homology between the two nitrogenases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034108
2016-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/85/1/annurev-biochem-060614-034108.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034108&mimeType=html&fmt=ahah

Literature Cited

  1. Burgess BK, Lowe DJ. 1.  1996. Mechanism of molybdenum nitrogenase. Chem. Rev. 96:2983–3012 [Google Scholar]
  2. Howard JB, Rees DC. 2.  1996. Structural basis of biological nitrogen fixation. Chem. Rev. 96:2965–82 [Google Scholar]
  3. Eady RR. 3.  1996. Structure–function relationships of alternative nitrogenases. Chem. Rev. 96:3013–30 [Google Scholar]
  4. Ribbe MW, Hu Y, Hodgson KO, Hedman B. 4.  2014. Biosynthesis of nitrogenase metalloclusters. Chem. Rev. 114:4063–80 [Google Scholar]
  5. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. 5.  2014. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114:4041–62 [Google Scholar]
  6. Hu Y, Lee CC, Ribbe MW. 6.  2012. Vanadium nitrogenase: a two-hit wonder?. Dalton Trans. 41:1118–27 [Google Scholar]
  7. Lee CC, Hu Y, Ribbe MW. 7.  2010. Vanadium nitrogenase reduces CO. Science 329:642 [Google Scholar]
  8. Hu Y, Lee CC, Ribbe MW. 8.  2011. Extending the carbon chain: hydrocarbon formation catalyzed by vanadium/molybdenum nitrogenases. Science 333:753–55 [Google Scholar]
  9. Lee CC, Hu Y, Ribbe MW. 9.  2011. Tracing the hydrogen source of hydrocarbons formed by vanadium nitrogenase. Angew. Chem. Int. Ed. 50:5545–47 [Google Scholar]
  10. Rebelein JG, Hu Y, Ribbe MW. 10.  2014. Differential reduction of CO2 by molybdenum and vanadium nitrogenases. Angew. Chem. Int. Ed. 53:11543–46 [Google Scholar]
  11. Lee CC, Hu Y, Ribbe MW. 11.  2015. Catalytic reduction of CN, CO, and CO2 by nitrogenase cofactors in lanthanide-driven reactions. Angew. Chem. Int. Ed. 54:1219–22 [Google Scholar]
  12. Rebelein JG, Hu Y, Ribbe MW. 12.  2015. Widening the product profile of carbon dioxide reduction by vanadium nitrogenase. ChemBioChem 16:1993–96 [Google Scholar]
  13. Yang ZY, Dean DR, Seefeldt LC. 13.  2011. Molybdenum nitrogenase catalyzes the reduction and coupling of CO to form hydrocarbons. J. Biol. Chem. 286:19417–21 [Google Scholar]
  14. Yang ZY, Moure VR, Dean DR, Seefeldt LC. 14.  2012. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. PNAS 109:19644–48 [Google Scholar]
  15. Schlögl R. 15.  2003. Catalytic synthesis of ammonia—a “never-ending story”?. Angew. Chem. Int. Ed. 42:2004–8 [Google Scholar]
  16. Rofer-DePoorter CK. 16.  1981. A comprehensive mechanism for the Fischer-Tropsch synthesis. Chem. Rev. 81:447–74 [Google Scholar]
  17. Einsle O, Tezcan FA, Andrade SL, Schmid B, Yoshida M. 17.  et al. 2002. Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–700 [Google Scholar]
  18. Spatzal T, Aksoyoglu M, Zhang L, Andrade SL, Schleicher E. 18.  et al. 2011. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940 [Google Scholar]
  19. Kim J, Rees DC. 19.  1992. Crystallographic structure and functional implications of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:553–60 [Google Scholar]
  20. Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW. 20.  et al. 2011. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–77 [Google Scholar]
  21. Tezcan FA, Kaiser JT, Mustafi D, Walton MY, Howard JB. 21.  et al. 2005. Nitrogenase complexes: multiple docking sites for a nucleotide switch protein. Science 309:1377–80 [Google Scholar]
  22. Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC. 22.  1997. Structure of ADP•AIF4-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–76 [Google Scholar]
  23. Fay AW, Lee CC, Wiig JA, Hu Y, Ribbe MW. 23.  2011. Protocols for cofactor isolation of nitrogenase. Methods Mol. Biol. 766:239–48 [Google Scholar]
  24. Burgess BK. 24.  1990. The iron-molybdenum cofactor of nitrogenase. Chem. Rev. 90:1377–1406 [Google Scholar]
  25. Shah VK, Brill WJ. 25.  1977. Isolation of an iron-molybdenum cofactor from nitrogenase. PNAS 74:3249–53 [Google Scholar]
  26. Lee HI, Hales BJ, Hoffman BM. 26.  1997. Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J. Am. Chem. Soc. 119:11395–400 [Google Scholar]
  27. Yoo SJ, Angove HC, Papaefthymiou V, Burgess BK, Münck E. 27.  2000. Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J. Am. Chem. Soc. 122:4926–36 [Google Scholar]
  28. Wiig JA, Lee CC, Hu Y, Ribbe MW. 28.  2013. Tracing the interstitial carbide of the nitrogenase cofactor during substrate turnover. J. Am. Chem. Soc. 135:4982–83 [Google Scholar]
  29. Lee HI, Benton PM, Laryukhin M, Igarashi RY, Dean DR. 29.  et al. 2003. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. J. Am. Chem. Soc. 125:5604–5 [Google Scholar]
  30. Moret ME, Peters JC. 30.  2011. N2 functionalization at iron metallaboratranes. J. Am. Chem. Soc. 133:18118–21 [Google Scholar]
  31. Pierik AJ, Wassink H, Haaker H, Hagen WR. 31.  1993. Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur. J. Biochem 212:51–61 [Google Scholar]
  32. Surerus KK, Hendrich MP, Christie PD, Rottgardt D, Orme-Johnson WH. 32.  et al. 1992. Moessbauer and integer-spin EPR of the oxidized P-clusters of nitrogenase: POX is a non-Kramers system with a nearly degenerate ground doublet. J. Am. Chem. Soc. 114:8579–90 [Google Scholar]
  33. Watt GD, Burns A, Lough S, Tennent DL. 33.  1980. Redox and spectroscopic properties of oxidized MoFe protein from Azotobacter vinelandii. Biochemistry 19:4926–32 [Google Scholar]
  34. Chan MK, Kim J, Rees DC. 34.  1993. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science 260:792–94 [Google Scholar]
  35. Peters JW, Stowell MH, Soltis SM, Finnegan MG, Johnson MK. 35.  et al. 1997. Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–87 [Google Scholar]
  36. Joerger RD, Bishop PE. 36.  1988. Bacterial alternative nitrogen fixation systems. Crit. Rev. Microbiol. 16:1–14 [Google Scholar]
  37. Hales BJ. 37.  1990. Alternative nitrogenase. Adv. Inorg. Biochem. 8:165–98 [Google Scholar]
  38. Morningstar JE, Johnson MK, Case EE, Hales BJ. 38.  1987. Characterization of the metal clusters in the nitrogenase molybdenum–iron and vanadium–iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy. Biochemistry 26:1795–800 [Google Scholar]
  39. Harvey I, Arber JM, Eady RR, Smith BE, Garner CD. 39.  et al. 1990. Iron K-edge X-ray-absorption spectroscopy of the iron-vanadium cofactor of the vanadium nitrogenase from Azotobacter chroococcum. Biochem. J. 266:929–31 [Google Scholar]
  40. Blank MA, Lee CC, Hu Y, Hodgson KO, Hedman B. 40.  et al. 2011. Structural models of the [Fe4S4] clusters of homologous nitrogenase Fe proteins. Inorg. Chem. 50:7123–28 [Google Scholar]
  41. Lee CC, Hu Y, Ribbe MW. 41.  2009. Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. PNAS 106:9209–14 [Google Scholar]
  42. Fay AW, Blank MA, Lee CC, Hu Y, Hodgson KO. 42.  et al. 2010. Characterization of isolated nitrogenase FeVco. J. Am. Chem. Soc. 132:12612–18 [Google Scholar]
  43. Hu Y, Corbett MC, Fay AW, Webber JA, Hedman B. 43.  et al. 2005. Nitrogenase reactivity with P-cluster variants. PNAS 102:13825–30 [Google Scholar]
  44. Dos Santos PC, Dean DR, Hu Y, Ribbe MW. 44.  2004. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem. Rev. 104:1159–73 [Google Scholar]
  45. Kennedy C, Dean D. 45.  1992. The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:494–98 [Google Scholar]
  46. Zheng L, White RH, Cash VL, Dean DR. 46.  1994. Mechanism for the desulfurization of l-cysteine catalyzed by the nifS gene product. Biochemistry 33:4714–20 [Google Scholar]
  47. Zheng L, White RH, Cash VL, Jack RF, Dean DR. 47.  1993. Cysteine desulfurase activity indicates a role for NifS in metallocluster biosynthesis. PNAS 90:2754–58 [Google Scholar]
  48. Dos Santos PC, Johnson DC, Ragle BE, Unciuleac MC, Dean DR. 48.  2007. Controlled expression of nif and isc iron–sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J. Bacteriol. 189:2854–62 [Google Scholar]
  49. Smith AD, Jameson GNL, Dos Santos PC, Agar JN, Naik S. 49.  et al. 2005. NifS-mediated assembly of [4Fe-4S] clusters in the N- and C-terminal domains of the NifU scaffold protein. Biochemistry 44:12955–69 [Google Scholar]
  50. Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR. 50.  2000. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. PNAS 97:599–604 [Google Scholar]
  51. Zheng LM, Dean DR. 51.  1994. Catalytic formation of a nitrogenase iron–sulfur cluster. J. Biol. Chem. 269:18723–26 [Google Scholar]
  52. Christiansen J, Goodwin PJ, Lanzilotta WN, Seefeldt LC, Dean DR. 52.  1998. Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–23 [Google Scholar]
  53. Paustian TD, Shah VK, Roberts GP. 53.  1990. Apodinitrogenase: purification, association with a 20-kilodalton protein, and activation by the iron-molybdenum cofactor in the absence of dinitrogenase reductase. Biochemistry 29:3515–22 [Google Scholar]
  54. Hawkes TR, Smith BE. 54.  1983. Purification and characterization of the inactive MoFe protein (NifB-Kp1) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Biochem. J. 209:43–50 [Google Scholar]
  55. Hawkes TR, Smith BE. 55.  1984. The inactive MoFe protein (NifB-Kp1) of the nitrogenase from nifB mutants of Klebsiella pneumoniae: its interaction with FeMo-cofactor and the properties of the active MoFe protein formed. Biochem. J. 223:783–92 [Google Scholar]
  56. Shah VK, Allen JR, Spangler NJ, Ludden PW. 56.  1994. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase: purification and characterization of NifB cofactor, the product of NifB protein. J. Biol. Chem. 269:1154–58 [Google Scholar]
  57. Allen RM, Chatterjee R, Ludden PW, Shah VK. 57.  1995. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J. Biol. Chem. 270:26890–96 [Google Scholar]
  58. George SJ, Igarashi RY, Xiao Y, Hernandez JA, Demuez M. 58.  et al. 2008. Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom. J. Am. Chem. Soc. 130:5673–80 [Google Scholar]
  59. Rubio LM, Ludden PW. 59.  2008. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu. Rev. Microbiol. 62:93–111 [Google Scholar]
  60. Roll JT, Shah VK, Dean DR, Roberts GP. 60.  1995. Characteristics of NifNE in Azotobacter vinelandii strains: implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase. J. Biol. Chem 270:4432–37 [Google Scholar]
  61. Robinson AC, Burgess BK, Dean DR. 61.  1986. Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster. J. Bacteriol. 166:180–86 [Google Scholar]
  62. Filler WA, Kemp RM, Ng JC, Hawkes TR, Dixon RA. 62.  et al. 1986. The nifH gene product is required for the synthesis or stability of the iron-molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Eur. J. Biochem. 160:371–77 [Google Scholar]
  63. Robinson AC, Dean DR, Burgess BK. 63.  1987. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J. Biol. Chem. 262:14327–32 [Google Scholar]
  64. Hoover TR, Imperial J, Ludden PW, Shah VK. 64.  1988. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. BioFactors 1:199–205 [Google Scholar]
  65. Robinson AC, Chun TW, Li JG, Burgess BK. 65.  1989. Iron-molybdenum cofactor insertion into the apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. J. Biol. Chem. 264:10088–95 [Google Scholar]
  66. Tal S, Chun TW, Gavini N, Burgess BK. 66.  1991. The ΔnifB (or ΔnifE) FeMo cofactor-deficient MoFe protein is different from the ΔnifH protein. J. Biol. Chem. 266:10654–57 [Google Scholar]
  67. Gavini N, Burgess BK. 67.  1992. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity. J. Biol. Chem. 267:21179–86 [Google Scholar]
  68. Allen RM, Homer MJ, Chatterjee R, Ludden PW, Roberts GP. 68.  et al. 1993. Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter vinelandii. J. Biol. Chem. 268:23670–74 [Google Scholar]
  69. Rangaraj P, Ludden PW. 69.  2002. Accumulation of 99Mo-containing iron-molybdenum cofactor precursors of nitrogenase on NifNE, NifH, and NifX of Azotobacter vinelandii. J. Biol. Chem. 277:40106–11 [Google Scholar]
  70. Zheng LM, White RH, Dean DR. 70.  1997. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J. Bacteriol. 179:5963–66 [Google Scholar]
  71. Pau RN, Lawson DM. 71.  2002. Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met. Ions Biol. Syst. 39:31–74 [Google Scholar]
  72. Hernandez JA, Curatti L, Aznar CP, Perova Z, Britt RD. 72.  et al. 2008. Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor. PNAS 105:11679–84 [Google Scholar]
  73. Imperial J, Ugalde RA, Shah VK, Brill WJ. 73.  1984. Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J. Bacteriol. 158:187–94 [Google Scholar]
  74. Ugalde RA, Imperial J, Shah VK, Brill WJ. 74.  1985. Biosynthesis of the iron-molybdenum cofactor and the molybdenum cofactor in Klebsiella pneumoniae: effect of sulfur source. J. Bacteriol. 164:1081–87 [Google Scholar]
  75. Rangaraj P, Ruttimann-Johnson C, Shah VK, Ludden PW. 75.  2001. Accumulation of 55Fe-labeled precursors of the iron-molybdenum cofactor of nitrogenase on NifH and NifX of Azotobacter vinelandii. J. Biol. Chem. 276:15968–74 [Google Scholar]
  76. Homer MJ, Dean DR, Roberts GP. 76.  1995. Characterization of the γ protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J. Biol. Chem. 270:24745–52 [Google Scholar]
  77. Hernandez JA, Igarashi RY, Soboh B, Curatti L, Dean DR. 77.  et al. 2007. NifX and NifEN exchange NifB cofactor and the VK-cluster, a newly isolated intermediate of the iron-molybdenum cofactor biosynthetic pathway. Mol. Microbiol. 63:177–92 [Google Scholar]
  78. Rubio LM, Rangaraj P, Homer MJ, Roberts GP, Ludden PW. 78.  2002. Cloning and mutational analysis of the γ gene from Azotobacter vinelandii defines a new family of proteins capable of metallocluster binding and protein stabilization. J. Biol. Chem. 277:14299–305 [Google Scholar]
  79. Dean DR, Jacobson MR. 79.  1992. Biochemical genetics of nitrogenase. Biological Nitrogen Fixation G Stacey, RH Burris, HJ Evan 763–834 New York: Chapman & Hall [Google Scholar]
  80. Hu Y, Ribbe MW. 80.  2013. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. J. Biol. Chem. 288:13173–77 [Google Scholar]
  81. Hu Y, Ribbe MW. 81.  2013. Nitrogenase assembly. Biochim. Biophys. Acta 1827:1112–22 [Google Scholar]
  82. Hu Y, Ribbe MW. 82.  2011. Biosynthesis of nitrogenase FeMoco. Coord. Chem. Rev. 255:1218–24 [Google Scholar]
  83. Hu Y, Ribbe MW. 83.  2011. Biosynthesis of the metalloclusters of molybdenum nitrogenase. Microbiol. Mol. Biol. Rev. 75:664–77 [Google Scholar]
  84. Schwarz G, Mendel RR, Ribbe MW. 84.  2009. Molybdenum cofactors, enzymes and pathways. Nature 460:839–47 [Google Scholar]
  85. Hu Y, Fay AW, Lee CC, Yoshizawa J,, Ribbe MW. 85.  2008. Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–81 [Google Scholar]
  86. Schmid B, Ribbe MW, Einsle O, Yoshida M, Thomas LM. 86.  et al. 2002. Structure of a cofactor-deficient nitrogenase MoFe protein. Science 296:352–56 [Google Scholar]
  87. Wiig JA, Hu Y, Ribbe MW. 87.  2011. NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. PNAS 108:8623–27 [Google Scholar]
  88. Kaiser JT, Hu Y, Wiig JA, Rees DC, Ribbe MW. 88.  2011. Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331:91–94 [Google Scholar]
  89. Fay AW, Blank MA, Lee CC, Hu Y, Hodgson KO. 89.  et al. 2011. Spectroscopic characterization of the isolated iron-molybdenum cofactor (FeMoco) precursor from the protein NifEN. Angew. Chem. Int. Ed. 50:7787–90 [Google Scholar]
  90. Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B. 90.  et al. 2006. Structural insights into a protein-bound iron-molybdenum cofactor precursor. PNAS 103:1238–43 [Google Scholar]
  91. Lancaster KM, Hu Y, Bergmann U, Ribbe MW, Debeer S. 91.  2013. X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J. Am. Chem. Soc. 136:610–12 [Google Scholar]
  92. Hutcheson RU, Broderick JB. 92.  2012. Radical SAM enzymes in methylation and methylthiolation. Metallomics 4:1149–54 [Google Scholar]
  93. Booker SJ. 93.  2012. Radical SAM enzymes and radical enzymology. Biochim. Biophys. Acta 1824:1151–53 [Google Scholar]
  94. Zhang Q, van der Donk WA, Liu W. 94.  2012. Radical-mediated enzymatic methylation: a tale of two SAMS. Acc. Chem. Res. 45:555–64 [Google Scholar]
  95. Wiig JA, Hu Y, Lee CC, Ribbe MW. 95.  2012. Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337:1672–75 [Google Scholar]
  96. Boal AK, Rosenzweig AC. 96.  2012. Biochemistry: a radical route for nitrogenase carbide insertion. Science 337:1617–18 [Google Scholar]
  97. Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ. 97.  et al. 2011. Structural basis for methyl transfer by a radical SAM enzyme. Science 332:1089–92 [Google Scholar]
  98. Grove TL, Benner JS, Radle MI, Ahlum JH, Landgraf BJ. 98.  et al. 2011. A radically different mechanism for S-adenosylmethionine-dependent methyltransferases. Science 332:604–7 [Google Scholar]
  99. Wiig JA, Hu Y, Ribbe MW. 99.  2015. Refining the pathway of carbide insertion into the nitrogenase M-cluster. Nat. Commun. 6:8034 [Google Scholar]
  100. Frey PA, Hegeman AD, Ruzicka FJ. 100.  2008. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43:63–88 [Google Scholar]
  101. Landgraf BJ, Arcinas AJ, Lee KH, Booker SJ. 101.  2013. Identification of an intermediate methyl carrier in the radical S-adenosylmethionine methylthiotransferases RimO and MiaB. J. Am. Chem. Soc. 135:15404–16 [Google Scholar]
  102. Forouhar F, Arragain S, Atta M, Gambarelli S, Mouesca JM. 102.  et al. 2013. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat. Chem. Biol. 9:333–38 [Google Scholar]
  103. Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC. 103.  et al. 2015. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. PNAS 112:1362–67 [Google Scholar]
  104. Knauer SH, Buckel W, Dobbek H. 104.  2011. Structural basis for reductive radical formation and electron recycling in (R)-2-hydroxyisocaproyl-CoA dehydratase. J. Am. Chem. Soc. 133:4342–47 [Google Scholar]
  105. Brigle KE, Weiss MC, Newton WE, Dean DR. 105.  1987. Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK. J. Bacteriol. 169:1547–53 [Google Scholar]
  106. Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK. 106.  et al. 1998. The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–28 [Google Scholar]
  107. Hu Y, Fay AW, Ribbe MW. 107.  2005. Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. PNAS 102:3236–41 [Google Scholar]
  108. Hu Y, Corbett MC, Fay AW, Webber JA, Hodgson KO. 108.  et al. 2006. Nitrogenase Fe protein: a molybdate/homocitrate insertase. PNAS 103:17125–30 [Google Scholar]
  109. Hu Y, Corbett MC, Fay AW, Webber JA, Hodgson KO. 109.  et al. 2006. FeMo cofactor maturation on NifEN. PNAS 103:17119–24 [Google Scholar]
  110. Yoshizawa JM, Blank MA, Fay AW, Lee CC, Wiig JA. 110.  et al. 2009. Optimization of FeMoco maturation on NifEN. J. Am. Chem. Soc. 131:9321–25 [Google Scholar]
  111. Fay AW, Blank MA, Yoshizawa JM, Lee CC, Wiig JA. 111.  et al. 2010. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly. Dalton Trans. 39:3124–30 [Google Scholar]
  112. Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ. 112.  et al. 1992. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257:1653–59 [Google Scholar]
  113. Yoshizawa JM, Fay AW, Lee CC, Hu Y, Ribbe MW. 113.  2010. Insertion of heterometals into the NifEN-associated iron-molybdenum cofactor precursor. J. Biol. Inorg. Chem. 15:421–28 [Google Scholar]
  114. Fay AW, Hu Y, Schmid B, Ribbe MW. 114.  2007. Molecular insights into nitrogenase FeMoco insertion—the role of His 274 and His 451 of MoFe protein α subunit. J. Inorg. Biochem. 101:1630–41 [Google Scholar]
  115. Hu Y, Fay AW, Ribbe MW. 115.  2007. Molecular insights into nitrogenase FeMo cofactor insertion: the role of His 362 of the MoFe protein α subunit in FeMo cofactor incorporation. J. Biol. Inorg. Chem. 12:449–60 [Google Scholar]
  116. Hu Y, Fay AW, Schmid B, Makar N, Ribbe MW. 116.  2006. Molecular insights into nitrogenase FeMoco insertion: Trp-444 of MoFe protein α-subunit locks FeMoco in its binding site. J. Biol. Chem. 281:30534–41 [Google Scholar]
  117. Corbett MC, Hu Y, Fay AW, Tsuruta H, Ribbe MW. 117.  et al. 2007. Conformational differences between Azotobacter vinelandii nitrogenase MoFe proteins as studied by small-angle X-ray scattering. Biochemistry 46:8066–74 [Google Scholar]
  118. Ribbe MW, Hu Y, Guo M, Schmid B, Burgess BK. 118.  2002. The FeMoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features. J. Biol. Chem. 277:23469–76 [Google Scholar]
  119. Corbett MC, Hu Y, Naderi F, Ribbe MW, Hedman B. 119.  et al. 2004. Comparison of iron-molybdenum cofactor-deficient nitrogenase MoFe proteins by X-ray absorption spectroscopy: implications for P-cluster biosynthesis. J. Biol. Chem. 279:28276–82 [Google Scholar]
  120. Lee CC, Blank MA, Fay AW, Yoshizawa JM, Hu Y. 120.  et al. 2009. Stepwise formation of P-cluster in nitrogenase MoFe protein. PNAS 106:18474–78 [Google Scholar]
  121. Broach RB, Rupnik K, Hu Y, Fay AW, Cotton M. 121.  et al. 2006. Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of the metal clusters in the ΔnifB and ΔnifH MoFe proteins of nitrogenase from Azotobacter vinelandii. Biochemistry 45:15039–48 [Google Scholar]
  122. Rupnik K, Lee CC, Hu Y, Ribbe MW, Hales BJ. 122.  2011. [4Fe4S]2+ clusters exhibit ground-state para-magnetism. J. Am. Chem. Soc. 133:6871–73 [Google Scholar]
  123. Ohki Y, Tanifuji K, Yamada N, Cramer RE, Tatsumi K. 123.  2012. Formation of a nitrogenase P-cluster [Fe8S7] core via reductive fusion of two all-ferric [Fe4S4] clusters. Chem. Asian J. 7:2222–24 [Google Scholar]
  124. Hu Y, Fay AW, Dos Santos PC, Naderi F, Ribbe MW. 124.  2004. Characterization of Azotobacter vinelandii nifZ deletion strains: indication of stepwise MoFe protein assembly. J. Biol. Chem. 279:54963–71 [Google Scholar]
  125. Cotton MS, Rupnik K, Broach RB, Hu Y, Fay AW. 125.  et al. 2009. VTVH-MCD study of the ΔnifBΔnifZ MoFe protein from Azotobacter vinelandii. J. Am. Chem. Soc. 131:4558–59 [Google Scholar]
  126. Hu Y, Fay AW, Lee CC, Ribbe MW. 126.  2007. P-cluster maturation on nitrogenase MoFe protein. PNAS 104:10424–29 [Google Scholar]
  127. Jeoung JH, Giese T, Grünwald M, Dobbek H. 127.  2009. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase. Biochemistry 48:11505–13 [Google Scholar]
  128. Peters JW, Broderick JB. 128.  2012. Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu. Rev. Biochem. 81:429–50 [Google Scholar]
  129. Duffus BR, Hamilton TL, Shepard EM, Boyd ES, Peters JW. 129.  et al. 2012. Radical AdoMet enzymes in complex metal cluster biosynthesis. Biochim. Biophys. Acta 1824:1254–63 [Google Scholar]
  130. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J. 130.  et al. 2013. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69 [Google Scholar]
  131. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G. 131.  et al. 2013. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9:607–9 [Google Scholar]
  132. Zhang Y, Holm RH. 132.  2004. Structural conversions of molybdenum-iron-sulfur edge-bridged double cubanes and PN-type clusters topologically related to the nitrogenase P-cluster. Inorg. Chem. 43:674–82 [Google Scholar]
  133. Zhang Y, Zuo JL, Zhou HC, Holm RH. 133.  2002. Rearrangement of symmetrical dicubane clusters into topological analogues of the P cluster of nitrogenase: nature's choice?. J. Am. Chem. Soc. 124:14292–93 [Google Scholar]
  134. Zhang Y, Holm RH. 134.  2003. Synthesis of a molecular Mo2Fe6S9 cluster with the topology of the PN cluster of nitrogenase by rearrangement of an edge-bridged Mo2Fe6S8 double cubane. J. Am. Chem. Soc. 125:3910–20 [Google Scholar]
  135. Moser J, Langem C, Krausze J, Rebelein J, Schubert WD. 135.  et al. 2013. Structure of ADP-aluminium fluoride-stabilized protochlorophyllide oxidoreductase complex. PNAS 110:2094–98 [Google Scholar]
  136. Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD. 136.  et al. 2010. Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J. Biol. Chem. 285:27336–45 [Google Scholar]
  137. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T. 137.  et al. 2010. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–14 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034108
Loading
/content/journals/10.1146/annurev-biochem-060614-034108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error