1932

Abstract

is a major human and veterinary pathogen worldwide. Methicillin-resistant (MRSA) poses a significant and enduring problem to the treatment of infection by such strains. Resistance is usually conferred by the acquisition of a nonnative gene encoding a penicillin-binding protein (PBP2a), with significantly lower affinity for β-lactams. This resistance allows cell-wall biosynthesis, the target of β-lactams, to continue even in the presence of typically inhibitory concentrations of antibiotic. PBP2a is encoded by the gene, which is carried on a distinct mobile genetic element (SCC), the expression of which is controlled through a proteolytic signal transduction pathway comprising a sensor protein (MecR1) and a repressor (MecI). Many of the molecular and biochemical mechanisms underlying methicillin resistance in have been elucidated, including regulatory events and the structure of key proteins. Here we review recent advances in this area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034516
2015-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034516.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034516&mimeType=html&fmt=ahah

Literature Cited

  1. Skinner D, Keefer CS. 1.  1941. Significance of bacteremia caused by Staphylococcus aureus: a study of one hundred and twenty-two cases and a review of the literature concerned with experimental infection in animals. Arch. Intern. Med. 68:851–75 [Google Scholar]
  2. Rammelkamp CH, Maxon T. 2.  1942. Resistance of Staphylococcus aureus to the action of penicillin. Exp. Biol. Med. 51:386–89 [Google Scholar]
  3. Bondi A, Dietz CC. 3.  1945. Penicillin resistant staphylococci. Exp. Biol. Med. 60:55–58 [Google Scholar]
  4. Kirby WM. 4.  1944. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99:452–53 [Google Scholar]
  5. Jevons MP. 5.  1961. “Celbenin”-resistant staphylococci. BMJ 1:124–25 [Google Scholar]
  6. Barber M. 6.  1961. Methicillin-resistant staphylococci. J. Clin. Pathol. 14:385–93 [Google Scholar]
  7. Jevons MP, Coe AW, Parker MT. 7.  1963. Methicillin resistance in staphylococci. Lancet 1:904–7 [Google Scholar]
  8. Parker MT, Jevons MP. 8.  1964. A survey of methicillin resistance in Staphylococcus aureus. Postgrad. Med. J. 40:S170–78 [Google Scholar]
  9. Ayliffe GAJ. 9.  1997. The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 24:S74–79 [Google Scholar]
  10. Chambers HF, DeLeo FR. 10.  2009. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7:629–41 [Google Scholar]
  11. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. 11.  2006. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–85 [Google Scholar]
  12. Moellering RC Jr. 12.  2012. MRSA: the first half century. J. Antimicrob. Chemother. 67:4–11 [Google Scholar]
  13. Dantes R, Mu Y, Belflower R, Aragon D, Dumyati G. 13.  et al. 2013. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. J. Am. Med. Assoc. Intern. Med. 173:1970–78 [Google Scholar]
  14. Gould IM. 14.  2006. Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control. Int. J. Antimicrob. Agents 28:379–84 [Google Scholar]
  15. Gould IM, Reilly J, Bunyan D, Walker A. 15.  2010. Costs of healthcare-associated methicillin-resistant Staphylococcus aureus and its control. Clin. Microbiol. Infect. 16:1721–28 [Google Scholar]
  16. Rodvold KA, McConeghy KW. 16.  2014. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future. Clin. Infect. Dis. 58:S20–27 [Google Scholar]
  17. Stryjewski ME, Corey GR. 17.  2014. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis. 58:S10–19 [Google Scholar]
  18. Kos VN, Desjardins CA, Griggs A, Cerqueira G, Van Tonder A. 18.  et al. 2012. Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with methicillin-resistant S. aureus hospital-acquired infection in the United States. mBio 3:e00112-12 [Google Scholar]
  19. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK. 19.  et al. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 52:e18–55 [Google Scholar]
  20. Gould IM, David MZ, Esposito S, Garau J, Lina G. 20.  et al. 2012. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int. J. Antimicrob. Agents 39:96–104 [Google Scholar]
  21. Lovering AL, Safadi SS, Strynadka NCJ. 21.  2012. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 81:451–78 [Google Scholar]
  22. Giesbrecht P, Kersten T, Maidhof H, Wecke J. 22.  1998. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62:1371–414 [Google Scholar]
  23. Dyke KGH, Jevons MP, Parker MT. 23.  1966. Penicillinase production and intrinsic resistance to penicillins in Staphylococcus aureus. Lancet 287:835–38 [Google Scholar]
  24. Sabath LD, Wallace SJ, Gerstein DA. 24.  1972. Suppression of intrinsic resistance to methicillin and other penicillins in Staphylococcus aureus. Antimicrob. Agents Chemother. 2:350–55 [Google Scholar]
  25. Annear DI, Grubb WB. 25.  1971. The effect of temperature and sodium chloride on the intrinsic resistance of Staphylococcus aureus to benzylpenicillin. Med. J. Aust. 1:1169–70 [Google Scholar]
  26. Brown DFJ, Reynolds PE. 26.  1980. Intrinsic resistance to β-lactam antibiotics in Staphylococcus aureus. FEBS Lett. 122:275–78 [Google Scholar]
  27. Hayes MV, Curtis NAC, Wyke AW, Ward JB. 27.  1981. Decreased affinity of a penicillin-binding protein for β-lactam antibiotics in a clinical isolate of Staphylococcus aureus resistant to methicillin. FEMS Microbiol. Lett. 10:119–22 [Google Scholar]
  28. Hartman BJ, Tomasz A. 28.  1984. Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158:513–16 [Google Scholar]
  29. Utsui Y, Yokota T. 29.  1985. Role of an altered penicillin-binding protein in methicillin-resistant and cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 28:397–403 [Google Scholar]
  30. Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M. 30.  1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221:167–71 [Google Scholar]
  31. Sjostrom JE, Lofdahl S, Philipson L. 31.  1975. Transformation reveals a chromosomal locus of gene(s) for methicillin resistance in Staphylococcus aureus. J. Bacteriol. 123:905–15 [Google Scholar]
  32. Stewart GC, Rosenblum ED. 32.  1980. Genetic behavior of the methicillin resistance determinant in Staphylococcus aureus. J. Bacteriol. 144:1200–2 [Google Scholar]
  33. Matsuhashi M, Song MD, Ishino F, Wachi M, Doi M. 33.  et al. 1986. Molecular-cloning of the gene of a penicillin-binding protein supposed to cause high-resistance to β-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167:975–80 [Google Scholar]
  34. Matthews PR, Reed KC, Stewart PR. 34.  1987. The cloning of chromosomal DNA associated with methicillin and other resistances in Staphylococcus aureus. J. Gen. Microbiol. 133:1919–29 [Google Scholar]
  35. Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. 35.  1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus specific penicillin-binding protein. J. Bacteriol. 171:2882–85 [Google Scholar]
  36. Matthews P, Tomasz A. 36.  1990. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Antimicrob. Agents Chemother. 34:1777–79 [Google Scholar]
  37. Murakami K, Tomasz A. 37.  1989. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J. Bacteriol. 171:874–79 [Google Scholar]
  38. Tipper DJ, Strominger JL. 38.  1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl–d-alanyl–d-alanine. PNAS 54:1133–41 [Google Scholar]
  39. Tomasz A. 39.  1979. The mechanism of the irreversibile anti-microbial effects of penicillins—how the β-lactam antibiotics kill and lyse bacteria. Annu. Rev. Microbiol. 33:113–37 [Google Scholar]
  40. Tomasz A. 40.  1979. From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. Rev. Infect. Dis. 1:434–67 [Google Scholar]
  41. Chung HS, Yao Z, Goehring NW, Kishony R, Beckwith J, Kahne D. 41.  2009. Rapid β-lactam-induced lysis requires successful assembly of the cell division machinery. PNAS 106:21872–77 [Google Scholar]
  42. Uehara T, Dinh T, Bernhardt TG. 42.  2009. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J. Bacteriol. 191:5094–107 [Google Scholar]
  43. Fuda C, Suvorov M, Vakulenko SB, Mobashery S. 43.  2004. The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J. Biol. Chem. 279:40802–6 [Google Scholar]
  44. Graves-Woodward K, Pratt RF. 44.  1998. Reaction of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with β-lactams and acyclic substrates: kinetics in homogeneous solution. Biochem. J. 332:755–61 [Google Scholar]
  45. Lu W-P, Sun Y, Bauer MD, Paule S, Koenigs PM, Kraft WG. 45.  1999. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 38:6537–46 [Google Scholar]
  46. Chambers HF, Sachdeva MJ, Hackbarth CJ. 46.  1994. Kinetics of penicillin-binding to penicillin-binding proteins of Staphylococcus aureus. Biochem. J. 301:139–44 [Google Scholar]
  47. Fuda C, Hesek D, Lee M, Morio K, Nowak T, Mobashery S. 47.  2005. Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J. Am. Chem. Soc. 127:2056–57 [Google Scholar]
  48. Lim D, Strynadka NC. 48.  2002. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9:870–76 [Google Scholar]
  49. Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-López C, Kumarasiri M. 49.  et al. 2013. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. PNAS 110:16808–13 [Google Scholar]
  50. Katayama Y, Ito T, Hiramatsu K. 50.  2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44:1549–55 [Google Scholar]
  51. Ito T, Hiramatsu K, Tomasz A, de Lencastre H, Perreten V. 51.  et al. 2012. Guidelines for reporting novel mecA gene homologues. Antimicrob. Agents Chemother. 56:4997–99 [Google Scholar]
  52. Boundy S, Safo MK, Wang L, Musayev FN, O'Farrell HC. 52.  et al. 2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome cassette mec (SCCmec) insertion site. J. Biol. Chem. 288:132–40 [Google Scholar]
  53. Ito T, Hiramatsu K, Oliveira DC, de Lencastre H, Zhang K. 53.  et al. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): Guidelines for reporting novel SCCmec elements. Antimicrob. Agents Chemother. 53:4961–67 [Google Scholar]
  54. Grindley NDF, Whiteson KL, Rice PA. 54.  2006. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75:567–605 [Google Scholar]
  55. Misiura A, Pigli YZ, Boyle-Vavra S, Daum RS, Boocock MR, Rice PA. 55.  2013. Roles of two large serine recombinases in mobilizing the methicillin-resistance cassette SCCmec. Mol. Microbiol. 88:1218–29 [Google Scholar]
  56. Wang L, Archer GL. 56.  2010. Roles of CcrA and CcrB in excision and integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J. Bacteriol. 192:3204–12 [Google Scholar]
  57. Wang L, Safo M, Archer GL. 57.  2012. Characterization of DNA sequences required for the CcrAB-mediated integration of staphylococcal cassette chromosome mec, a Staphylococcus aureus genomic island. J. Bacteriol. 194:486–98 [Google Scholar]
  58. Noto MJ, Archer GL. 58.  2006. A subset of Staphylococcus aureus strains harboring staphylococcal cassette chromosome mec (SCCmec) type IV is deficient in CcrAB-mediated SCCmec excision. Antimicrob. Agents Chemother. 50:2782–88 [Google Scholar]
  59. Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. 59.  2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48:2637–51 [Google Scholar]
  60. Cohen S, Sweeney HM. 60.  1970. Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of recipient strain. J. Bacteriol. 104:1158–67 [Google Scholar]
  61. Shafer WM, Iandolo JJ. 61.  1980. Transduction of staphylococcal enterotoxin B synthesis: establishment of the toxin gene in a recombination-deficient mutant. Infect. Immun. 27:280–82 [Google Scholar]
  62. Scharn CR, Tenover FC, Goering RV. 62.  2013. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 57:5233–38 [Google Scholar]
  63. Hiramatsu K, Suzuki E, Takayama H, Katayama Y, Yokota T. 63.  1990. Role of penicillinase plasmids in the stability of the mecA gene in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 34:600–4 [Google Scholar]
  64. Katayama Y, Zhang H-Z, Hong D, Chambers HF. 64.  2003. Jumping the barrier to β-lactam resistance in Staphylococcus aureus. J. Bacteriol. 185:5465–72 [Google Scholar]
  65. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. 65.  2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). PNAS 99:7687–92 [Google Scholar]
  66. Robinson DA, Enright MC. 66.  2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47:3926–34 [Google Scholar]
  67. Robinson DA, Enright MC. 67.  2004. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 10:92–97 [Google Scholar]
  68. Nübel U, Roumagnac P, Feldkamp M, Song J-H, Ko KS. 68.  et al. 2008. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. PNAS 105:14130–35 [Google Scholar]
  69. Waldron DE, Lindsay JA. 69.  2006. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J. Bacteriol. 188:5578–85 [Google Scholar]
  70. Noto MJ, Kreiswirth BN, Monk AB, Archer GL. 70.  2008. Gene acquisition at the insertion site for SCCmec, the genomic island conferring methicillin resistance in Staphylococcus aureus. J. Bacteriol. 190:1276–83 [Google Scholar]
  71. Ender M, McCallum N, Adhikari R, Berger-Bächi B. 71.  2004. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:2295–97 [Google Scholar]
  72. Lee SM, Ender M, Adhikari R, Smith JAB, Berger-Bächi B, Cook GM. 72.  2007. Fitness cost of staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus aureus by way of continuous culture. Antimicrob. Agents Chemother. 51:1497–99 [Google Scholar]
  73. McKinney TK, Sharma VK, Craig WA, Archer GL. 73.  2001. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and β-lactamase regulators. J. Bacteriol. 183:6862–68 [Google Scholar]
  74. Lewis RA, Dyke KGH. 74.  2000. MecI represses synthesis from the β-lactamase operon of Staphylococcus aureus. J. Antimicrob. Chemother. 45:139–44 [Google Scholar]
  75. Mallorquí-Fernández G, Marrero A, Garcia-Piquè S, Garcia-Castellanos R, Gomis-Rüth FX. 75.  2004. Staphylococcal methicillin resistance: fine focus on folds and functions. FEMS Microbiol. Lett. 235:1–8 [Google Scholar]
  76. Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF. 76.  2001. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291:1962–65 [Google Scholar]
  77. García-Castellanos R, Marrero A, Mallorquí-Fernández G, Potempa J, Coll M, Gomis-Rüth FX. 77.  2003. Three-dimensional structure of MecI. Molecular basis for transcriptional regulation of staphylococcal methicillin resistance. J. Biol. Chem. 278:39897–905 [Google Scholar]
  78. Safo MK, Ko TP, Musayev FN, Zhao QX, Wang AHJ, Archer GL. 78.  2006. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec. Acta Crystallogr. F 62:320–24 [Google Scholar]
  79. Sharma VK, Hackbarth CJ, Dickinson TM, Archer GL. 79.  1998. Interaction of native and mutant MecI repressors with sequences that regulate mecA, the gene encoding penicillin binding protein 2a in methicillin-resistant staphylococci. J. Bacteriol. 180:2160–66 [Google Scholar]
  80. García-Castellanos R, Mallorquí-Fernández G, Marrero A, Potempa J, Coll M, Gomis-Rüth FX. 80.  2004. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 279:17888–96 [Google Scholar]
  81. Arede P, Oliveira DC. 81.  2013. Proteolysis of mecA repressor is essential for expression of methicillin resistance by Staphylococcus aureus. Antimicrob. Agents Chemother. 57:2001–2 [Google Scholar]
  82. Safo MK, Zhao Q, Ko T-P, Musayev FN, Robinson H. 82.  et al. 2005. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. J. Bacteriol. 187:1833–44 [Google Scholar]
  83. Marrero A, Mallorquí-Fernández G, Guevara T, García-Castellanos R, Gomis-Rüth FX. 83.  2006. Unbound and acylated structures of the MecR1 extracellular antibiotic-sensor domain provide insights into the signal-transduction system that triggers methicillin resistance. J. Mol. Biol. 361:506–21 [Google Scholar]
  84. Hardt K, Joris B, Lepage S, Brasseur R, Lampen JO. 84.  et al. 1997. The penicillin sensory transducer, BlaR, involved in the inducibility of β-lactamase synthesis in Bacillus licheniformis is embedded in the plasma membrane via a four-α-helix bundle. Mol. Microbiol. 23:935–44 [Google Scholar]
  85. Wilke MS, Hills TL, Zhang HZ, Chambers HF, Strynadka NCJ. 85.  2004. Crystal structures of the apo and penicillin-acylated forms of the BlaR1 β-lactam sensor of Staphylococcus aureus. J. Biol. Chem. 279:47278–87 [Google Scholar]
  86. Hanique S, Colombo ML, Goormaghtigh E, Soumillion P, Frère JM, Joris B. 86.  2004. Evidence of an intramolecular interaction between the two domains of the BlaR1 penicillin receptor during the signal transduction. J. Biol. Chem. 279:14264–72 [Google Scholar]
  87. Frederick TE, Wilson BD, Cha J, Mobashery S, Peng JW. 87.  2014. Revealing cell-surface intramolecular interactions in the BlaR1 protein of methicillin-resistant Staphylococcus aureus by NMR spectroscopy. Biochemistry 53:10–12 [Google Scholar]
  88. Berzigotti S, Benlafya K, Sepulchre J, Amoroso A, Joris B. 88.  2012. Bacillus licheniformis BlaR1 L3 loop is a zinc metalloprotease activated by self-proteolysis. PLOS ONE 7:e36400 [Google Scholar]
  89. Llarrull LI, Mobashery S. 89.  2012. Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus. Biochemistry 51:4642–49 [Google Scholar]
  90. Amoroso A, Boudet J, Berzigotti S, Duval V, Teller N. 90.  et al. 2012. A peptidoglycan fragment triggers β-lactam resistance in Bacillus licheniformis. PLOS Pathog. 8:e1002571 [Google Scholar]
  91. Oliveira DC, de Lencastre H. 91.  2011. Methicillin resistance in Staphylococcus aureus is not affected by the overexpression in trans of the mecA gene repressor: a surprising observation. PLOS ONE 6:e23287 [Google Scholar]
  92. Arêde P, Milheirico C, de Lencastre H, Oliveira DC. 92.  2012. The anti-repressor MecR2 promotes the proteolysis of the mecA repressor and enables optimal expression of β-lactam resistance in MRSA. PLOS Pathog. 8:e1002816 [Google Scholar]
  93. Arêde P, Botelho T, Guevara T, Usón I, Oliveira DC, Gomis-Rüth FX. 93.  2013. Structure–function studies of the staphylococcal methicillin resistance antirepressor mecR2. J. Biol. Chem. 288:21267–78 [Google Scholar]
  94. Blázquez B, Llarrull LI, Luque-Ortega JR, Alfonso C, Boggess B, Mobashery S. 94.  2014. Regulation of the expression of the β-lactam antibiotic-resistance determinants in methicillin-resistant Staphylococcus aureus (MRSA). Biochemistry 53:1548–50 [Google Scholar]
  95. Llarrull LI, Prorok M, Mobashery S. 95.  2010. Binding of the gene repressor BlaI to the bla operon in methicillin-resistant Staphylococcus aureus. Biochemistry 49:7975–77 [Google Scholar]
  96. Arêde P, Ministro J, Oliveira DC. 96.  2013. Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-Lactamase regulators disrupt the MecI-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA expression. Antimicrob. Agents Chemother. 57:3037–45 [Google Scholar]
  97. Llarrull LI, Toth M, Champion MM, Mobashery S. 97.  2011. Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. J. Biol. Chem. 286:38148–58 [Google Scholar]
  98. Finan JE, Rosato AE, Dickinson TM, Ko D, Archer GL. 98.  2002. Conversion of oxacillin-resistant staphylococci from heterotypic to homotypic resistance expression. Antimicrob. Agents Chemother. 46:24–30 [Google Scholar]
  99. Ryffel C, Strässle A, Kayser FH, Berger-Bächi B. 99.  1994. Mechanisms of heteroresistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 38:724–28 [Google Scholar]
  100. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G. 100.  et al. 2013. Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb. Drug Resist. Mech. Epidemiol. Dis. 19:153–59 [Google Scholar]
  101. Kim C, Mwangi M, Chung M, Milheirco C, de Lencastre H, Tomasz A. 101.  2013. The mechanism of heterogeneous β-lactam resistance in MRSA: key role of the stringent stress response. PLOS ONE 8:e82814 [Google Scholar]
  102. Aiba Y, Katayama Y, Hishinuma T, Murakami-Kuroda H, Cui L, Hiramatsu K. 102.  2013. Mutation of RNA polymerase β-subunit gene promotes heterogeneous-to-homogeneous conversion of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 57:4861–71 [Google Scholar]
  103. Kondo N, Kuwahara-Arai K, Kuroda-Murakami H, Tateda-Suzuki E, Hiramatsu K. 103.  2001. Eagle-type methicillin resistance: new phenotype of high methicillin resistance under mec regulator gene control. Antimicrob. Agents Chemother. 45:815–24 [Google Scholar]
  104. Kuwahara-Arai K, Kondo N, Hori S, Tateda-Suzuki E, Hiramatsu K. 104.  1996. Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2′ production. Antimicrob. Agents Chemother. 40:2680–85 [Google Scholar]
  105. Dordel J, Kim C, Chung M, Pardos de la Gandara M, Holden MT. 105.  et al. 2014. Novel determinants of antibiotic resistance: identification of mutated loci in highly methicillin-resistant subpopulations of methicillin-resistant Staphylococcus aureus. mBio 5:01000-13 [Google Scholar]
  106. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST. 106.  et al. 2014. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158:1060–71 [Google Scholar]
  107. de Lencastre H, Tomasz A. 107.  1994. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 38:2590–98 [Google Scholar]
  108. Berger-Bächi B. 108.  1983. Insertional inactivation of staphylococcal methicillin resistance by Tn551. J. Bacteriol. 154:479–87 [Google Scholar]
  109. Berger-Bächi B, Strassle A, Gustafson JE, Kayser FH. 109.  1992. Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 36:1367–73 [Google Scholar]
  110. de Lencastre H, Wu SW, Pinho MG, Ludovice AM, Filipe S. 110.  et al. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. Mech. Epidemiol. Dis. 5:163–75 [Google Scholar]
  111. Roemer T, Schneider T, Pinho MG. 111.  2013. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr. Opin. Microbiol. 16:538–48 [Google Scholar]
  112. Berger-Bächi B, Rohrer S. 112.  2002. Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. 178:165–71 [Google Scholar]
  113. Pinho MG, Ludovice AM, Wu SW, de Lencastre H. 113.  1997. Massive reduction in methicillin resistance by transposon inactivation of the normal PBP2 in a methicillin-resistant strain of Staphylococcus aureus. Microb. Drug Resist. Mech. Epidemiol. Dis. 3:409–13 [Google Scholar]
  114. Pinho MG, de Lencastre H, Tomasz A. 114.  2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. PNAS 98:10886–91 [Google Scholar]
  115. Couto I, de Lencastre H, Severina E, Kloos W, Webster JA. 115.  et al. 1996. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist. Mech. Epidemiol. Dis. 2:377–91 [Google Scholar]
  116. Fuda C, Suvorov M, Shi Q, Hesek D, Lee M, Mobashery S. 116.  2007. Shared functional attributes between the mecA gene product of Staphylococcus sciuri and penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Biochemistry 46:8050–57 [Google Scholar]
  117. Tsubakishita S, Kuwahara-Arai K, Sasaki T, Hiramatsu K. 117.  2010. Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 54:4352–59 [Google Scholar]
  118. Zong Z, Peng C, Lue X. 118.  2011. Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLOS ONE 6:e14016 [Google Scholar]
  119. Ruppé E, Barbier F, Mesli Y, Maiga A, Cojocaru R. 119.  et al. 2009. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob. Agents Chemother. 53:442–49 [Google Scholar]
  120. Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. 120.  2011. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLOS ONE 6:e21940 [Google Scholar]
  121. McDougal LK, Thornsberry C. 121.  1986. The role of β-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J. Clin. Microbiol. 23:832–39 [Google Scholar]
  122. Montanari MP, Tonin E, Biavasco F, Varaldo PE. 122.  1990. Further characterization of borderline methicillin-resistant Staphylococcus aureus and analysis of penicillin-binding proteins. Antimicrob. Agents Chemother. 34:911–13 [Google Scholar]
  123. Montanari MP, Massidda O, Mingoia M, Varaldo PE. 123.  1996. Borderline susceptibility to methicillin in Staphylococcus aureus: a new mechanism of resistance?. Microb. Drug Resist. Mech. Epidemiol. Dis. 2:257–60 [Google Scholar]
  124. Barg N, Chambers H, Kernodle D. 124.  1991. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of β-lactamase. Antimicrob. Agents Chemother. 35:1975–79 [Google Scholar]
  125. Maalej SM, Rhimi FM, Fines M, Mnif B, Leclercq R, Hammami A. 125.  2012. Analysis of borderline oxacillin-resistant Staphylococcus aureus (BORSA) strains isolated in Tunisia. J. Clin. Microbiol. 50:3345–48 [Google Scholar]
  126. Balslev U, Bremmelgaard A, Svejgaard E, Havstreym J, Westh H. 126.  2005. An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit. Microb. Drug Resist. Mech. Epidemiol. Dis. 11:78–81 [Google Scholar]
  127. Thomsen MK, Rasmussen M, Fuursted K, Westh H, Pedersen LN. 127.  et al. 2006. Clonal spread of Staphylococcus aureus with reduced susceptibility to oxacillin in a dermatological hospital unit. Acta Derm. Venereol. 86:230–34 [Google Scholar]
  128. Pefanis A, Thauvin-Eliopoulos C, Eliopoulos GM, Moellering RC. 128.  1993. Activity of ampicillin–sulbactam and oxacillin in experimental endocarditis caused by β-lactamase-hyperproducing Staphylococcus aureus. Antimicrob. Agents Chemother. 37:507–11 [Google Scholar]
  129. Thauvin-Eliopoulos C, Rice LB, Eliopoulos GM, Moellering RC. 129.  1990. Efficacy of oxacillin and ampicillin–sulbactam combination in experimental endocarditis caused by β-lactamase-hyperproducing Staphylococcus aureus. Antimicrob. Agents Chemother. 34:728–32 [Google Scholar]
  130. Chambers HF, Archer G, Matsuhashi M. 130.  1989. Low-level methicillin resistance in strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 33:424–28 [Google Scholar]
  131. Brown DFJ, Edwards DI, Hawkey PM, Morrison D, Ridgway GL. 131.  et al. 2005. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J. Antimicrob. Chemother. 56:1000–18 [Google Scholar]
  132. Tomasz A, Drugeon HB, de Lencastre HM, Jabes D, McDougall L, Bille J. 132.  1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob. Agents Chemother. 33:1869–74 [Google Scholar]
  133. Hackbarth CJ, Chambers HF. 133.  1989. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob. Agents Chemother. 33:991–94 [Google Scholar]
  134. Nadarajah J, Lee MJS, Louie L, Jacob L, Simor AE. 134.  et al. 2006. Identification of different clonal complexes and diverse amino acid substitutions in penicillin-binding protein 2 (PBP2) associated with borderline oxacillin resistance in Canadian Staphylococcus aureus isolates. J. Med. Microbiol. 55:1675–83 [Google Scholar]
  135. Ba X, Harrison EM, Edwards GF, Holden MTG, Larsen AR. 135.  et al. 2014. Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J. Antimicrob. Chemother. 69:594–97 [Google Scholar]
  136. Skinner S, Murray M, Walus T, Karlowsky JA. 136.  2009. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. J. Clin. Microbiol. 47:859–61 [Google Scholar]
  137. García-Álvarez L, Holden MTG, Lindsay H, Webb CR, Brown DFJ. 137.  et al. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11:595–603 [Google Scholar]
  138. Paterson GK, Harrison EM, Holmes MA. 138.  2014. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22:42–47 [Google Scholar]
  139. Stegger M, Andersen PS, Kearns A, Pichon B, Holmes MA. 139.  et al. 2012. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect. 18:395–400 [Google Scholar]
  140. Tsubakishita S, Kuwahara-Arai K, Baba T, Hiramatsu K. 140.  2010. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 54:1469–75 [Google Scholar]
  141. Schaumburg F, Köck R, Mellmann A, Richter L, Hasenberg F. 141.  et al. 2012. Population dynamics among methicillin-resistant Staphylococcus aureus isolates in Germany during a 6-year period. J. Clin. Microbiol. 50:3186–92 [Google Scholar]
  142. Paterson GK, Morgan FJ, Harrison EM, Cartwright EJ, Torok ME. 142.  et al. 2014. Prevalence and characterisation of human mecC methicillin-resistant Staphylococcus aureus isolates in England. J. Antimicrob. Chemoth. 69:907–10 [Google Scholar]
  143. Petersen A, Stegger M, Heltberg O, Christensen J, Zeuthen A. 143.  et al. 2013. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19:e16–22 [Google Scholar]
  144. Becker K, Larsen AR, Skov RL, Paterson GK, Holmes MA. 144.  et al. 2013. Evaluation of a modular multiplex-PCR methicillin-resistant Staphylococcus aureus detection assay adapted for mecC detection. J. Clin. Microbiol. 51:1917–19 [Google Scholar]
  145. Belmekki M, Mammeri H, Hamdad F, Rousseau F, Canarelli B, Biendo M. 145.  2013. Comparison of Xpert MRSA/SA nasal and MRSA/SA ELITe MGB assays for detection of the mecA gene with susceptibility testing methods for determination of methicillin resistance in Staphylococcus aureus isolates. J. Clin. Microbiol. 51:3181–91 [Google Scholar]
  146. Paterson GK, Larsen AR, Robb A, Edwards GE, Pennycott TW. 146.  et al. 2012. The newly described mecA homologue, mecALGA251, is present in methicillin-resistant Staphylococcus aureus isolates from a diverse range of host species. J. Antimicrob. Chemother. 67:2809–13 [Google Scholar]
  147. Pichon B, Hill R, Laurent F, Larsen AR, Skov RL. 147.  et al. 2012. Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, PantonValentine leucocidin (PVL), mecA and homologue mecALGA251. J. Antimicrob. Chemother. 67:2338–41 [Google Scholar]
  148. Ballhausen B, Kriegeskorte A, Schleimer N, Peters G, Becker K. 148.  2014. The mecA homolog mecC confers resistance against β-lactams in Staphylococcus aureus irrespective of the genetic strain background. Antimicrob. Agents Chemother. 58:3791–98 [Google Scholar]
  149. Kim C, Milheirico C, Gardete S, Holmes MA, Holden MTG. 149.  et al. 2012. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 287:36854–63 [Google Scholar]
  150. Cartwright EJP, Paterson GK, Raven KE, Harrison EM, Gouliouris T. 150.  et al. 2013. Use of Vitek 2 antimicrobial susceptibility profile to identify mecC in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 51:2732–34 [Google Scholar]
  151. Harrison EM, Paterson GK, Holden MTG, Morgan FJE, Larsen AR. 151.  et al. 2013. A Staphylococcus xylosus isolate with a new mecC allotype. Antimicrob. Agents Chemother. 57:1524–28 [Google Scholar]
  152. Loncaric I, Kübber-Heiss A, Posautz A, Stalder GL, Hoffmann D. 152.  et al. 2013. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. J. Antimicrob. Chemother. 14:2222–25 [Google Scholar]
  153. Harrison EM, Paterson GK, Holden MT, Ba X, Rolo J. 153.  et al. 2014. A novel hybrid SCCmecmecC region in Staphylococcus sciuri. J. Antimicrob. Chemother. 69:911–18 [Google Scholar]
  154. Małyszko I, Schwarz S, Hauschild T. 154.  2014. Detection of a new mecC allotype, mecC2, in methicillin-resistant Staphylococcus saprophyticus. J. Antimicrob. Chemother. 69:2003–5 [Google Scholar]
  155. Saravolatz LD, Stein GE, Johnson LB. 155.  2011. Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 52:1156–63 [Google Scholar]
  156. Barbour A, Schmidt S, Rand KH, Derendorf H. 156.  2009. Ceftobiprole: a novel cephalosporin with activity against gram-positive and gram-negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 34:1–7 [Google Scholar]
  157. Davies TA, Page MGP, Shang W, Andrew T, Kania M, Bush K. 157.  2007. Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51:2621–24 [Google Scholar]
  158. Kosowska-Shick K, McGhee PL, Appelbaum PC. 158.  2010. Affinity of ceftaroline and other β-lactams for penicillin-binding proteins from Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 54:1670–77 [Google Scholar]
  159. Moisan H, Pruneau M, Malouin F. 159.  2010. Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J. Antimicrob. Chemother. 65:713–16 [Google Scholar]
  160. Alm RA, McLaughlin RE, Kos VN, Sader HS, Iaconis JP, Lahiri SD. 160.  2014. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: an epidemiological and structural perspective. J. Antimicrob. Chemother. 69:2065–75 [Google Scholar]
  161. Mendes RE, Tsakris A, Sader HS, Jones RN, Biek D. 161.  et al. 2012. Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. J. Antimicrob. Chemother. 67:1321–24 [Google Scholar]
  162. Villegas-Estrada A, Lee M, Hesek D, Vakulenko SB, Mobashery S. 162.  2008. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP2a by two anti-MRSA β-lactam antibiotics. J. Am. Chem. Soc. 130:9212–13 [Google Scholar]
  163. Fishovitz J, Rojas-Altuve A, Otero LH, Dawley M, Carrasco-López C. 163.  et al. 2014. Disruption of allosteric response as an unprecedented mechanism of resistance to antibiotics. J. Am. Chem. Soc. 136:9814–17 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034516
Loading
/content/journals/10.1146/annurev-biochem-060614-034516
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error