1932

Abstract

Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012739
2020-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-062917-012739.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012739&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sugiura A, McLelland GL, Fon EA, McBride HM 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–56
    [Google Scholar]
  2. 2. 
    Tatsuta T, Langer T. 2008. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–14
    [Google Scholar]
  3. 3. 
    Youle RJ, van der Bliek AM 2012. Mitochondrial fission, fusion, and stress. Science 337:1062–65
    [Google Scholar]
  4. 4. 
    Heo JM, Rutter J. 2011. Ubiquitin-dependent mitochondrial protein degradation. Int. J. Biochem. Cell Biol. 43:1422–26
    [Google Scholar]
  5. 5. 
    Bragoszewski P, Turek M, Chacinska A 2017. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol 7:170007
    [Google Scholar]
  6. 6. 
    Quiros PM, Langer T, Lopez-Otin C 2015. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 16:345–59
    [Google Scholar]
  7. 7. 
    Poveda-Huertes D, Mulica P, Vögtle FN 2017. The versatility of the mitochondrial presequence processing machinery: cleavage, quality control and turnover. Cell Tissue Res 367:73–81
    [Google Scholar]
  8. 8. 
    Mossmann D, Meisinger C, Vögtle FN 2012. Processing of mitochondrial presequences. Biochim. Biophys. Acta Gene Regul. Mech. 1819:1098–106
    [Google Scholar]
  9. 9. 
    Vögtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C et al. 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–39
    [Google Scholar]
  10. 10. 
    Levytskyy RM, Bohovych I, Khalimonchuk O 2017. Metalloproteases of the inner mitochondrial membrane. Biochemistry 56:4737–46
    [Google Scholar]
  11. 11. 
    Gerdes F, Tatsuta T, Langer T 2012. Mitochondrial AAA proteases—towards a molecular understanding of membrane-bound proteolytic machines. Biochim. Biophys. Acta Mol. Cell Res. 1823:49–55
    [Google Scholar]
  12. 12. 
    Leonhard K, Guiard B, Pellecchia G, Tzagoloff A, Neupert W, Langer T 2000. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5:629–38
    [Google Scholar]
  13. 13. 
    Kang SG, Dimitrova MN, Ortega J, Ginsburg A, Maurizi MR 2005. Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J. Biol. Chem. 280:35424–32
    [Google Scholar]
  14. 14. 
    Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA 2013. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation. PNAS 110:E2002–8
    [Google Scholar]
  15. 15. 
    Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE 2019. Unique structural features of the mitochondrial AAA+ protease AFG3L2 reveal the molecular basis for activity in health and disease. Mol. Cell 75:1073–85.e6
    [Google Scholar]
  16. 16. 
    Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL et al. 2017. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 358:eaao0464
    [Google Scholar]
  17. 17. 
    Koppen M, Metodiev MD, Casari G, Rugarli EI, Langer T 2007. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol. Cell. Biol. 27:758–67
    [Google Scholar]
  18. 18. 
    Tatsuta T, Langer T. 2017. Prohibitins. Curr. Biol. 27:R629–31
    [Google Scholar]
  19. 19. 
    Wai T, Saita S, Nolte H, Müller S, König T et al. 2016. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep 17:1844–56
    [Google Scholar]
  20. 20. 
    Taskin AA, Kucukkose C, Burger N, Mossmann D, Meisinger C, Vögtle FN 2017. The novel mitochondrial matrix protease Ste23 is required for efficient presequence degradation and processing. Mol. Biol. Cell 28:997–1002
    [Google Scholar]
  21. 21. 
    Teixeira PF, Glaser E. 2013. Processing peptidases in mitochondria and chloroplasts. Biochim. Biophys. Acta Mol. Cell Res. 1833:360–70
    [Google Scholar]
  22. 22. 
    Vande Walle L, Lamkanfi M, Vandenabeele P 2008. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ 15:453–60
    [Google Scholar]
  23. 23. 
    Polianskyte Z, Peitsaro N, Dapkunas A, Liobikas J, Soliymani R et al. 2009. LACTB is a filament-forming protein localized in mitochondria. PNAS 106:18960–65
    [Google Scholar]
  24. 24. 
    Murphy MP. 2016. Understanding and preventing mitochondrial oxidative damage. Biochem. Soc. Trans. 44:1219–26
    [Google Scholar]
  25. 25. 
    Leonhard K, Stiegler A, Neupert W, Langer T 1999. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398:348–51
    [Google Scholar]
  26. 26. 
    Hornig-Do HT, Tatsuta T, Buckermann A, Bust M, Kollberg G et al. 2012. Nonsense mutations in the COX1 subunit impair the stability of respiratory chain complexes rather than their assembly. EMBO J 31:1293–307
    [Google Scholar]
  27. 27. 
    Stiburek L, Cesnekova J, Kostkova O, Fornuskova D, Vinsova K et al. 2012. YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol. Biol. Cell 23:1010–23
    [Google Scholar]
  28. 28. 
    Pryde KR, Taanman JW, Schapira AH 2016. A LON-ClpP proteolytic axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep 17:2522–31
    [Google Scholar]
  29. 29. 
    Bota DA, Davies KJ. 2016. Mitochondrial Lon protease in human disease and aging: including an etiologic classification of Lon-related diseases and disorders. Free Radic. Biol. Med. 100:188–98
    [Google Scholar]
  30. 30. 
    König T, Tröder SE, Bakka K, Korwitz A, Richter-Dennerlein R et al. 2016. The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol. Cell 64:148–62
    [Google Scholar]
  31. 31. 
    Tsai CW, Wu Y, Pao PC, Phillips CB, Williams C et al. 2017. Proteolytic control of the mitochondrial calcium uniporter complex. PNAS 114:4388–93
    [Google Scholar]
  32. 32. 
    Potting C, Wilmes C, Engmann T, Osman C, Langer T 2010. Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29:2888–98
    [Google Scholar]
  33. 33. 
    Pfanner N, Warscheid B, Wiedemann N 2019. Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20:267–84
    [Google Scholar]
  34. 34. 
    Augustin S, Nolden M, Müller S, Hardt O, Arnold I, Langer T 2005. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J. Biol. Chem. 280:2691–99
    [Google Scholar]
  35. 35. 
    Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K et al. 2006. Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J. Biol. Chem. 281:29096–104
    [Google Scholar]
  36. 36. 
    Hartmann B, Wai T, Hu H, MacVicar T, Musante L et al. 2016. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. eLife 5:e16078
    [Google Scholar]
  37. 37. 
    Koutnikova H, Campuzano V, Koenig M 1998. Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum. Mol. Genet. 7:1485–89
    [Google Scholar]
  38. 38. 
    Nouws J, Goswami AV, Bestwick M, McCann BJ, Surovtseva YV, Shadel GS 2016. Mitochondrial ribosomal protein L12 is required for POLRMT stability and exists as two forms generated by alternative proteolysis during import. J. Biol. Chem. 291:989–97
    [Google Scholar]
  39. 39. 
    Veling MT, Reidenbach AG, Freiberger EC, Kwiecien NW, Hutchins PD et al. 2017. Multi-omic mitoprotease profiling defines a role for Oct1p in coenzyme Q production. Mol. Cell 68:970–77.e11
    [Google Scholar]
  40. 40. 
    Ieva R, Heisswolf AK, Gebert M, Vögtle FN, Wollweber F et al. 2013. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 4:2853
    [Google Scholar]
  41. 41. 
    Sinzel M, Tan T, Wendling P, Kalbacher H, Özbalci C et al. 2016. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway. EMBO Rep 17:965–81
    [Google Scholar]
  42. 42. 
    Gomes F, Palma FR, Barros MH, Tsuchida ET, Turano HG et al. 2017. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. J. Biol. Chem. 292:17011–24
    [Google Scholar]
  43. 43. 
    Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL 2013. Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab 18:908–19
    [Google Scholar]
  44. 44. 
    MacVicar T, Ohba Y, Nolte H, Mayer FC, Tatsuta T et al. 2019. Lipid signalling drives proteolytic rewiring of mitochondria by YME1L. Nature 575:361–65
    [Google Scholar]
  45. 45. 
    Richter F, Dennerlein S, Nikolov M, Jans DC, Naumenko N et al. 2019. ROMO1 is a constituent of the human presequence translocase required for YME1L protease import. J. Cell Biol. 218:598–614
    [Google Scholar]
  46. 46. 
    Leshets M, Silas YBH, Lehming N, Pines O 2018. Fumarase: from the TCA cycle to DNA damage response and tumor suppression. Front. Mol. Biosci. 5:68
    [Google Scholar]
  47. 47. 
    Saita S, Tatsuta T, Lampe PA, König T, Ohba Y, Langer T 2018. PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 37:e97909
    [Google Scholar]
  48. 48. 
    Sekine S, Youle RJ. 2018. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16:2
    [Google Scholar]
  49. 49. 
    Sekine S, Wang C, Sideris DP, Bunker E, Zhang Z, Youle RJ 2019. Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol. Cell 73:1028–43.e5
    [Google Scholar]
  50. 50. 
    Chen G, Han Z, Feng D, Chen Y, Chen L et al. 2014. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54:362–77
    [Google Scholar]
  51. 51. 
    Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R et al. 2012. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–85
    [Google Scholar]
  52. 52. 
    Tatsuta T, Augustin S, Nolden M, Friedrichs B, Langer T 2007. m-AAA protease–driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J 26:325–35
    [Google Scholar]
  53. 53. 
    Gustafsson CM, Falkenberg M, Larsson NG 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85:133–60
    [Google Scholar]
  54. 54. 
    Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P et al. 2019. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci. Adv. 5:eaav9824
    [Google Scholar]
  55. 55. 
    Lu B, Lee J, Nie X, Li M, Morozov YI et al. 2013. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol. Cell 49:121–32
    [Google Scholar]
  56. 56. 
    Matsushima Y, Goto Y, Kaguni LS 2010. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). PNAS 107:18410–15
    [Google Scholar]
  57. 57. 
    Kunova N, Ondrovicova G, Bauer JA, Bellova J, Ambro L et al. 2017. The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid–protein complexes. Sci. Rep. 7:631
    [Google Scholar]
  58. 58. 
    van Dyck L, Neupert W, Langer T 1998. The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12:1515–24
    [Google Scholar]
  59. 59. 
    Matsushima Y, Hirofuji Y, Aihara M, Yue S, Uchiumi T et al. 2017. Drosophila protease ClpXP specifically degrades DmLRPPRC1 controlling mitochondrial mRNA and translation. Sci. Rep. 7:8315
    [Google Scholar]
  60. 60. 
    Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T 2005. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–89
    [Google Scholar]
  61. 61. 
    Bonn F, Tatsuta T, Petrungaro C, Riemer J, Langer T 2011. Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J 30:2545–56
    [Google Scholar]
  62. 62. 
    Szczepanowska K, Maiti P, Kukat A, Hofsetz E, Nolte H et al. 2016. CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels. EMBO J 35:2566–83
    [Google Scholar]
  63. 63. 
    Bhaskaran S, Pharaoh G, Ranjit R, Murphy A, Matsuzaki S et al. 2018. Loss of mitochondrial protease ClpP protects mice from diet-induced obesity and insulin resistance. EMBO Rep 19:e45009
    [Google Scholar]
  64. 64. 
    Cole A, Wang Z, Coyaud E, Voisin V, Gronda M et al. 2015. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 27:864–76
    [Google Scholar]
  65. 65. 
    Seiferling D, Szczepanowska K, Becker C, Senft K, Hermans S et al. 2016. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep 17:953–64
    [Google Scholar]
  66. 66. 
    Gispert S, Parganlija D, Klinkenberg M, Drose S, Wittig I et al. 2013. Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum. Mol. Genet. 22:4871–87
    [Google Scholar]
  67. 67. 
    Osman C, Wilmes C, Tatsuta T, Langer T 2007. Prohibitins interact genetically with Atp23, a novel processing peptidase and chaperone for the F1Fo-ATP synthase. Mol. Biol. Cell 18:627–35
    [Google Scholar]
  68. 68. 
    Zeng X, Neupert W, Tzagoloff A 2007. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol. Biol. Cell 18:617–26
    [Google Scholar]
  69. 69. 
    Saita S, Nolte H, Fiedler KU, Kashkar H, Venne AS et al. 2017. PARL mediates Smac proteolytic maturation in mitochondria to promote apoptosis. Nat. Cell Biol. 19:318–28
    [Google Scholar]
  70. 70. 
    Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C et al. 2011. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat. Genet. 43:259–63
    [Google Scholar]
  71. 71. 
    Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA et al. 2017. TTC19 plays a husbandry role on UQCRFS1 turnover in the biogenesis of mitochondrial respiratory complex III. Mol. Cell 67:96–105.e4
    [Google Scholar]
  72. 72. 
    Spinazzi M, Radaelli E, Horré K, Arranz AM, Gounko NV et al. 2019. PARL deficiency in mouse causes complex III defects, coenzyme Q depletion, and Leigh-like syndrome. PNAS 116:277–86
    [Google Scholar]
  73. 73. 
    Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA et al. 2016. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim. Biophys. Acta Bioenerg. 1857:1300–6
    [Google Scholar]
  74. 74. 
    Hao YH, Zhang J, Wang H, Wang HY, Dong J et al. 2018. HIF-1α regulates COXIV subunits, a potential mechanism of self-protective response to microwave induced mitochondrial damages in neurons. Sci. Rep. 8:10403
    [Google Scholar]
  75. 75. 
    Patron M, Sprenger HG, Langer T 2018. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res 28:296–306
    [Google Scholar]
  76. 76. 
    Hurst S, Baggett A, Csordas G, Sheu SS 2019. SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening. J. Biol. Chem. 294:10807–18
    [Google Scholar]
  77. 77. 
    Koppen M, Bonn F, Ehses S, Langer T 2009. Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol. Biol. Cell 20:4216–24
    [Google Scholar]
  78. 78. 
    Almontashiri NA, Chen HH, Mailloux RJ, Tatsuta T, Teng AC et al. 2014. SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep 7:834–47
    [Google Scholar]
  79. 79. 
    Schlame M, Greenberg ML. 2017. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:3–7
    [Google Scholar]
  80. 80. 
    Calzada E, Onguka O, Claypool SM 2016. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321:29–88
    [Google Scholar]
  81. 81. 
    Martensson CU, Doan KN, Becker T 2017. Effects of lipids on mitochondrial functions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:102–13
    [Google Scholar]
  82. 82. 
    Zhao T, Goedhart CM, Sam PN, Sabouny R, Lingrell S et al. 2019. PISD is a mitochondrial disease gene causing skeletal dysplasia, cataracts, and white matter changes. Life Sci. Alliance 2:e201900353
    [Google Scholar]
  83. 83. 
    Calzada E, Avery E, Sam PN, Modak A, Wang C et al. 2019. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 10:1432
    [Google Scholar]
  84. 84. 
    Tasseva G, Bai HD, Davidescu M, Haromy A, Michelakis E, Vance JE 2013. Phosphatidylethanolamine deficiency in mammalian mitochondria impairs oxidative phosphorylation and alters mitochondrial morphology. J. Biol. Chem. 288:4158–73
    [Google Scholar]
  85. 85. 
    Choi JY, Duraisingh MT, Marti M, Ben Mamoun C, Voelker DR 2015. From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. J. Biol. Chem. 290:10972–80
    [Google Scholar]
  86. 86. 
    Ogunbona OB, Onguka O, Calzada E, Claypool SM 2017. Multitiered and cooperative surveillance of mitochondrial phosphatidylserine decarboxylase 1. Mol. Cell. Biol. 37:e00049–17
    [Google Scholar]
  87. 87. 
    Keckesova Z, Donaher JL, De Cock J, Freinkman E, Lingrell S et al. 2017. LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature 543:681–86
    [Google Scholar]
  88. 88. 
    Dorn GW 2nd 2019. Evolving concepts of mitochondrial dynamics. Annu. Rev. Physiol. 81:1–17
    [Google Scholar]
  89. 89. 
    Tilokani L, Nagashima S, Paupe V, Prudent J 2018. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–60
    [Google Scholar]
  90. 90. 
    Gomes LC, Di Benedetto G, Scorrano L 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589–98
    [Google Scholar]
  91. 91. 
    Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. PNAS 108:10190–85
    [Google Scholar]
  92. 92. 
    Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–600
    [Google Scholar]
  93. 93. 
    Pernas L, Scorrano L. 2016. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu. Rev. Physiol. 78:505–31
    [Google Scholar]
  94. 94. 
    Akepati VR, Müller EC, Otto A, Strauss HM, Portwich M, Alexander C 2008. Characterization of OPA1 isoforms isolated from mouse tissues. J. Neurochem. 106:372–83
    [Google Scholar]
  95. 95. 
    Anand R, Wai T, Baker MJ, Kladt N, Schauss AC et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919–29
    [Google Scholar]
  96. 96. 
    MacVicar T, Langer T. 2016. OPA1 processing in cell death and disease—the long and short of it. J. Cell Sci. 129:2297–306
    [Google Scholar]
  97. 97. 
    Del Dotto V, Fogazza M, Carelli V, Rugolo M, Zanna C 2018. Eight human OPA1 isoforms, long and short: What are they for. Biochim. Biophys. Acta Bioenerg. 1859:263–69
    [Google Scholar]
  98. 98. 
    Quiros PM, Ramsay AJ, Sala D, Fernandez-Vizarra E, Rodriguez F et al. 2012. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31:2117–33
    [Google Scholar]
  99. 99. 
    Wai T, Garcia-Prieto J, Baker MJ, Merkwirth C, Benit P et al. 2015. Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aad0116
    [Google Scholar]
  100. 100. 
    Del Dotto V, Mishra P, Vidoni S, Fogazza M, Maresca A et al. 2017. OPA1 isoforms in the hierarchical organization of mitochondrial functions. Cell Rep 19:2557–71
    [Google Scholar]
  101. 101. 
    Ban T, Ishihara T, Kohno H, Saita S, Ichimura A et al. 2017. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19:856–63
    [Google Scholar]
  102. 102. 
    Lenaers G, Reynier P, Elachouri G, Soukkarieh C, Olichon A et al. 2009. OPA1 functions in mitochondria and dysfunctions in optic nerve. Int. J. Biochem. Cell Biol. 41:1866–74
    [Google Scholar]
  103. 103. 
    Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R et al. 2014. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J 33:578–93
    [Google Scholar]
  104. 104. 
    Rainbolt TK, Lebeau J, Puchades C, Wiseman RL 2016. Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress. Cell Rep 14:2041–49
    [Google Scholar]
  105. 105. 
    Baricault L, Ségui B, Guégand L, Olichon A, Valette A et al. 2007. OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313:3800–8
    [Google Scholar]
  106. 106. 
    Jones E, Gaytan N, Garcia I, Herrera A, Ramos M et al. 2017. A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1. Cell Mol. Life Sci. 74:1347–63
    [Google Scholar]
  107. 107. 
    Mishra P, Carelli V, Manfredi G, Chan DC 2014. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19:630–41
    [Google Scholar]
  108. 108. 
    Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS 2003. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278:27781–88
    [Google Scholar]
  109. 109. 
    McQuibban GA, Saurya S, Freeman M 2003. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–41
    [Google Scholar]
  110. 110. 
    Nolli C, Goffrini P, Lazzaretti M, Zanna C, Vitale R et al. 2015. Validation of a MGM1/OPA1 chimeric gene for functional analysis in yeast of mutations associated with dominant optic atrophy. Mitochondrion 25:38–48
    [Google Scholar]
  111. 111. 
    Rainbolt TK, Saunders JM, Wiseman RL 2015. YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress. EMBO Rep 16:97–106
    [Google Scholar]
  112. 112. 
    Lee H, Smith SB, Yoon Y 2017. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J. Biol. Chem. 292:7115–30
    [Google Scholar]
  113. 113. 
    Sprenger HG, Wani G, Hesseling A, König T, Patron M et al. 2019. Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy. EMBO Mol. Med. 11:e9288
    [Google Scholar]
  114. 114. 
    Jiang X, Jiang H, Shen Z, Wang X 2014. Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. PNAS 111:14782–87
    [Google Scholar]
  115. 115. 
    Yuan L, Zhai L, Qian L, Huang D, Ding Y et al. 2018. Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res 28:625–43
    [Google Scholar]
  116. 116. 
    Korwitz A, Merkwirth C, Richter-Dennerlein R, Tröder SE, Sprenger HG et al. 2016. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J. Cell Biol. 212:157–66
    [Google Scholar]
  117. 117. 
    Civiletto G, Varanita T, Cerutti R, Gorletta T, Barbaro S et al. 2015. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab 21:845–54
    [Google Scholar]
  118. 118. 
    Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R et al. 2015. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab 21:834–44
    [Google Scholar]
  119. 119. 
    Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA et al. 2002. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2:55–67
    [Google Scholar]
  120. 120. 
    Xiao X, Hu Y, Quiros PM, Wei Q, Lopez-Otin C, Dong Z 2014. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. Am. J. Physiol. Ren. Physiol. 306:F1318–26
    [Google Scholar]
  121. 121. 
    Acin-Perez R, Lechuga-Vieco AV, Del Mar Muñoz M, Nieto-Arellano R, Torroja C et al. 2018. Ablation of the stress protease OMA1 protects against heart failure in mice. Sci. Transl. Med. 10:eaan4935
    [Google Scholar]
  122. 122. 
    Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L et al. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–75
    [Google Scholar]
  123. 123. 
    Civitarese AE, MacLean PS, Carling S, Kerr-Bayles L, McMillan RP et al. 2010. Regulation of skeletal muscle oxidative capacity and insulin signaling by the mitochondrial rhomboid protease PARL. Cell Metab 11:412–26
    [Google Scholar]
  124. 124. 
    Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ, Haynes CM 2014. Mitochondrial UPR–regulated innate immunity provides resistance to pathogen infection. Nature 516:414–17
    [Google Scholar]
  125. 125. 
    Shpilka T, Haynes CM. 2018. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat. Rev. Mol. Cell Biol. 19:109–20
    [Google Scholar]
  126. 126. 
    Münch C, Harper JW. 2016. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–13
    [Google Scholar]
  127. 127. 
    Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM 2012. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–90
    [Google Scholar]
  128. 128. 
    Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN 2015. LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci. Rep. 5:17397
    [Google Scholar]
  129. 129. 
    Quiros PM, Mottis A, Auwerx J 2016. Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17:213–26
    [Google Scholar]
  130. 130. 
    Radke S, Chander H, Schäfer P, Meiss G, Krüger R et al. 2008. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 283:12681–85
    [Google Scholar]
  131. 131. 
    Papa L, Germain D. 2011. Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci. 124:1396–402
    [Google Scholar]
  132. 132. 
    Bahat A, Perlberg S, Melamed-Book N, Lauria I, Langer T, Orly J 2014. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol. Endocrinol. 28:208–24
    [Google Scholar]
  133. 133. 
    Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K et al. 2015. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am. J. Hum. Genet. 96:121–35
    [Google Scholar]
  134. 134. 
    Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M et al. 1998. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–83
    [Google Scholar]
  135. 135. 
    Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL et al. 2014. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137:1323–36
    [Google Scholar]
  136. 136. 
    Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G et al. 2010. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat. Genet. 42:313–21
    [Google Scholar]
  137. 137. 
    Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF et al. 2011. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLOS Genet 7:e1002325
    [Google Scholar]
  138. 138. 
    Martinelli P, La Mattina V, Bernacchia A, Magnoni R, Cerri F et al. 2009. Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Hum. Mol. Genet. 18:2001–13
    [Google Scholar]
  139. 139. 
    Almajan ER, Richter R, Paeger L, Martinelli P, Barth E et al. 2012. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J. Clin. Investig. 122:4048–58
    [Google Scholar]
  140. 140. 
    Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S et al. 2009. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187:1023–36
    [Google Scholar]
  141. 141. 
    Richter U, Lahtinen T, Marttinen P, Suomi F, Battersby BJ 2015. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J. Cell Biol. 211:373–89
    [Google Scholar]
  142. 142. 
    Kondadi AK, Wang S, Montagner S, Kladt N, Korwitz A et al. 2014. Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation. EMBO J 33:1011–26
    [Google Scholar]
  143. 143. 
    Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P et al. 2015. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J. Clin. Investig. 125:263–74
    [Google Scholar]
  144. 144. 
    Quiros PM, Espanol Y, Acin-Perez R, Rodriguez F, Barcena C et al. 2014. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8:542–56
    [Google Scholar]
  145. 145. 
    Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang SS et al. 2013. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I–mediated generation of reactive oxygen species. Cell Death Dis 4:e681
    [Google Scholar]
  146. 146. 
    Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T et al. 2019. Mitochondrial ClpP–mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35:721–37e9
    [Google Scholar]
  147. 147. 
    Hartkamp J, Carpenter B, Roberts SG 2010. The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol. Cell 37:159–71
    [Google Scholar]
  148. 148. 
    Yamauchi S, Hou YY, Guo AK, Hirata H, Nakajima W et al. 2014. p53-mediated activation of the mitochondrial protease HtrA2/Omi prevents cell invasion. J. Cell Biol. 204:1191–207
    [Google Scholar]
  149. 149. 
    Lee CK, Klopp RG, Weindruch R, Prolla TA 1999. Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–93
    [Google Scholar]
  150. 150. 
    Luce K, Osiewacz HD. 2009. Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat. Cell Biol. 11:852–58
    [Google Scholar]
  151. 151. 
    George SK, Jiao Y, Bishop CE, Lu B 2011. Mitochondrial peptidase IMMP2L mutation causes early onset of age-associated disorders and impairs adult stem cell self-renewal. Aging Cell 10:584–94
    [Google Scholar]
  152. 152. 
    Potting C, Tatsuta T, König T, Haag M, Wai T et al. 2013. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab 18:287–95
    [Google Scholar]
  153. 153. 
    Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T 2003. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J. Biol. Chem. 278:52953–63
    [Google Scholar]
  154. 154. 
    Branda SS, Isaya G. 1995. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J. Biol. Chem. 270:27366–73
    [Google Scholar]
  155. 155. 
    Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C et al. 2015. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem 290:7517–34
    [Google Scholar]
  156. 156. 
    Isaya G, Miklos D, Rollins RA 1994. MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol 14:5603–16
    [Google Scholar]
  157. 157. 
    Meissner C, Lorenz H, Hehn B, Lemberg MK 2015. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 11:1484–98
    [Google Scholar]
  158. 158. 
    Shi G, McQuibban GA. 2017. The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep 18:1458–72
    [Google Scholar]
  159. 159. 
    Gakh O, Cavadini P, Isaya G 2002. Mitochondrial processing peptidases. Biochim. Biophys. Acta Mol. Cell Res. 1592:63–77
    [Google Scholar]
  160. 160. 
    Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K et al. 2013. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am. J. Hum. Genet. 92:605–13
    [Google Scholar]
  161. 161. 
    Brodie EJ, Zhan H, Saiyed T, Truscott KN, Dougan DA 2018. Perrault syndrome type 3 caused by diverse molecular defects in CLPP. Sci. Rep 8:12862
    [Google Scholar]
  162. 162. 
    Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H et al. 2017. Mutation in human CLPX elevates levels of δ-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. PNAS 114:E8045–52
    [Google Scholar]
  163. 163. 
    He YC, Huang P, Li QQ, Sun Q, Li DH et al. 2017. Mutation analysis of HTRA2 gene in Chinese familial essential tremor and familial Parkinson's disease. Parkinson's Dis 2017:217474
    [Google Scholar]
  164. 164. 
    Yun J, Cao JH, Dodson MW, Clark IE, Kapahi P et al. 2008. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the pink1/parkin pathway in vivo. J. Neurosci 28:14500–10
    [Google Scholar]
  165. 165. 
    Mandel H, Saita S, Edvardson S, Jalas C, Shaag A et al. 2016. Deficiency of HTRA2/Omi is associated with infantile neurodegeneration and 3-methylglutaconic aciduria. J. Med. Genet. 53:690–96
    [Google Scholar]
  166. 166. 
    Kovacs-Nagy R, Morin G, Nouri MA, Brandau O, Saadi NW et al. 2018. HTRA2 defect: a recognizable inborn error of metabolism with 3-methylglutaconic aciduria as discriminating feature characterized by neonatal movement disorder and epilepsy—report of 11 patients. Neuropediatrics 49:373–78
    [Google Scholar]
  167. 167. 
    Soyama H, Miyamoto M, Takano M, Aoyama T, Matsuura H et al. 2017. Ovarian serous carcinomas acquire cisplatin resistance and increased invasion through downregulation of the high-temperature-required protein A2 (HtrA2), following repeated treatment with cisplatin. Med. Oncol. 34:201
    [Google Scholar]
  168. 168. 
    Bertelsen B, Melchior L, Jensen LR, Groth C, Glenthoj B et al. 2014. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur. J. Hum. Genet. 22:1283–89
    [Google Scholar]
  169. 169. 
    Zeng K, Chen X, Hu X, Liu X, Xu T et al. 2018. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene 37:5534–51
    [Google Scholar]
  170. 170. 
    Dikoglu E, Alfaiz A, Gorna M, Bertola D, Chae JH et al. 2015. Mutations in LONP1, a mitochondrial matrix protease, cause CODAS syndrome. Am. J. Med. Genet. A 167:1501–9
    [Google Scholar]
  171. 171. 
    Di K, Lomeli N, Wood SD, Vanderwal CD, Bota DA 2016. Mitochondrial Lon is over-expressed in high-grade gliomas, and mediates hypoxic adaptation: potential role of Lon as a therapeutic target in glioma. Oncotarget 7:77457–67
    [Google Scholar]
  172. 172. 
    Nie X, Li M, Lu B, Zhang Y, Lan L et al. 2013. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics. PLOS ONE 8:e81084
    [Google Scholar]
  173. 173. 
    Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H et al. 2006. MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene 25:3471–78
    [Google Scholar]
  174. 174. 
    Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P et al. 2016. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med 8:106
    [Google Scholar]
  175. 175. 
    Shi Y, Qu J, Zhang D, Zhao P, Zhang Q et al. 2011. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am. J. Hum. Genet. 88:805–13
    [Google Scholar]
  176. 176. 
    Lin H, Miyauchi K, Harada T, Okita R, Takeshita E et al. 2018. CO2-sensitive tRNA modification associated with human mitochondrial disease. Nat. Commun. 9:1875
    [Google Scholar]
  177. 177. 
    Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR 2018. Parkinson disease from Mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol. Neurobiol. 38:1153–78
    [Google Scholar]
  178. 178. 
    Wust R, Maurer B, Hauser K, Woitalla D, Sharma M, Krüger R 2016. Mutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson's disease. Neurobiol. Aging 39:217e13–15
    [Google Scholar]
  179. 179. 
    Phasukkijwatana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R et al. 2010. Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Hum. Genet. 128:39–49
    [Google Scholar]
  180. 180. 
    Zhang AM, Jia X, Zhang Q, Yao YG 2010. No association between the SNPs (rs3749446 and rs1402000) in the PARL gene and LHON in Chinese patients with m.11778G>A. Hum. Genet. 128:465–68
    [Google Scholar]
  181. 181. 
    Wang D, Zhang DF, Feng JQ, Li GD, Li XA et al. 2016. Common variants in the PARL and PINK1 genes increase the risk to leprosy in Han Chinese from South China. Sci. Rep. 6:37086
    [Google Scholar]
  182. 182. 
    Jobling RK, Assoum M, Gakh O, Blaser S, Raiman JA et al. 2015. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain 138:1505–17
    [Google Scholar]
  183. 183. 
    Vögtle FN, Brändl B, Larson A, Pendziwiat M, Friederich MW et al. 2018. Mutations in PMPCB encoding the catalytic subunit of the mitochondrial presequence protease cause neurodegeneration in early childhood. Am. J. Hum. Genet. 102:557–73
    [Google Scholar]
  184. 184. 
    Brunetti D, Torsvik J, Dallabona C, Teixeira P, Sztromwasser P et al. 2016. Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration. EMBO Mol. Med. 8:176–90
    [Google Scholar]
  185. 185. 
    Langer Y, Aran A, Gulsuner S, Abu Libdeh B, Renbaum P et al. 2018. Mitochondrial PITRM1 peptidase loss-of-function in childhood cerebellar atrophy. J. Med. Genet. 55:599–606
    [Google Scholar]
  186. 186. 
    O'Toole JF, Liu Y, Davis EE, Westlake CJ, Attanasio M et al. 2010. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J. Clin. Investig. 120:791–802
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012739
Loading
/content/journals/10.1146/annurev-biochem-062917-012739
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error