1932

Abstract

Lamins are intermediate filament proteins that form a scaffold, termed nuclear lamina, at the nuclear periphery. A small fraction of lamins also localize throughout the nucleoplasm. Lamins bind to a growing number of nuclear protein complexes and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, gene regulation, genome stability, differentiation, and tissue-specific functions. The lamin-based complexes and their specific functions also provide insights into possible disease mechanisms for human laminopathies, ranging from muscular dystrophy to accelerated aging, as observed in Hutchinson–Gilford progeria and atypical Werner syndromes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034115
2015-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034115.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034115&mimeType=html&fmt=ahah

Literature Cited

  1. Pappas GD. 1.  1956. The fine structure of the nuclear envelope of Amoeba proteus. J. Biophys. Biochem. Cytol. 2:Suppl.431–34 [Google Scholar]
  2. Fawcett DW. 2.  1966. On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am. J. Anat. 119:129–45 [Google Scholar]
  3. Aaronson RP, Blobel G. 3.  1975. Isolation of nuclear pore complexes in association with a lamina. PNAS 72:1007–11 [Google Scholar]
  4. Gerace L, Blum A, Blobel G. 4.  1978. Immunocytochemical localization of the major polypeptides of the nuclear pore complex–lamina fraction. Interphase and mitotic distribution. J. Cell Biol. 79:546–66 [Google Scholar]
  5. McKeon FD, Kirschner MW, Caput D. 5.  1986. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–68 [Google Scholar]
  6. Fisher DZ, Chaudhary N, Blobel G. 6.  1986. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. PNAS 83:6450–54 [Google Scholar]
  7. Krohne G, Wolin SL, McKeon FD, Franke WW, Kirschner MW. 7.  1987. Nuclear lamin LI of Xenopus laevis: cDNA cloning, amino acid sequence and binding specificity of a member of the lamin B subfamily. EMBO J. 6:3801–08 [Google Scholar]
  8. Gruenbaum Y, Landesman Y, Drees B, Bare JW, Saumweber H. 8.  et al. 1988. Drosophila nuclear lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene. J. Cell Biol. 106:585–96 [Google Scholar]
  9. Lehner CF, Stick R, Eppenberger HM, Nigg EA. 9.  1987. Differential expression of nuclear lamin proteins during chicken development. J. Cell Biol. 105:577–87 [Google Scholar]
  10. Rober RA, Weber K, Osborn M. 10.  1989. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–78 [Google Scholar]
  11. Stewart C, Burke B. 11.  1987. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51:383–92 [Google Scholar]
  12. Rusinol AE, Sinensky MS. 12.  2006. Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors. J. Cell Sci. 119:3265–72 [Google Scholar]
  13. Firmbach-Kraft I, Stick R. 13.  1993. The role of CaaX-dependent modifications in membrane association of Xenopus nuclear lamin B3 during meiosis and the fate of B3 in transfected mitotic cells. J. Cell Biol. 123:1661–70 [Google Scholar]
  14. Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD. 14.  2013. Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 4:142–50 [Google Scholar]
  15. Moir RD, Yoon M, Khuon S, Goldman RD. 15.  2000. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151:1155–68 [Google Scholar]
  16. Naetar N, Korbei B, Kozlov S, Kerenyi MA, Dorner D. 16.  et al. 2008. Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat. Cell Biol. 10:1341–48 [Google Scholar]
  17. Lyakhovetsky R, Gruenbaum Y. 17.  2014. Studying lamins in invertebrate models. Adv. Exp. Med. Biol. 773:245–62 [Google Scholar]
  18. Zimek A, Weber K. 18.  2011. Flanking genes of an essential gene give information about the evolution of metazoa. Eur. J. Cell Biol. 90:1263–72 [Google Scholar]
  19. Peter A, Stick R. 19.  2012. Evolution of the lamin protein family: what introns can tell. Nucleus 3:44–59 [Google Scholar]
  20. Bank EM, Gruenbaum Y. 20.  2011. Caenorhabditis elegans as a model system for studying the nuclear lamina and laminopathic diseases. Nucleus 2:350–57 [Google Scholar]
  21. Riemer D, Wang J, Zimek A, Swalla BJ, Weber K. 21.  2000. Tunicates have unusual nuclear lamins with a large deletion in the carboxyterminal tail domain. Gene 255:317–25 [Google Scholar]
  22. Riemer D, Weber K. 22.  1994. The organization of the gene for Drosophila lamin C: limited homology with vertebrate lamin genes and lack of homology versus the Drosophila lamin Dmo gene. Eur. J. Cell Biol. 63:299–306 [Google Scholar]
  23. Hofemeister H, Kuhn C, Franke WW, Weber K, Stick R. 23.  2002. Conservation of the gene structure and membrane-targeting signals of germ cell–specific lamin LIII in amphibians and fish. Eur. J. Cell Biol. 81:51–60 [Google Scholar]
  24. Zimek A, Stick R, Weber K. 24.  2003. Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J. Cell Sci. 116:2295–302 [Google Scholar]
  25. Krüger A, Batsios P, Baumann O, Luckert E, Schwarz H. 25.  et al. 2012. Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Mol. Biol. Cell 23:360–70 [Google Scholar]
  26. DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M. 26.  et al. 2012. NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLOS Biol. 10:e1001287 [Google Scholar]
  27. Ciska M, Masuda K, Moreno Díaz de la Espina S. 27.  2013. Lamin-like analogues in plants: the characterization of NMCP1 in Allium cepa. J. Exp. Bot. 64:1553–64 [Google Scholar]
  28. Graumann K. 28.  2014. Evidence for LINC1-sun associations at the plant nuclear periphery. PLOS ONE 9:e93406 [Google Scholar]
  29. Steinert PM, Roop DR. 29.  1988. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57:593–625 [Google Scholar]
  30. Herrmann H, Aebi U. 30.  2004. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annu. Rev. Biochem. 74:749–89 [Google Scholar]
  31. Aebi U, Cohn J, Buhle L, Gerace L. 31.  1986. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323:560–64 [Google Scholar]
  32. Dittmer TA, Misteli T. 32.  2011. The lamin protein family. Genome Biol. 12:222 [Google Scholar]
  33. Heitlinger E, Peter M, Haner M, Lustig A, Aebi U, Nigg EA. 33.  1991. Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions. J. Cell Biol. 113:485–95 [Google Scholar]
  34. Klapper M, Exner K, Kempf A, Gehrig C, Stuurman N. 34.  et al. 1997. Assembly of A- and B-type lamins studied in vivo with the baculovirus system. J. Cell Sci. 110:2519–32 [Google Scholar]
  35. Karabinos A, Schunemann J, Meyer M, Aebi U, Weber K. 35.  2003. The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity. J. Mol. Biol. 325:241–47 [Google Scholar]
  36. Foeger N, Wiesel N, Lotsch D, Mucke N, Kreplak L. 36.  et al. 2006. Solubility properties and specific assembly pathways of the B-type lamin from Caenorhabditis elegans. J. Struct. Biol. 155:340–50 [Google Scholar]
  37. Ben-Harush K, Wiesel N, Frenkiel-Krispin D, Moeller D, Soreq E. 37.  et al. 2009. The supramolecular organization of the C. elegans nuclear lamin filament. J. Mol. Biol. 386:1392–402 [Google Scholar]
  38. Grossmann E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O. 38.  2011. Filament assembly of ectopically expressed C. elegans lamin within Xenopus oocytes. J. Struct. Biol. 177:113–18 [Google Scholar]
  39. Taimen P, Pfleghaar K, Shimi T, Möller D, Ben-Harush K. 39.  et al. 2009. A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. PNAS 106:20788–93 [Google Scholar]
  40. Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M. 40.  et al. 2013. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22:2335–49 [Google Scholar]
  41. Bank EM, Ben-Harush K, Wiesel-Motiuk N, Barkan R, Feinstein N. 41.  et al. 2011. A laminopathic mutation disrupting lamin filament assembly causes disease-like phenotypes in Caenorhabditis elegans. Mol. Biol. Cell 22:2716–28 [Google Scholar]
  42. Wiesel N, Mattout A, Melcer S, Melamed-Book N, Herrmann H. 42.  et al. 2008. Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins. PNAS 105:180–85 [Google Scholar]
  43. Schirmer EC, Guan T, Gerace L. 43.  2001. Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J. Cell Biol. 153:479–90 [Google Scholar]
  44. Kolb T, Maass K, Hergt M, Aebi U, Herrmann H. 44.  2011. Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus 2:425–33 [Google Scholar]
  45. Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M. 45.  et al. 2006. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Investig. 116:743–52 [Google Scholar]
  46. Kapinos LE, Schumacher J, Mücke N, Machaidze G, Burkhard P. 46.  et al. 2010. Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 “half-minilamin” dimers. J. Mol. Biol. 396:719–31 [Google Scholar]
  47. Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R. 47.  2008. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 121:215–25 [Google Scholar]
  48. Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N. 48.  et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–20 [Google Scholar]
  49. Kim Y, Sharov AA, McDole K, Cheng M, Hao H. 49.  et al. 2011. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334:1706–10 [Google Scholar]
  50. Yang SH, Chang SY, Yin L, Tu Y, Hu Y. 50.  et al. 2011. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 20:3537–44 [Google Scholar]
  51. Guo Y, Kim Y, Shimi T, Goldman RD, Zheng Y. 51.  2014. Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins. Mol. Biol. Cell 25:1287–97 [Google Scholar]
  52. Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I. 52.  et al. 2008. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22:3409–21 [Google Scholar]
  53. Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, Olvera de la Cruz M. 53.  2013. Mechanical model of blebbing in nuclear lamin meshworks. PNAS 110:3248–53 [Google Scholar]
  54. Liu J, Rolef-Ben Shahar T, Riemer D, Spann P, Treinin M. 54.  et al. 2000. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11:3937–47 [Google Scholar]
  55. Lenz-Böhme B, Wismar J, Fuchs S, Reifegerste R, Buchner E. 55.  et al. 1997. Insertional mutation of the Drosophila nuclear lamin Dm0 gene results in defective nuclear envelopes, clustering of nuclear pore complexes, and accumulation of annulate lamellae. J. Cell Biol. 137:1001–16 [Google Scholar]
  56. Schulze SR, Curio-Penny B, Speese S, Dialynas G, Cryderman DE. 56.  et al. 2009. A comparative study of Drosophila and human A-type lamins. PLOS ONE 4:e7564 [Google Scholar]
  57. van Engelen BG, Muchir A, Hutchison CJ, van der Kooi AJ, Bonne G, Lammens M. 57.  2005. The lethal phenotype of a homozygous nonsense mutation in the lamin A/C gene. Neurology 64:374–76 [Google Scholar]
  58. Davidson PM, Lammerding J. 58.  2014. Broken nuclei—lamins, nuclear mechanics, and disease. Trends Cell Biol. 24:247–56 [Google Scholar]
  59. Broers JL, Peeters EA, Kuijpers HJ, Endert J, Bouten CV. 59.  et al. 2004. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity. Implications for the development of laminopathies. Hum. Mol. Genet. 13:2567–80 [Google Scholar]
  60. Dahl KN, Kahn SM, Wilson KL, Discher DE. 60.  2004. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117:4779–86 [Google Scholar]
  61. Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL. 61.  et al. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–80 [Google Scholar]
  62. Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T. 62.  et al. 2004. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Investig. 113:370–78 [Google Scholar]
  63. Shin JW, Spinler KR, Swift J, Chasis JA, Mohandas N, Discher DE. 63.  2013. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. PNAS 110:18892–97 [Google Scholar]
  64. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. 64.  et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  65. Harada T, Swift J, Irianto J, Shin JW, Spinler KR. 65.  et al. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–82 [Google Scholar]
  66. Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant IA. 66.  et al. 2013. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288:8610–18 [Google Scholar]
  67. De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F. 67.  et al. 2011. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20:4175–86 [Google Scholar]
  68. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. 68.  2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60 [Google Scholar]
  69. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW. 69.  2012. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3:88–100 [Google Scholar]
  70. Ferrera D, Canale C, Marotta R, Mazzaro N, Gritti M. 70.  et al. 2014. Lamin B1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts. FASEB J. 28:3906–18 [Google Scholar]
  71. Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, Lammerding J. 71.  2011. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286:26743–53 [Google Scholar]
  72. Bainer R, Weaver V. 72.  2013. Cell biology. Strength under tension. Science 341:965–66 [Google Scholar]
  73. Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT. 73.  2005. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J. Cell Biol. 170:781–91 [Google Scholar]
  74. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. 74.  2013. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–11 [Google Scholar]
  75. Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R. 75.  et al. 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–81 [Google Scholar]
  76. Belmont AS, Zhai Y, Thilenius A. 76.  1993. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 123:1671–85 [Google Scholar]
  77. Cremer T, Cremer M. 77.  2010. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2:a003889 [Google Scholar]
  78. Gruenbaum Y, Hochstrasser M, Mathog D, Saumweber H, Agard DA, Sedat JW. 78.  1984. Spatial organization of the Drosophila nucleus: a three-dimensional cytogenetic study. J. Cell Sci. Suppl. 1:223–34 [Google Scholar]
  79. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. 79.  1999. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol. 145:1119–31 [Google Scholar]
  80. Zuleger N, Robson MI, Schirmer EC. 80.  2011. The nuclear envelope as a chromatin organizer. Nucleus 2:339–49 [Google Scholar]
  81. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B. 81.  2006. Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet. 38:1005–14 [Google Scholar]
  82. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB. 82.  et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51 [Google Scholar]
  83. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I. 83.  et al. 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell 38:603–13 [Google Scholar]
  84. Meuleman W, Peric-Hupkes D, Kind J, Beaudry JB, Pagie L. 84.  et al. 2013. Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23:270–80 [Google Scholar]
  85. Kind J, van Steensel B. 85.  2014. Stochastic genome-nuclear lamina interactions: modulating roles of lamin A and BAF. Nucleus 5:124–30 [Google Scholar]
  86. Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T. 86.  et al. 2013. Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27:1800–8 [Google Scholar]
  87. Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM. 87.  et al. 2013. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27:1787–99 [Google Scholar]
  88. Lund E, Oldenburg AR, Delbarre E, Freberg CT, Duband-Goulet I. 88.  et al. 2013. Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res. 23:1580–89 [Google Scholar]
  89. Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V. 89.  et al. 2012. Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–47 [Google Scholar]
  90. Ikegami K, Egelhofer TA, Strome S, Lieb JD. 90.  2010. Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome Biol. 11:R120 [Google Scholar]
  91. Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E. 91.  et al. 2008. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLOS Genet. 4:e1000039 [Google Scholar]
  92. Kumaran RI, Spector DL. 92.  2008. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180:51–65 [Google Scholar]
  93. Reddy KL, Zullo JM, Bertolino E, Singh H. 93.  2008. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–47 [Google Scholar]
  94. Dialynas G, Speese S, Budnik V, Geyer PK, Wallrath LL. 94.  2010. The role of Drosophila lamin C in muscle function and gene expression. Development 137:3067–77 [Google Scholar]
  95. Goldberg M, Harel A, Brandeis M, Rechsteiner T, Richmond TJ. 95.  et al. 1999. The tail domain of lamin Dm0 binds histones H2A and H2B. PNAS 96:2852–57 [Google Scholar]
  96. Mattout A, Goldberg M, Tzur Y, Margalit A, Gruenbaum Y. 96.  2007. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. J. Cell Sci. 120:77–85 [Google Scholar]
  97. Taniura H, Glass C, Gerace L. 97.  1995. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J. Cell Biol. 131:33–44 [Google Scholar]
  98. Yuan J, Simos G, Blobel G, Georgatos SD. 98.  1991. Binding of lamin A to polynucleosomes. J. Biol. Chem. 266:9211–15 [Google Scholar]
  99. Luderus ME, de Graaf A, Mattia E, den Blaauwen JL, Grande MA. 99.  et al. 1992. Binding of matrix attachment regions to lamin B1. Cell 70:949–59 [Google Scholar]
  100. Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R. 100.  1994. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol. Cell. Biol. 14:6297–305 [Google Scholar]
  101. Zhao K, Harel A, Stuurman N, Guedalia D, Gruenbaum Y. 101.  1996. Binding of matrix attachment regions to nuclear lamin is mediated by the rod domain and depends on the lamin polymerization state. FEBS Lett. 380:161–64 [Google Scholar]
  102. Stierle V, Couprie J, Ostlund C, Krimm I, Zinn-Justin S. 102.  et al. 2003. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry 42:4819–28 [Google Scholar]
  103. Glass CA, Glass JR, Taniura H, Hasel KW, Blevitt JM, Gerace L. 103.  1993. The alpha-helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J. 12:4413–24 [Google Scholar]
  104. Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ. 104.  2007. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176:593–603 [Google Scholar]
  105. Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S. 105.  et al. 2013. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–98 [Google Scholar]
  106. Cohen M, Tzur YB, Neufeld E, Feinstein N, Delannoy MR. 106.  et al. 2002. Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos. J. Struct. Biol. 140:232–40 [Google Scholar]
  107. Lee DC, Welton KL, Smith ED, Kennedy BK. 107.  2009. A-type nuclear lamins act as transcriptional repressors when targeted to promoters. Exp. Cell Res. 315:996–1007 [Google Scholar]
  108. Ye Q, Worman HJ. 108.  1996. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271:14653–56 [Google Scholar]
  109. Hirano Y, Hizume K, Kimura H, Takeyasu K, Haraguchi T, Hiraoka Y. 109.  2012. Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation. J. Biol. Chem. 287:42654–63 [Google Scholar]
  110. Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB. 110.  et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149:1474–87 [Google Scholar]
  111. Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG. 111.  et al. 2001. Nuclear membrane protein LAP2β mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J. Cell Sci. 114:3297–307 [Google Scholar]
  112. Somech R, Shaklai S, Geller O, Amariglio N, Simon AJ. 112.  et al. 2005. The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation. J. Cell Sci. 118:4017–25 [Google Scholar]
  113. Demmerle J, Koch AJ, Holaska JM. 113.  2012. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J. Biol. Chem. 287:22080–88 [Google Scholar]
  114. Brachner A, Foisner R. 114.  2011. Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem. Soc. Trans. 39:1735–41 [Google Scholar]
  115. Margalit A, Brachner A, Gotzmann J, Foisner R, Gruenbaum Y. 115.  2007. Barrier-to-autointegration factor—a BAFfling little protein. Trends Cell Biol. 17:202–8 [Google Scholar]
  116. Amendola M, van Steensel B. 116.  2014. Mechanisms and dynamics of nuclear lamina-genome interactions. Curr. Opin. Cell Biol. 28C:61–68 [Google Scholar]
  117. Yaffe E, Tanay A. 117.  2011. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 43:1059–65 [Google Scholar]
  118. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W. 118.  et al. 2013. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154:914–27 [Google Scholar]
  119. Ottaviani A, Rival-Gervier S, Boussouar A, Foerster AM, Rondier D. 119.  et al. 2009. The D4Z4 macrosatellite repeat acts as a CTCF and A-type lamins–dependent insulator in facio-scapulo-humeral dystrophy. PLOS Genet. 5:e1000394 [Google Scholar]
  120. Ottaviani A, Schluth-Bolard C, Rival-Gervier S, Boussouar A, Rondier D. 120.  et al. 2009. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF. EMBO J. 28:2428–36 [Google Scholar]
  121. Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS. 121.  et al. 2013. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–92 [Google Scholar]
  122. Bian Q, Khanna N, Alvikas J, Belmont AS. 122.  2013. β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J. Cell Biol. 203:767–83 [Google Scholar]
  123. Milon BC, Cheng H, Tselebrovsky MV, Lavrov SA, Nenasheva VV. 123.  et al. 2012. Role of histone deacetylases in gene regulation at nuclear lamina. PLOS ONE 7:e49692 [Google Scholar]
  124. Meister P, Towbin BD, Pike BL, Ponti A, Gasser SM. 124.  2010. The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev. 24:766–82 [Google Scholar]
  125. Towbin BD, Meister P, Pike BL, Gasser SM. 125.  2010. Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb. Symp. Quant. Biol. 75:555–65 [Google Scholar]
  126. Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ. 126.  et al. 2009. The B-type lamin is required for somatic repression of testis-specific gene clusters. PNAS 106:3282–87 [Google Scholar]
  127. Kohwi M, Lupton JR, Lai SL, Miller MR, Doe CQ. 127.  2013. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152:97–108 [Google Scholar]
  128. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff–Papadimitriou EC. 128.  et al. 2012. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:724–37 [Google Scholar]
  129. Demmerle J, Koch AJ, Holaska JM. 129.  2013. Emerin and histone deacetylase 3 (HDAC3) cooperatively regulate expression and nuclear positions of MyoD, Myf5, and Pax7 genes during myogenesis. Chromosome Res. 21:765–79 [Google Scholar]
  130. Camps J, Wangsa D, Falke M, Brown M, Case CM. 130.  et al. 2014. Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories. FASEB J. 28:3423–34 [Google Scholar]
  131. Poleshko A, Mansfield KM, Burlingame CC, Andrake MD, Shah NR, Katz RA. 131.  2013. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit. Cell Rep. 5:292–301 [Google Scholar]
  132. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L. 132.  2003. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–82 [Google Scholar]
  133. Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J. 133.  et al. 2012. The nuclear envelope proteome differs notably between tissues. Nucleus 3:552–64 [Google Scholar]
  134. Schirmer EC, Foisner R. 134.  2007. Proteins that associate with lamins: many faces, many functions. Exp. Cell Res. 313:2167–79 [Google Scholar]
  135. Wilson KL, Foisner R. 135.  2010. Lamin-binding proteins. Cold Spring Harb. Perspect. Biol. 2:a000554 [Google Scholar]
  136. Foisner R, Gerace L. 136.  1993. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–79 [Google Scholar]
  137. Martin L, Crimaudo C, Gerace L. 137.  1995. cDNA cloning and characterization of lamina-associated polypeptide 1C (LAP1C), an integral protein of the inner nuclear membrane. J. Biol. Chem. 270:8822–28 [Google Scholar]
  138. Goodchild RE, Dauer WT. 138.  2005. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168:855–62 [Google Scholar]
  139. Shin JY, Mendez-Lopez I, Wang Y, Hays AP, Tanji K. 139.  et al. 2013. Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev. Cell 26:591–603 [Google Scholar]
  140. Zhao C, Brown RS, Chase AR, Eisele MR, Schlieker C. 140.  2013. Regulation of Torsin ATPases by LAP1 and LULL1. PNAS 110:E1545–54 [Google Scholar]
  141. Kim CE, Perez A, Perkins G, Ellisman MH, Dauer WT. 141.  2010. A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. PNAS 107:9861–66 [Google Scholar]
  142. Kayman-Kurekci G, Talim B, Korkusuz P, Sayar N, Sarioglu T. 142.  et al. 2014. Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul. Disord. 24:624–33 [Google Scholar]
  143. Olins AL, Rhodes G, Welch DB, Zwerger M, Olins DE. 143.  2010. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 1:53–70 [Google Scholar]
  144. Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD. 144.  et al. 2002. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huet anomaly). Nat. Genet. 31:410–14 [Google Scholar]
  145. Waterham HR, Koster J, Mooyer P, van Noort G, Kelley RI. 145.  et al. 2003. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene. Am. J. Hum. Genet. 72:1013–17 [Google Scholar]
  146. Mejat A, Misteli T. 146.  2010. LINC complexes in health and disease. Nucleus 1:40–52 [Google Scholar]
  147. Rothballer A, Schwartz TU, Kutay U. 147.  2013. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 4:29–36 [Google Scholar]
  148. Tapley EC, Starr DA. 148.  2013. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25:57–62 [Google Scholar]
  149. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C. 149.  et al. 2006. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172:41–53 [Google Scholar]
  150. Sosa BA, Rothballer A, Kutay U, Schwartz TU. 150.  2012. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149:1035–47 [Google Scholar]
  151. Penkner A, Tang L, Novatchkova M, Ladurner M, Fridkin A. 151.  et al. 2007. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev. Cell 12:873–85 [Google Scholar]
  152. Penkner AM, Fridkin A, Gloggnitzer J, Baudrimont A, Machacek T. 152.  et al. 2009. Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1. Cell 139:920–33 [Google Scholar]
  153. Sato A, Isaac B, Phillips CM, Rillo R, Carlton PM. 153.  et al. 2009. Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis. Cell 139:907–19 [Google Scholar]
  154. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. 154.  2007. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12:863–72 [Google Scholar]
  155. Link J, Leubner M, Schmitt J, Gob E, Benavente R. 155.  et al. 2014. Analysis of meiosis in SUN1 deficient mice reveals a distinct role of SUN2 in mammalian meiotic LINC complex formation and function. PLOS Genet. 10:e1004099 [Google Scholar]
  156. Horn HF, Kim DI, Wright GD, Wong ES, Stewart CL. 156.  et al. 2013. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202:1023–39 [Google Scholar]
  157. Morimoto A, Shibuya H, Zhu X, Kim J, Ishiguro K. 157.  et al. 2012. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. J. Cell Biol. 198:165–72 [Google Scholar]
  158. Laguri C, Gilquin B, Wolff N, Romi-Lebrun R, Courchay K. 158.  et al. 2001. Structural characterization of the LEM motif common to three human inner nuclear membrane proteins. Structure 9:503–11 [Google Scholar]
  159. Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L. 159.  et al. 2000. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J. Biol. Chem. 275:4840–47 [Google Scholar]
  160. Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM. 160.  2001. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: One binds BAF and the other binds DNA. EMBO J. 20:4399–407 [Google Scholar]
  161. Cai M, Huang Y, Suh JY, Louis JM, Ghirlando R. 161.  et al. 2007. Solution NMR structure of the barrier-to-autointegration factor–emerin complex. J. Biol. Chem. 282:14525–35 [Google Scholar]
  162. Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. 162.  2003. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. PNAS 100:4598–603 [Google Scholar]
  163. Barkan R, Zahand AJ, Sharabi K, Lamm AT, Feinstein N. 163.  et al. 2012. Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol. Biol. Cell 23:543–52 [Google Scholar]
  164. Bione S, Maestrini E, Rivella S, Mancini M, Regis S. 164.  et al. 1994. Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nat. Genet. 8:323–27 [Google Scholar]
  165. Melcon G, Kozlov S, Cutler DA, Sullivan T, Hernandez L. 165.  et al. 2006. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15:637–51 [Google Scholar]
  166. Caputo S, Couprie J, Duband-Goulet I, Konde E, Lin F. 166.  et al. 2006. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J. Biol. Chem. 281:18208–15 [Google Scholar]
  167. Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H. 167.  et al. 2006. The inner nuclear membrane protein emerin regulates β-catenin activity by restricting its accumulation in the nucleus. EMBO J. 25:3275–85 [Google Scholar]
  168. Tilgner K, Wojciechowicz K, Jahoda C, Hutchison C, Markiewicz E. 168.  2009. Dynamic complexes of A-type lamins and emerin influence adipogenic capacity of the cell via nucleocytoplasmic distribution of β-catenin. J. Cell Sci. 122:401–13 [Google Scholar]
  169. Dedeic Z, Cetera M, Cohen TV, Holaska JM. 169.  2011. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. J. Cell Sci. 124:1691–702 [Google Scholar]
  170. Holaska JM, Rais-Bahrami S, Wilson KL. 170.  2006. Lmo7 is an emerin-binding protein that regulates the transcription of emerin and many other muscle-relevant genes. Hum. Mol. Genet. 15:3459–72 [Google Scholar]
  171. Lin F, Morrison JM, Wu W, Worman HJ. 171.  2005. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor β signaling. Hum. Mol. Genet. 14:437–45 [Google Scholar]
  172. Pan D, Estévez-Salmeron LD, Stroschein SL, Zhu X, He J. 172.  et al. 2005. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor β superfamily of cytokines. J. Biol. Chem. 280:15992–6001 [Google Scholar]
  173. Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC. 173.  et al. 2004. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke–Ollendorff syndrome and melorheostosis. Nat. Genet. 36:1213–18 [Google Scholar]
  174. Huber MD, Guan T, Gerace L. 174.  2009. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal–regulated kinase signaling in myoblast differentiation. Mol. Cell. Biol. 29:5718–28 [Google Scholar]
  175. Dechat T, Vlcek S, Foisner R. 175.  2000. Review: Lamina-associated polypeptide 2 isoforms and related proteins in cell cycle–dependent nuclear structure dynamics. J. Struct. Biol. 129:335–45 [Google Scholar]
  176. Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N. 176.  et al. 2004. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. J. Cell Sci. 117:6117–28 [Google Scholar]
  177. Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R. 177.  2000. Lamina-associated polypeptide 2α binds intranuclear A-type lamins. J. Cell Sci. 113:3473–84 [Google Scholar]
  178. Dorner D, Vlcek S, Foeger N, Gajewski A, Makolm C. 178.  et al. 2006. Lamina-associated polypeptide 2α regulates cell cycle progression and differentiation via the retinoblastoma–E2F pathway. J. Cell Biol. 173:83–93 [Google Scholar]
  179. Markiewicz E, Dechat T, Foisner R, Quinlan RA, Hutchison CJ. 179.  2002. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol. Biol. Cell 13:4401–13 [Google Scholar]
  180. Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R. 180.  et al. 2010. Loss of LAP2α delays satellite cell differentiation and affects postnatal fiber-type determination. Stem Cells 28:480–88 [Google Scholar]
  181. Gotic I, Leschnik M, Kolm U, Markovic M, Haubner BJ. 181.  et al. 2010. Lamina-associated polypeptide 2α loss impairs heart function and stress response in mice. Circ. Res. 106:346–53 [Google Scholar]
  182. Cohen TV, Gnocchi VF, Cohen JE, Phadke A, Liu H. 182.  et al. 2013. Defective skeletal muscle growth in lamin A/C–deficient mice is rescued by loss of Lap2α. Hum. Mol. Genet. 22:2852–69 [Google Scholar]
  183. Bertrand AT, Renou L, Papadopoulos A, Beuvin M, Lacene E. 183.  et al. 2012. DelK32–lamin A/C has abnormal location and induces incomplete tissue maturation and severe metabolic defects leading to premature death. Hum. Mol. Genet. 21:1037–48 [Google Scholar]
  184. Pilat U, Dechat T, Bertrand AT, Woisetschläger N, Gotic I. 184.  et al. 2013. The muscle dystrophy–causing δK32 lamin A/C mutant does not impair the functions of the nucleoplasmic lamin-A/C–LAP2α complex in mice. J. Cell Sci. 126:1753–62 [Google Scholar]
  185. Pekovic V, Harborth J, Broers JL, Ramaekers FC, van Engelen B. 185.  et al. 2007. Nucleoplasmic LAP2α–lamin A complexes are required to maintain a proliferative state in human fibroblasts. J. Cell Biol. 176:163–72 [Google Scholar]
  186. Dechat T, Gesson K, Foisner R. 186.  2011. Lamina-independent lamins in the nuclear interior serve important functions. Cold Spring Harb. Symp. Quant. Biol. 75:533–43 [Google Scholar]
  187. Gesson K, Vidak S, Foisner R. 187.  2014. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin. Cell Dev. Biol. 29:116–24 [Google Scholar]
  188. Zhang S, Schones DE, Malicet C, Rochman M, Zhou M. 188.  et al. 2013. High mobility group protein N5 (HMGN5) and lamina-associated polypeptide 2α (LAP2α) interact and reciprocally affect their genome-wide chromatin organization. J. Biol. Chem. 288:18104–9 [Google Scholar]
  189. Schreiber KH, Kennedy BK. 189.  2013. When lamins go bad: nuclear structure and disease. Cell 152:1365–75 [Google Scholar]
  190. Worman HJ. 190.  2012. Nuclear lamins and laminopathies. J. Pathol. 226:316–25 [Google Scholar]
  191. Worman HJ, Bonne G. 191.  2007. “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313:2121–33 [Google Scholar]
  192. Bollati M, Barbiroli A, Favalli V, Arbustini E, Charron P, Bolognesi M. 192.  2012. Structures of the lamin A/C R335W and E347K mutants: implications for dilated cardiolaminopathies. Biochem. Biophys. Res. Commun. 418:217–21 [Google Scholar]
  193. Bank EM, Ben-Harush K, Feinstein N, Medalia O, Gruenbaum Y. 193.  2012. Structural and physiological phenotypes of disease-linked lamin mutations in C. elegans. J. Struct. Biol. 177:106–12 [Google Scholar]
  194. Krimm I, Ostlund C, Gilquin B, Couprie J, Hossenlopp P. 194.  et al. 2002. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10:811–23 [Google Scholar]
  195. Magracheva E, Kozlov S, Stewart CL, Wlodawer A, Zdanov A. 195.  2009. Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD). Acta Crystallogr. F 65:665–70 [Google Scholar]
  196. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J. 196.  et al. 2003. Lamin A truncation in Hutchinson–Gilford progeria. Science 300:2055 [Google Scholar]
  197. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J. 197.  et al. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423:293–98 [Google Scholar]
  198. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE. 198.  et al. 2004. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. PNAS 101:8963–68 [Google Scholar]
  199. Fong LG, Ng JK, Meta M, Coté N, Yang SH. 199.  et al. 2004. Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. PNAS 101:18111–16 [Google Scholar]
  200. Yang SH, Chang SY, Ren S, Wang Y, Andres DA. 200.  et al. 2011. Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum. Mol. Genet. 20:436–44 [Google Scholar]
  201. Davies BSJ, Barnes RH, Tu Y, Ren S, Andres DA. 201.  et al. 2010. An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum. Mol. Genet. 19:2682–94 [Google Scholar]
  202. Gordon LB, Rothman FG, Lopez-Otin C, Misteli T. 202.  2014. Progeria: a paradigm for translational medicine. Cell 156:400–7 [Google Scholar]
  203. Gotzmann J, Foisner R. 203.  2005. A-type lamin complexes and regenerative potential: a step towards understanding laminopathic diseases?. Histochem. Cell Biol. 125:33–41 [Google Scholar]
  204. Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M. 204.  2000. Review: nuclear lamins—structural proteins with fundamental functions. J. Struct. Biol. 129:313–23 [Google Scholar]
  205. Halaschek-Wiener J, Brooks-Wilson A. 205.  2007. Progeria of stem cells: stem cell exhaustion in Hutchinson–Gilford progeria syndrome. J. Gerontol. Ser. A 62:3–8 [Google Scholar]
  206. Meshorer E, Gruenbaum Y. 206.  2008. Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. J. Cell Biol. 181:9–13 [Google Scholar]
  207. Pekovic V, Hutchison CJ. 207.  2008. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J. Anat. 213:5–25 [Google Scholar]
  208. Goizet C, Yaou RB, Demay L, Richard P, Bouillot S. 208.  et al. 2004. A new mutation of the lamin A/C gene leading to autosomal dominant axonal neuropathy, muscular dystrophy, cardiac disease, and leuconychia. J. Med. Genet. 41:e29 [Google Scholar]
  209. Zhang H, Kieckhaefer JE, Cao K. 209.  2013. Mouse models of laminopathies. Aging Cell 12:2–10 [Google Scholar]
  210. Banerjee A, Rathee V, Krishnaswamy R, Bhattacharjee P, Ray P. 210.  et al. 2013. Viscoelastic behavior of human lamin A proteins in the context of dilated cardiomyopathy. PLOS ONE 8:e83410 [Google Scholar]
  211. Dahl KN, Scaffidi P, Islam MF, Yodh AG, Wilson KL, Misteli T. 211.  2006. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. PNAS 103:10271–76 [Google Scholar]
  212. Kaufmann A, Heinemann F, Radmacher M, Stick R. 212.  2011. Amphibian oocyte nuclei expressing lamin A with the progeria mutation E145K exhibit an increased elastic modulus. Nucleus 2:310–19 [Google Scholar]
  213. Verstraeten VL, Ji JY, Cummings KS, Lee RT, Lammerding J. 213.  2008. Increased mechanosensitivity and nuclear stiffness in Hutchinson–Gilford progeria cells: effects of farnesyltransferase inhibitors. Aging Cell 7:383–93 [Google Scholar]
  214. Booth-Gauthier EA, Du V, Ghibaudo M, Rape AD, Dahl KN, Ladoux B. 214.  2013. Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. 5:569–77 [Google Scholar]
  215. Chen ZJ, Wang WP, Chen YC, Wang JY, Lin WH. 215.  et al. 2014. Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies. J. Cell Sci. 127:1792–804 [Google Scholar]
  216. Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA. 216.  et al. 2010. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J. Biol. Chem. 285:3487–98 [Google Scholar]
  217. Yang L, Munck M, Swaminathan K, Kapinos LE, Noegel AA, Neumann S. 217.  2013. Mutations in LMNA modulate the lamin A–Nesprin-2 interaction and cause LINC complex alterations. PLOS ONE 8:e71850 [Google Scholar]
  218. Folker ES, Ostlund C, Luxton GWG, Worman HJ, Gundersen GG. 218.  2011. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. PNAS 108:131–36 [Google Scholar]
  219. Bhattacharjee P, Banerjee A, Banerjee A, Dasgupta D, Sengupta K. 219.  2013. Structural alterations of Lamin A protein in dilated cardiomyopathy. Biochemistry 52:4229–41 [Google Scholar]
  220. Gangemi F, Degano M. 220.  2013. Disease-associated mutations in the coil 2B domain of human lamin A/C affect structural properties that mediate dimerization and intermediate filament formation. J. Struct. Biol. 181:17–28 [Google Scholar]
  221. Qin Z, Kalinowski A, Dahl KN, Buehler MJ. 221.  2011. Structure and stability of the lamin A tail domain and HGPS mutant. J. Struct. Biol. 175:425–33 [Google Scholar]
  222. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR. 222.  et al. 2006. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. PNAS 103:8703–8 [Google Scholar]
  223. McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y. 223.  et al. 2013. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson–Gilford progeria syndrome. Genome Res. 23:260–69 [Google Scholar]
  224. Kubben N, Adriaens M, Meuleman W, Voncken JW, van Steensel B, Misteli T. 224.  2012. Mapping of lamin A– and progerin-interacting genome regions. Chromosoma 121:447–64 [Google Scholar]
  225. Heyn H, Moran S, Esteller M. 225.  2013. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson–Gilford progeria and Werner syndrome. Epigenetics 8:28–33 [Google Scholar]
  226. Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE. 226.  et al. 2007. Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 6:139–53 [Google Scholar]
  227. Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y. 227.  et al. 2010. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLOS ONE 5:e14342 [Google Scholar]
  228. Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A. 228.  et al. 2011. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr. Biol. 21:1603–14 [Google Scholar]
  229. Pegoraro G, Kubben N, Wickert U, Gohler H, Hoffmann K, Misteli T. 229.  2009. Ageing-related chromatin defects through loss of the NURD complex. Nat. Cell Biol. 11:1261–67 [Google Scholar]
  230. Chapman JR, Taylor MR, Boulton SJ. 230.  2012. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47:497–510 [Google Scholar]
  231. Liu Y, Rusinol A, Sinensky M, Wang Y, Zou Y. 231.  2006. DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A. J. Cell Sci. 119:4644–49 [Google Scholar]
  232. Scaffidi P, Misteli T. 232.  2006. Lamin A–dependent nuclear defects in human aging. Science 312:1059–63 [Google Scholar]
  233. Liu B, Wang J, Chan KM, Tjia WM, Deng W. 233.  et al. 2005. Genomic instability in laminopathy-based premature aging. Nat. Med. 11:780–85 [Google Scholar]
  234. Varela I, Cadinanos J, Pendas AM, Gutierrez-Fernandez A, Folgueras AR. 234.  et al. 2005. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437:564–68 [Google Scholar]
  235. Liu Y, Wang Y, Rusinol AE, Sinensky MS, Liu J. 235.  et al. 2008. Involvement of xeroderma pigmentosum group A (XPA) in progeria arising from defective maturation of prelamin A. FASEB J. 22:603–11 [Google Scholar]
  236. Manju K, Muralikrishna B, Parnaik VK. 236.  2006. Expression of disease-causing lamin A mutants impairs the formation of DNA repair foci. J. Cell Sci. 119:2704–14 [Google Scholar]
  237. Zhang H, Xiong ZM, Cao K. 237.  2014. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1. PNAS 111:E2261–70 [Google Scholar]
  238. Mahen R, Hattori H, Lee M, Sharma P, Jeyasekharan AD, Venkitaraman AR. 238.  2013. A-type lamins maintain the positional stability of DNA damage repair foci in mammalian nuclei. PLOS ONE 8:e61893 [Google Scholar]
  239. Redwood AB, Perkins SM, Vanderwaal RP, Feng Z, Biehl KJ. 239.  et al. 2011. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10:2549–60 [Google Scholar]
  240. Gonzalez-Suarez I, Redwood AB, Grotsky DA, Neumann MA, Cheng EH. 240.  et al. 2011. A new pathway that regulates 53BP1 stability implicates cathepsin L and vitamin D in DNA repair. EMBO J. 30:3383–96 [Google Scholar]
  241. Richards SA, Muter J, Ritchie P, Lattanzi G, Hutchison CJ. 241.  2011. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum. Mol. Genet. 20:3997–4004 [Google Scholar]
  242. Das A, Grotsky DA, Neumann MA, Kreienkamp R, Gonzalez-Suarez I. 242.  et al. 2013. Lamin A Δexon9 mutation leads to telomere and chromatin defects but not genomic instability. Nucleus 4:410–19 [Google Scholar]
  243. De Vos WH, Houben F, Hoebe RA, Hennekam R, van Engelen B. 243.  et al. 2010. Increased plasticity of the nuclear envelope and hypermobility of telomeres due to the loss of A-type lamins. Biochim. Biophys. Acta 1800:448–58 [Google Scholar]
  244. Gonzalez-Suarez I, Redwood AB, Perkins SM, Vermolen B, Lichtensztejin D. 244.  et al. 2009. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 28:2414–27 [Google Scholar]
  245. Decker ML, Chavez E, Vulto I, Lansdorp PM. 245.  2009. Telomere length in Hutchinson–Gilford progeria syndrome. Mech. Ageing Dev. 130:377–83 [Google Scholar]
  246. Huang S, Risques RA, Martin GM, Rabinovitch PS, Oshima J. 246.  2008. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp. Cell Res. 314:82–91 [Google Scholar]
  247. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. 247.  2001. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114:4557–65 [Google Scholar]
  248. Bar DZ, Neufeld E, Feinstein N, Gruenbaum Y. 248.  2009. Gliotoxin reverses age-dependent nuclear morphology phenotypes, ameliorates motility, but fails to affect lifespan of adult Caenorhabditis elegans. Cell Motil. Cytoskelet. 66:791–97 [Google Scholar]
  249. Osouda S, Nakamura Y, de Saint Phalle B, McConnell M, Horigome T. 249.  et al. 2005. Null mutants of Drosophila B-type lamin Dm0 show aberrant tissue differentiation rather than obvious nuclear shape distortion or specific defects during cell proliferation. Dev. Biol. 284:219–32 [Google Scholar]
  250. Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K. 250.  2004. Lamin B1 is required for mouse development and nuclear integrity. PNAS 101:10428–33 [Google Scholar]
  251. Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA. 251.  et al. 2010. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. PNAS 107:5076–81 [Google Scholar]
  252. Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y. 252.  et al. 2011. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Biol. Cell 22:4683–93 [Google Scholar]
  253. Freund A, Laberge RM, Demaria M, Campisi J. 253.  2012. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23:2066–75 [Google Scholar]
  254. Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE. 254.  et al. 2011. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25:2579–93 [Google Scholar]
  255. Barascu A, Le Chalony C, Pennarun G, Genet D, Imam N. 255.  et al. 2012. Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J. 31:1080–94 [Google Scholar]
  256. Dreesen O, Chojnowski A, Ong PF, Zhao TY, Common JE. 256.  et al. 2013. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J. Cell Biol. 200:605–17 [Google Scholar]
  257. Dreesen O, Ong PF, Chojnowski A, Colman A. 257.  2013. The contrasting roles of lamin B1 in cellular aging and human disease. Nucleus 4:283–90 [Google Scholar]
  258. Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V. 258.  et al. 2006. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 79:383–89 [Google Scholar]
  259. Gao J, Li Y, Fu X, Luo X. 259.  2012. A Chinese patient with acquired partial lipodystrophy caused by a novel mutation with LMNB2 gene. J. Pediatr. Endocrinol. Metab. 25:375–77 [Google Scholar]
  260. Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T. 260.  et al. 2006. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38:1114–23 [Google Scholar]
  261. Potic A, Pavlovic AM, Uziel G, Kozic D, Ostojic J. 261.  et al. 2013. Adult-onset autosomal dominant leukodystrophy without early autonomic dysfunctions linked to lamin B1 duplication: a phenotypic variant. J. Neurol. 260:2124–29 [Google Scholar]
  262. Giorgio E, Rolyan H, Kropp L, Chakka AB, Yatsenko S. 262.  et al. 2013. Analysis of LMNB1 duplications in autosomal dominant leukodystrophy provides insights into duplication mechanisms and allele-specific expression. Hum. Mutat. 34:1160–71 [Google Scholar]
  263. Andres V, González JM. 263.  2009. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol. 187:945–57 [Google Scholar]
  264. Heessen S, Fornerod M. 264.  2007. The inner nuclear envelope as a transcription factor resting place. EMBO Rep. 8:914–19 [Google Scholar]
  265. Ozaki T, Saijo M, Murakami K, Enomoto H, Taya Y, Sakiyama S. 265.  1994. Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9:2649–53 [Google Scholar]
  266. Johnson BR, Nitta RT, Frock RL, Mounkes L, Barbie DA. 266.  et al. 2004. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. PNAS 101:9677–82 [Google Scholar]
  267. Nitta RT, Jameson SA, Kudlow BA, Conlan LA, Kennedy BK. 267.  2006. Stabilization of the retinoblastoma protein by A-type nuclear lamins is required for INK4A-mediated cell cycle arrest. Mol. Cell. Biol. 26:5360–72 [Google Scholar]
  268. Van Berlo JH, Voncken JW, Kubben N, Broers JL, Duisters R. 268.  et al. 2005. A-type lamins are essential for TGF-β1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14:2839–49 [Google Scholar]
  269. Rodriguez J, Calvo F, González JM, Casar B, Andres V, Crespo P. 269.  2010. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma–lamin A complexes. J. Cell Biol. 191:967–79 [Google Scholar]
  270. Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J. 270.  et al. 2006. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 129:996–1013 [Google Scholar]
  271. Marji J, O'Donoghue SI, McClintock D, Satagopam VP, Schneider R. 271.  et al. 2010. Defective lamin A–Rb signaling in Hutchinson–Gilford progeria syndrome and reversal by farnesyltransferase inhibition. PLOS ONE 5:e11132 [Google Scholar]
  272. Ivorra C, Kubicek M, González JM, Sanz-González SM, Alvarez-Barrientos A. 272.  et al. 2006. A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes Dev. 20:307–20 [Google Scholar]
  273. González JM, Navarro-Puche A, Casar B, Crespo P, Andres V. 273.  2008. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J. Cell Biol. 183:653–66 [Google Scholar]
  274. Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T. 274.  et al. 2007. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery–Dreifuss muscular dystrophy. J. Clin. Investig. 117:1282–93 [Google Scholar]
  275. Muchir A, Wu W, Choi JC, Iwata S, Morrow J. 275.  et al. 2012. Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum. Mol. Genet. 21:4325–33 [Google Scholar]
  276. Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ. 276.  2009. Inhibition of extracellular signal–regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum. Mol. Genet. 18:241–47 [Google Scholar]
  277. Wu W, Iwata S, Homma S, Worman HJ, Muchir A. 277.  2014. Depletion of extracellular signal–regulated kinase 1 in mice with cardiomyopathy caused by lamin A/C gene mutation partially prevents pathology before isoenzyme activation. Hum. Mol. Genet. 23:1–11 [Google Scholar]
  278. Favreau C, Higuet D, Courvalin JC, Buendia B. 278.  2004. Expression of a mutant lamin A that causes Emery–Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol. 24:1481–92 [Google Scholar]
  279. Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK. 279.  2006. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20:486–500 [Google Scholar]
  280. Kandert S, Wehnert M, Muller CR, Buendia B, Dabauvalle MC. 280.  2009. Impaired nuclear functions lead to increased senescence and inefficient differentiation in human myoblasts with a dominant p.R545C mutation in the LMNA gene. Eur. J. Cell Biol. 88:593–608 [Google Scholar]
  281. Boguslavsky RL, Stewart CL, Worman HJ. 281.  2006. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 15:653–63 [Google Scholar]
  282. Akter R, Rivas D, Geneau G, Drissi H, Duque G. 282.  2009. Effect of lamin A/C knockdown on osteoblast differentiation and function. J. Bone Miner. Res. 24:283–93 [Google Scholar]
  283. Rauner M, Sipos W, Goettsch C, Wutzl A, Foisner R. 283.  et al. 2009. Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J. Bone Miner. Res. 24:78–86 [Google Scholar]
  284. Kubben N, Voncken JW, Konings G, van Weeghel M, van den Hoogenhof MM. 284.  et al. 2011. Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2:195–207 [Google Scholar]
  285. Mateos J, De la Fuente A, Lesende-Rodriguez I, Fernandez-Pernas P, Arufe MC, Blanco FJ. 285.  2013. Lamin A deregulation in human mesenchymal stem cells promotes an impairment in their chondrogenic potential and imbalance in their response to oxidative stress. Stem Cell Res. 11:1137–48 [Google Scholar]
  286. Scaffidi P, Misteli T. 286.  2008. Lamin A–dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10:452–59 [Google Scholar]
  287. Espada J, Varela I, Flores I, Ugalde AP, Cadinanos J. 287.  et al. 2008. Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J. Cell Biol. 181:27–35 [Google Scholar]
  288. Hernandez L, Roux KJ, Wong ESM, Mounkes LC, Mutalif R. 288.  et al. 2010. Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria. Dev. Cell 19:413–25 [Google Scholar]
  289. Duband-Goulet I, Woerner S, Gasparini S, Attanda W, Kondé E. 289.  et al. 2011. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp. Cell Res. 317:2800–13 [Google Scholar]
  290. Lloyd DJ, Trembath RC, Shackleton S. 290.  2002. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet. 11:769–77 [Google Scholar]
  291. McKenna T, Rosengardten Y, Viceconte N, Baek JH, Grochova D, Eriksson M. 291.  2014. Embryonic expression of the common progeroid lamin A splice mutation arrests postnatal skin development. Aging Cell 13:292–302 [Google Scholar]
  292. Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F. 292.  et al. 2012. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev. 26:2311–24 [Google Scholar]
  293. Ramos FJ, Chen SC, Garelick MG, Dai DF, Liao CY. 293.  et al. 2012. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4:144ra03 [Google Scholar]
  294. Ramos FJ, Kaeberlein M, Kennedy BK. 294.  2013. Elevated MTORC1 signaling and impaired autophagy. Autophagy 9:108–9 [Google Scholar]
  295. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR. 295.  et al. 2011. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci. Transl. Med. 3:89ra58 [Google Scholar]
  296. Rosengardten Y, McKenna T, Grochova D, Eriksson M. 296.  2011. Stem cell depletion in Hutchinson–Gilford progeria syndrome. Aging Cell 10:1011–20 [Google Scholar]
  297. Bridger JM, Kill IR. 297.  2004. Aging of Hutchinson–Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Exp. Gerontol. 39:717–24 [Google Scholar]
  298. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. 298.  2003. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301 [Google Scholar]
  299. Liu B, Ghosh S, Yang X, Zheng H, Liu X. 299.  et al. 2012. Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16:738–50 [Google Scholar]
  300. Liu G-H, Barkho BZ, Ruiz S, Diep D, Qu J. 300.  et al. 2011. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–25 [Google Scholar]
  301. Zhang J, Lian Q, Zhu G, Zhou F, Sui L. 301.  et al. 2011. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45 [Google Scholar]
  302. Varga R, Eriksson M, Erdos MR, Olive M, Harten I. 302.  et al. 2006. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson–Gilford progeria syndrome. PNAS 103:3250–55 [Google Scholar]
  303. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. 303.  2013. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ. Res. 112:e99–109 [Google Scholar]
  304. Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG. 304.  et al. 2012. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149:565–77 [Google Scholar]
  305. Cattin ME, Bertrand AT, Schlossarek S, Le Bihan MC, Skov Jensen S. 305.  et al. 2013. Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Hum. Mol. Genet. 22:3152–64 [Google Scholar]
  306. de la Rosa J, Freije JM, Cabanillas R, Osorio FG, Fraga MF. 306.  et al. 2013. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat. Commun. 4:2268 [Google Scholar]
  307. Hegele RA, Anderson CM, Wang J, Jones DC, Cao H. 307.  2000. Association between nuclear lamin A/C R482Q mutation and partial lipodystrophy with hyperinsulinemia, dyslipidemia, hypertension, and diabetes. Genome Res. 10:652–58 [Google Scholar]
  308. Shimobayashi M, Hall MN. 308.  2014. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15:155–62 [Google Scholar]
  309. Choi JC, Worman HJ. 309.  2013. Reactivation of autophagy ameliorates LMNA cardiomyopathy. Autophagy 9:110–11 [Google Scholar]
  310. Lopez-Mejia IC, de Toledo M, Chavey C, Lapasset L, Cavelier P. 310.  et al. 2014. Antagonistic functions of LMNA isoforms in energy expenditure and lifespan. EMBO Rep. 15:529–39 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034115
Loading
/content/journals/10.1146/annurev-biochem-060614-034115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error