1932

Abstract

The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012541
2018-06-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012541.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012541&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lehn JM. 1990. Perspectives in supramolecular chemistry—From molecular recognition towards molecular information processing and self‐organization. Angew. Chem. Int. Ed. Engl. 29:1304–19
    [Google Scholar]
  2. 2.  Whitesides GM, Mathias J, Seto C 1991. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–19
    [Google Scholar]
  3. 3.  Philp D, Stoddart JF 1996. Self‐assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35:1154–96
    [Google Scholar]
  4. 4.  Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE et al. 1997. Supramolecular materials: self-organized nanostructures. Science 276:384–89
    [Google Scholar]
  5. 5.  Whitesides GM, Grzybowski B 2002. Self-assembly at all scales. Science 295:2418–21
    [Google Scholar]
  6. 6.  Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H 2011. Macroscopic self-assembly through molecular recognition. Nat. Chem. 3:34–37
    [Google Scholar]
  7. 7.  Zhang S. 2002. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20:321–39
    [Google Scholar]
  8. 8.  Zhang S. 2003. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21:1171–78
    [Google Scholar]
  9. 9.  Stupp SI. 2010. Self-assembly and biomaterials. Nano Lett 10:4783–86
    [Google Scholar]
  10. 10.  Habibi Y, Lucia LA, Rojas OJ 2010. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110:3479–500
    [Google Scholar]
  11. 11.  Stephanopoulos N, Ortony JH, Stupp SI 2013. Self-assembly for the synthesis of functional biomaterials. Acta Mater 61:912–30
    [Google Scholar]
  12. 12.  Bao G, Suresh S 2003. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715–25
    [Google Scholar]
  13. 13.  Sanchez C, Arribart H, Guille MM 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4:277–88
    [Google Scholar]
  14. 14.  Buehler MJ, Ackbarow T 2007. Fracture mechanics of protein materials. Mater. Today 10:46–58
    [Google Scholar]
  15. 15.  Steinert PM, Idler WW, Zimmerman SB 1976. Self-assembly of bovine epidermal keratin filaments in vitro. J. Mol. Biol. 108:547–67
    [Google Scholar]
  16. 16.  Qin G, Hu X, Cebe P, Kaplan DL 2012. Mechanism of resilin elasticity. Nat. Commun. 3:1003
    [Google Scholar]
  17. 17.  Keten S, Buehler MJ 2010. Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7:1709–21
    [Google Scholar]
  18. 18.  Buehler MJ. 2006. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. PNAS 103:12285–90
    [Google Scholar]
  19. 19.  Hardy JG, Scheibel TR 2010. Composite materials based on silk proteins. Prog. Polym. Sci. 35:1093–115
    [Google Scholar]
  20. 20.  Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL 2012. Protein-based composite materials. Mater. Today 15:208–15
    [Google Scholar]
  21. 21.  Lee KB, Lim JH, Mirkin CA 2003. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc. 125:5588–89
    [Google Scholar]
  22. 22.  Silva NH, Vilela C, Marrucho IM, Freire CS, Neto CP, Silvestre AJ 2014. Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J. Mater. Chem. B 2:3715–40
    [Google Scholar]
  23. 23.  DiMarco RL, Heilshorn SC 2012. Multifunctional materials through modular protein engineering. Adv. Mater. 24:3923–40
    [Google Scholar]
  24. 24.  Maretschek S, Greiner A, Kissel T 2008. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. J. Control. Release 127:180–87
    [Google Scholar]
  25. 25.  Wei G, Ma PX 2008. Nanostructured biomaterials for regeneration. Adv. Funct. Mater. 18:3568–82
    [Google Scholar]
  26. 26.  Zhang S, Marini DM, Hwang W, Santoso S 2002. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr. Opin. Chem. Biol. 6:865–71
    [Google Scholar]
  27. 27.  Bradbury EM, Elliott A 1963. Infra-red spectra and chain arrangement in some polyamides, polypeptides and fibrous proteins. Polymer 4:47–59
    [Google Scholar]
  28. 28.  Tashiro K, Kobayashi M, Tadokoro H 1977. Elastic moduli and molecular structures of several crystalline polymers, including aromatic polyamides. Macromolecules 10:413–20
    [Google Scholar]
  29. 29.  Jiang Y, Loos K 2016. Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8:243
    [Google Scholar]
  30. 30.  Checco JW, Gellman SH 2016. Targeting recognition surfaces on natural proteins with peptidic foldamers. Curr. Opin. Struct. Biol. 39:96–105
    [Google Scholar]
  31. 31.  Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R 2016. Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev. 116:1753–802
    [Google Scholar]
  32. 32.  Egholm M, Buchardt O, Nielsen PE, Berg RH 1992. Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J. Am. Chem. Soc. 114:1895–97
    [Google Scholar]
  33. 33.  Gupta A, Bahal R, Gupta M, Glazer PM, Saltzman WM 2016. Nanotechnology for delivery of peptide nucleic acids (PNAs). J. Control. Release 240:302–11
    [Google Scholar]
  34. 34.  Berger O, Adler-Abramovich L, Levy-Sakin M, Grunwald A, Liebes-Peer Y et al. 2015. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing. Nat. Nanotechnol. 10:353–60
    [Google Scholar]
  35. 35.  Berger O, Gazit E 2017. Molecular self‐assembly using peptide nucleic acids. Pept. Sci. 108:e22930
    [Google Scholar]
  36. 36.  Gazit E. 2007. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36:1263–69
    [Google Scholar]
  37. 37.  Ulijn RV, Smith AM 2008. Designing peptide based nanomaterials. Chem. Soc. Rev. 37:664–75
    [Google Scholar]
  38. 38.  Williams BA, Lund K, Liu Y, Yan H, Chaput JC 2007. Self‐assembled peptide nanoarrays: an approach to studying protein-protein interactions. Angew. Chem. Int. Ed. Engl. 119:3111–14
    [Google Scholar]
  39. 39.  Zhao X, Pan F, Xu H, Yaseen M, Shan H et al. 2010. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 39:3480–98
    [Google Scholar]
  40. 40.  Hamley IW. 2011. Self-assembly of amphiphilic peptides. Soft Matter 7:4122–38
    [Google Scholar]
  41. 41.  Cui H, Webber MJ, Stupp SI 2010. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept. Sci. 94:1–18
    [Google Scholar]
  42. 42.  Briggs BD, Knecht MR 2012. Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J. Phys. Chem. Lett. 3:405–18
    [Google Scholar]
  43. 43.  Habibi N, Kamaly N, Memic A, Shafiee H 2016. Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11:41–60
    [Google Scholar]
  44. 44.  Ekiz MS, Cinar G, Khalily MA, Guler MO 2016. Self-assembled peptide nanostructures for functional materials. Nanotechnology 27:402002
    [Google Scholar]
  45. 45.  Yardeni JL, Amit M, Ashkenasy G, Ashkenasy N 2016. Sequence dependent proton conduction in self-assembled peptide nanostructures. Nanoscale 8:2358–66
    [Google Scholar]
  46. 46.  Eskandari S, Guerin T, Toth I, Stephenson RJ 2017. Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev. 110:169–87
    [Google Scholar]
  47. 47.  Merrifield RB. 1963. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85:2149–54
    [Google Scholar]
  48. 48.  Merrifield RB. 1965. Automated synthesis of peptides. Science 150:178–85
    [Google Scholar]
  49. 49.  Merrifield RB, Stewart JM, Jernberg N 1966. Instrument for automated synthesis of peptides. Anal. Chem. 38:1905–14
    [Google Scholar]
  50. 50.  Gausepohl H, Boulin C, Kraft M, Frank RW 1992. Automated multiple peptide synthesis. Pept. Res. 5:315–20
    [Google Scholar]
  51. 51.  Mäde V, Els-Heindl S, Beck-Sickinger AG 2014. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J. Org. Chem. 10:1197–212
    [Google Scholar]
  52. 52.  Behrendt R, White P, Offer J 2016. Advances in Fmoc solid‐phase peptide synthesis. J. Pept. Sci. 22:4–27
    [Google Scholar]
  53. 53.  Mijalis AJ, Thomas DA III, Simon MD, Adamo A, Beaumont R et al. 2017. A fully automated flow-based approach for accelerated peptide synthesis. Nat. Chem. Biol. 13:464–66
    [Google Scholar]
  54. 54.  Paul F, Auriol D, Monsan P 1988. Direct enzymatic synthesis of aspartame. Ann. NY Acad. Sci. 542:351–55
    [Google Scholar]
  55. 55.  Reineke U, Volkmer-Engert R, Schneider-Mergener J 2001. Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol. 12:59–64
    [Google Scholar]
  56. 56.  Cretich M, Damin F, Pirri G, Chiari M 2006. Protein and peptide arrays: recent trends and new directions. Biomol. Eng. 23:77–88
    [Google Scholar]
  57. 57.  Schirwitz C, Loeffler FF, Felgenhauer T, Stadler V, Nesterov-Mueller A et al. 2013. Purification of high‐complexity peptide microarrays by spatially resolved array transfer to gold‐coated membranes. Adv. Mater. 25:1598–602
    [Google Scholar]
  58. 58.  Pai J, Hyun S, Hyun JY, Park SH, Kim WJ et al. 2016. Screening of pre-miRNA-155 binding peptides for apoptosis inducing activity using peptide microarrays. J. Am. Chem. Soc. 138:857–67
    [Google Scholar]
  59. 59.  Hansen CS, Østerbye T, Marcatili P, Lund O, Buus S, Nielsen M 2017. ArrayPitope: automated analysis of amino acid substitutions for peptide microarray-based antibody epitope mapping. PLOS ONE 12:e0168453
    [Google Scholar]
  60. 60.  Kerr JM, Banville SC, Zuckermann RN 1993. Encoded combinatorial peptide libraries containing non-natural amino acids. J. Am. Chem. Soc. 115:2529–31
    [Google Scholar]
  61. 61.  Hodgson DR, Sanderson JM 2004. The synthesis of peptides and proteins containing non-natural amino acids. Chem. Soc. Rev. 33:422–30
    [Google Scholar]
  62. 62.  Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L et al. 2011. Structure-based design of non-natural amino acid inhibitors of amyloid fibrillation. Nature 475:96–100
    [Google Scholar]
  63. 63.  Zuber P. 1991. Non-ribosomal peptide synthesis. Curr. Opin. Cell Biol. 3:1046–50
    [Google Scholar]
  64. 64.  Moutiez M, Schmitt E, Seguin J, Thai R, Favry E et al. 2014. Unravelling the mechanism of non-ribosomal peptide synthesis by cyclodipeptide synthases. Nat. Commun. 5:5141
    [Google Scholar]
  65. 65.  Reimer JM, Aloise MN, Harrison PM, Schmeing TM 2016. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529:239–42
    [Google Scholar]
  66. 66.  Waite JH, Tanzer ML 1981. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:1038–40
    [Google Scholar]
  67. 67.  Dalsin JL, Hu BH, Lee BP, Messersmith PB 2003. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 125:4253–58
    [Google Scholar]
  68. 68.  Lee BP, Dalsin JL, Messersmith PB 2002. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3:1038–47
    [Google Scholar]
  69. 69.  Fichman G, Adler-Abramovich L, Manohar S, Mironi-Harpaz I, Guterman T et al. 2014. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-l-phenylalanine) peptide motif. ACS Nano 8:7220–28
    [Google Scholar]
  70. 70.  Fichman G, Guterman T, Damron J, Adler-Abramovich L, Schmidt J et al. 2016. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Sci. Adv. 2:e1500827
    [Google Scholar]
  71. 71.  Prasad C. 1995. Bioactive cyclic dipeptides. Peptides 16:151–64
    [Google Scholar]
  72. 72.  Fischer PM. 2003. Diketopiperazines in peptide and combinatorial chemistry. J. Pept. Sci. 9:9–35
    [Google Scholar]
  73. 73.  Martins MB, Carvalho I 2007. Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–32
    [Google Scholar]
  74. 74.  Borthwick AD, Da Costa NC 2017. 2,5-Diketopiperazines in food and beverages: taste and bioactivity. Crit. Rev. Food Sci. Nutr. 57:718–42
    [Google Scholar]
  75. 75.  Zhang S, Holmes T, Lockshin C, Rich A 1993. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. PNAS 90:3334–38
    [Google Scholar]
  76. 76.  Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N 1993. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–27
    [Google Scholar]
  77. 77.  Ghadiri MR, Granja JR, Buehler LK 1994. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–4
    [Google Scholar]
  78. 78.  Aggeli A, Bell M, Boden N, Keen JN, Knowles PF et al. 1997. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 386:259–62
    [Google Scholar]
  79. 79.  Hartgerink JD, Beniash E, Stupp SI 2001. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684–88
    [Google Scholar]
  80. 80.  Vauthey S, Santoso S, Gong H, Watson N, Zhang S 2002. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. PNAS 99:5355–60
    [Google Scholar]
  81. 81.  Banerjee IA, Yu L, Matsui H 2003. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. PNAS 100:14678–82
    [Google Scholar]
  82. 82.  Gao X, Matsui H 2005. Peptide‐based nanotubes and their applications in bionanotechnology. Adv. Mater. 17:2037–50
    [Google Scholar]
  83. 83.  Gazit E. 2007. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36:1263–69
    [Google Scholar]
  84. 84.  Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–58
    [Google Scholar]
  85. 85.  Dobson CM. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24:329–32
    [Google Scholar]
  86. 86.  Jahn TR, Radford SE 2005. The Yin and Yang of protein folding. FEBS J 272:5962–70
    [Google Scholar]
  87. 87.  Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L et al. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–11
    [Google Scholar]
  88. 88.  Hardy J, Selkoe DJ 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353–56
    [Google Scholar]
  89. 89.  Chiti F, Dobson CM 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66
    [Google Scholar]
  90. 90.  Nelson R, Sawaya MR, Balbirnie M, Madsen , Riekel C et al. 2005. Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–78
    [Google Scholar]
  91. 91.  Adamcik J, Jung JM, Flakowski J, De Los Rios P, Dietler G, Mezzenga R 2010. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 5:423–28
    [Google Scholar]
  92. 92.  Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM 1998. Amyloid fibril formation by an SH3 domain. PNAS 95:4224–28
    [Google Scholar]
  93. 93.  Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC 1998. Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J. Mol. Biol. 280:245–58
    [Google Scholar]
  94. 94.  Chiti F, Webster P, Taddei N, Clark A, Stefani M et al. 1999. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. PNAS 96:3590–94
    [Google Scholar]
  95. 95.  Fändrich M, Fletcher MA, Dobson CM 2001. Amyloid fibrils from muscle myoglobin. Nature 410:165–66
    [Google Scholar]
  96. 96.  Gazit E. 2002. The “correctly folded” state of proteins: Is it a metastable state?. Angew. Chem. Int. Ed. Engl. 41:257–59
    [Google Scholar]
  97. 97.  Baldwin AJ, Knowles TP, Tartaglia GG, Fitzpatrick AW, Devlin GL et al. 2011. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133:14160–63
    [Google Scholar]
  98. 98.  Balch WE, Morimoto RI, Dillin A, Kelly JW 2008. Adapting proteostasis for disease intervention. Science 319:916–19
    [Google Scholar]
  99. 99.  Hartl FU, Bracher A, Hayer-Hartl M 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–32
    [Google Scholar]
  100. 100.  Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91
    [Google Scholar]
  101. 101.  Fowler DM, Koulov AV, Balch WE, Kelly JW 2007. Functional amyloid—from bacteria to humans. Trends Biochem. Sci. 32:217–24
    [Google Scholar]
  102. 102.  Knowles TP, Buehler MJ 2011. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6:469–79
    [Google Scholar]
  103. 103.  Pinotsi D, Buell AK, Dobson CM, Kaminski-Schierle GS, Kaminski CF 2013. A label‐free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. ChemBioChem 14:846–50
    [Google Scholar]
  104. 104.  Jarrett JT, Lansbury PT 1993. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 73:1055–58
    [Google Scholar]
  105. 105.  Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB 1996. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. PNAS 93:1125–29
    [Google Scholar]
  106. 106.  Liang Y, Lynn DG, Berland KM 2010. Direct observation of nucleation and growth in amyloid self-assembly. J. Am. Chem. Soc. 132:6306–8
    [Google Scholar]
  107. 107.  Knowles TP, White DA, Abate AR, Agresti JJ, Cohen SI et al. 2011. Observation of spatial propagation of amyloid assembly from single nuclei. PNAS 108:14746–51
    [Google Scholar]
  108. 108.  Gillam JE, MacPhee CE 2013. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. J. Phys. Condens. Matter 25:373101
    [Google Scholar]
  109. 109.  Tenidis K, Waldner M, Bernhagen J, Fischle W, Bergmann M et al. 2000. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J. Mol. Biol. 295:1055–71
    [Google Scholar]
  110. 110.  Reches M, Porat Y, Gazit E 2002. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem. 277:35475–80
    [Google Scholar]
  111. 111.  Bertolani A, Pizzi A, Pirrie L, Gazzera L, Morra G et al. 2017. Crystal structure of the DFNKF segment of human calcitonin unveils aromatic interactions between phenylalanines. Chem. Eur. J. 23:2051–58
    [Google Scholar]
  112. 112.  Mazor Y, Gilead S, Benhar I, Gazit E 2002. Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. J. Mol. Biol. 322:1013–24
    [Google Scholar]
  113. 113.  Tjernberg L, Hosia W, Bark N, Thyberg J, Johansson J 2002. Charge attraction and β propensity are necessary for amyloid fibril formation from tetrapeptides. J. Biol. Chem. 277:43243–46
    [Google Scholar]
  114. 114.  Bellesia G, Shea JE 2009. What determines the structure and stability of KFFE monomers, dimers, and protofibrils?. Biophys. J. 96:875–86
    [Google Scholar]
  115. 115.  Gazit E. 2002. A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83
    [Google Scholar]
  116. 116.  Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC 2005. Molecular basis for amyloid fibril formation and stability. PNAS 102:315–20
    [Google Scholar]
  117. 117.  Jack E, Newsome M, Stockley PG, Radford SE, Middleton DA 2006. The organization of aromatic side groups in an amyloid fibril probed by solid-state 2H and 19F NMR spectroscopy. J. Am. Chem. Soc. 128:8098–99
    [Google Scholar]
  118. 118.  Yang JH, Ho Y, Tzou DLM 2008. A 13C solid‐state NMR analysis of steroid compounds. Magn. Reson. Chem. 46:718–25
    [Google Scholar]
  119. 119.  Marshall KE, Morris KL, Charlton D, O'Reilly N, Lewis L et al. 2011. Hydrophobic, aromatic, and electrostatic interactions play a central role in amyloid fibril formation and stability. Biochemistry 50:2061–71
    [Google Scholar]
  120. 120.  Genji M, Yano Y, Hoshino M, Matsuzaki K 2017. Aromaticity of phenylalanine residues is essential for amyloid formation by Alzheimer's amyloid β-peptide. Chem. Pharm. Bull. 65:668–73
    [Google Scholar]
  121. 121.  Pawar AP, DuBay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM 2005. Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. J. Mol. Biol. 350:379–92
    [Google Scholar]
  122. 122.  Reches M, Gazit E 2003. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–27
    [Google Scholar]
  123. 123.  Reches M, Gazit E 2004. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett 4:581–85
    [Google Scholar]
  124. 124.  Reches M, Gazit E 2005. Self‐assembly of peptide nanotubes and amyloid‐like structures by charged‐termini‐capped diphenylalanine peptide analogues. Isr. J. Chem. 45:363–71
    [Google Scholar]
  125. 125.  Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G et al. 2014. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5:5219
    [Google Scholar]
  126. 126.  Jayawarna V, Ali M, Jowitt TA, Miller AF, Saiani A et al. 2006. Nanostructured hydrogels for three‐dimensional cell culture through self‐assembly of fluorenylmethoxycarbonyl–dipeptides. Adv. Mater. 18:611–14
    [Google Scholar]
  127. 127.  Mahler A, Reches M, Rechter M, Cohen S, Gazit E 2006. Rigid, self‐assembled hydrogel composed of a modified aromatic dipeptide. Adv. Mater. 18:1365–70
    [Google Scholar]
  128. 128.  Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I 2005. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5:1343–46
    [Google Scholar]
  129. 129.  Niu L, Chen X, Allen S, Tendler SJ 2007. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes. Langmuir 23:7443–46
    [Google Scholar]
  130. 130.  Adler‐Abramovich L, Kol N, Yanai I, Barlam D, Shneck RZ et al. 2010. Self‐assembled organic nanostructures with metallic‐like stiffness. Angew. Chem. Int. Ed. Engl. 49:9939–42
    [Google Scholar]
  131. 131.  Amdursky N, Molotskii M, Gazit E, Rosenman G 2010. Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 132:15632–36
    [Google Scholar]
  132. 132.  Hauser CA, Zhang S 2010. Nanotechnology: peptides as biological semiconductors. Nature 468:516–17
    [Google Scholar]
  133. 133.  Akdim B, Pachter R, Naik RR 2015. Self-assembled peptide nanotubes as electronic materials: an evaluation from first-principles calculations. Appl. Phys. Lett. 106:183707
    [Google Scholar]
  134. 134.  Azuri I, Adler-Abramovich L, Gazit E, Hod O, Kronik L 2014. Why are diphenylalanine-based peptide nanostructures so rigid? Insights from first principles calculations. J. Am. Chem. Soc. 136:963–69
    [Google Scholar]
  135. 135.  Zelenovskiy P, Kornev I, Vasilev S, Kholkin A 2016. On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys. Chem. Chem. Phys. 18:29681–85
    [Google Scholar]
  136. 136.  Vasilev S, Zelenovskiy P, Vasileva D, Nuraeva A, Shur VY, Kholkin AL 2016. Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J. Phys. Chem. Solids 93:68–72
    [Google Scholar]
  137. 137.  Esin A, Baturin I, Nikitin T, Vasilev S, Salehli F et al. 2016. Pyroelectric effect and polarization instability in self-assembled diphenylalanine microtubes. Appl. Phys. Lett. 109:142902
    [Google Scholar]
  138. 138.  Yan X, Zhu P, Li J 2010. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39:1877–90
    [Google Scholar]
  139. 139.  Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G 2009. Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett 9:3111–15
    [Google Scholar]
  140. 140.  Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H 2012. Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11:1081–85
    [Google Scholar]
  141. 141.  Nguyen V, Zhu R, Jenkins K, Yang R 2016. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7:13566
    [Google Scholar]
  142. 142.  Zohrabi T, Habibi N, Zarrabi A, Fanaei M, Lee LY 2016. Diphenylalanine peptide nanotubes self‐assembled on functionalized metal surfaces for potential application in drug‐eluting stent. J. Biomed. Mater. Res. A 104:2280–90
    [Google Scholar]
  143. 143.  Gan Z, Wu X, Zhang J, Zhu X, Chu PK 2013. In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes. Biomacromolecules 14:2112–16
    [Google Scholar]
  144. 144.  Nikitin T, Kopyl S, Shur VY, Kopelevich YV, Kholkin AL 2016. Low-temperature photoluminescence in self-assembled diphenylalanine microtubes. Phys. Lett. A 380:1658–62
    [Google Scholar]
  145. 145.  Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S et al. 2009. Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 4:849–54
    [Google Scholar]
  146. 146.  Yemini M, Reches M, Rishpon J, Gazit E 2005. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5:183–86
    [Google Scholar]
  147. 147.  Fan Z, Sun L, Huang Y, Wang Y, Zhang M 2016. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechol. 11:388–94
    [Google Scholar]
  148. 148.  Kim JH, Lee M, Lee JS, Park CB 2012. Self‐assembled light‐harvesting peptide nanotubes for mimicking natural photosynthesis. Angew. Chem. Int. Ed. Engl. 51:517–20
    [Google Scholar]
  149. 149.  Even N, Adler‐Abramovich L, Buzhansky L, Dodiuk H, Gazit E 2011. Improvement of the mechanical properties of epoxy by peptide nanotube fillers. Small 7:1007–11
    [Google Scholar]
  150. 150.  Woolfson DN, Ryadnov MG 2006. Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr. Opin. Chem. Biol. 10:559–67
    [Google Scholar]
  151. 151.  Woolfson DN. 2010. Building fibrous biomaterials from α‐helical and collagen‐like coiled‐coil peptides. Pept. Sci. 94:118–27
    [Google Scholar]
  152. 152.  Woolfson DN. 2005. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70:79–112
    [Google Scholar]
  153. 153.  Karle IL, Balaram P 1990. Structural characteristics of α‐helical peptide molecules containing Aib residues. Biochemistry 29:6747–56
    [Google Scholar]
  154. 154.  Mondal S, Adler-Abramovich L, Lampel A, Bram Y, Lipstman S, Gazit E 2015. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun. 6:8615
    [Google Scholar]
  155. 155.  Mondal S, Gazit E 2016. The self‐assembly of helical peptide building blocks. ChemNanoMat 2:323–32
    [Google Scholar]
  156. 156.  Mondal S, Varenik M, Bloch DN, Atsmon-Raz Y, Jacoby G et al. 2017. A minimal length rigid helical peptide motif allows rational design of modular surfactants. Nat. Commun. 8:14018
    [Google Scholar]
  157. 157.  Singh P, Brar SK, Bajaj M, Narang N, Mithu VS et al. 2017. Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects. Mater. Sci. Eng. C 72:590–600
    [Google Scholar]
  158. 158.  Hnilova M, So CR, Oren EE, Wilson BR, Kacar T et al. 2012. Peptide-directed co-assembly of nanoprobes on multimaterial patterned solid surfaces. Soft Matter 8:4327–34
    [Google Scholar]
  159. 159.  Maity S, Nir S, Reches M 2014. Co-assembly of aromatic dipeptides into spherical structures that are similar in morphology to red and white blood cells. J. Mater. Chem. B 2:2583–91
    [Google Scholar]
  160. 160.  Guo C, Arnon ZA, Qi R, Zhang Q, Adler-Abramovich L et al. 2016. Expanding the nanoarchitectural diversity through aromatic di-and tri-peptide coassembly: nanostructures and molecular mechanisms. ACS Nano 10:8316–24
    [Google Scholar]
  161. 161.  Adler-Abramovich L, Marco P, Amon ZA, Creasey RC, Michaels TC et al. 2016. Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly. ACS Nano 10:7436–42
    [Google Scholar]
  162. 162.  Gazit E. 2016. Metabolite amyloids: a new paradigm for inborn error of metabolism disorders. J. Inherit. Metab. Dis. 39:483–88
    [Google Scholar]
  163. 163.  Fukada E, Yasuda I 1957. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12:1158–62
    [Google Scholar]
  164. 164.  Carny O, Gazit E 2005. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J 19:1051–55
    [Google Scholar]
  165. 165.  Nanda J, Rubinov B, Ivnitski D, Mukherjee R, Shtelman E et al. 2017. Emergence of native peptide sequences in prebiotic replication networks. Nat. Commun. 8:434
    [Google Scholar]
  166. 166.  Rout SK, Friedmann MP, Riek R, Greenwald J 2018. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9:234
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012541
Loading
/content/journals/10.1146/annurev-biochem-062917-012541
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error