1932

Abstract

Antibodies are immunoglobulins that play essential roles in immune systems. All antibodies are glycoproteins that carry at least one or more conserved -linked oligosaccharides (-glycans) at the Fc domain. Many studies have demonstrated that both the presence and fine structures of the attached glycans can exert a profound impact on the biological functions and therapeutic efficacy of antibodies. However, antibodies usually exist as mixtures of heterogeneous glycoforms that are difficult to separate in pure glycoforms. Recent progress in glycoengineering has provided useful methods that enable production of glycan-defined and site-selectively modified antibodies for functional studies and for improved therapeutic efficacy. This review highlights major approaches in glycoengineering of antibodies with a focus on recent advances in three areas: glycoengineering through glycan biosynthetic pathway manipulation, glycoengineering through in vitro chemoenzymatic glycan remodeling, and glycoengineering of antibodies for site-specific antibody–drug conjugation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012911
2019-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/88/1/annurev-biochem-062917-012911.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012911&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yu X, Marshall MJE, Cragg MS, Crispin M 2017. Improving antibody-based cancer therapeutics through glycan engineering. BioDrugs 31:151–66
    [Google Scholar]
  2. 2. 
    Ecker DM, Jones SD, Levine HL 2015. The therapeutic monoclonal antibody market. mAbs 7:9–14
    [Google Scholar]
  3. 3. 
    Aggarwal RS. 2014. What's fueling the biotech engine—2012 to 2013. Nat. Biotechnol. 32:32–39
    [Google Scholar]
  4. 4. 
    Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S et al. 2000. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol. Immunol. 37:697–706
    [Google Scholar]
  5. 5. 
    Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP et al. 2001. Role of oligosaccharide residues of IgG1-Fc in FcγRIIb binding. J. Biol. Chem. 276:45539–47
    [Google Scholar]
  6. 6. 
    Sondermann P, Huber R, Oosthuizen V, Jacob U 2000. The 3.2-Å crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 406:267–73
    [Google Scholar]
  7. 7. 
    Wormald MR, Rudd PM, Harvey DJ, Chang SC, Scragg IG, Dwek RA 1997. Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36:1370–80
    [Google Scholar]
  8. 8. 
    Takahashi N, Nakagawa H, Fujikawa K, Kawamura Y, Tomiya N 1995. Three-dimensional elution mapping of pyridylaminated N-linked neutral and sialyl oligosaccharides. Anal. Biochem. 226:139–46
    [Google Scholar]
  9. 9. 
    Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH et al. 2015. Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–24
    [Google Scholar]
  10. 10. 
    Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA 2007. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25:21–50
    [Google Scholar]
  11. 11. 
    Jefferis R. 2005. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21:11–16
    [Google Scholar]
  12. 12. 
    Jefferis R. 2009. Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 8:226–34
    [Google Scholar]
  13. 13. 
    Nimmerjahn F, Ravetch JV. 2008. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol. 26:513–33
    [Google Scholar]
  14. 14. 
    Anthony RM, Wermeling F, Ravetch JV 2012. Novel roles for the IgG Fc glycan. Ann. N.Y. Acad. Sci. 1253:170–80
    [Google Scholar]
  15. 15. 
    Reusch D, Tejada ML. 2015. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25:1325–34
    [Google Scholar]
  16. 16. 
    van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y 2016. The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196:1435–41
    [Google Scholar]
  17. 17. 
    Alter G, Ottenhoff THM, Joosten SA 2018. Antibody glycosylation in inflammation, disease and vaccination. Semin. Immunol. 39:102–10
    [Google Scholar]
  18. 18. 
    Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P et al. 2011. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. PNAS 108:12669–74
    [Google Scholar]
  19. 19. 
    Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K et al. 2004. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–33
    [Google Scholar]
  20. 20. 
    Illidge T, Cheadle EJ, Donaghy C, Honeychurch J 2014. Update on obinutuzumab in the treatment of B-cell malignancies. Expert Opin. Biol. Ther. 14:1507–17
    [Google Scholar]
  21. 21. 
    Kaneko Y, Nimmerjahn F, Ravetch JV 2006. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–73
    [Google Scholar]
  22. 22. 
    Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV 2008. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–76
    [Google Scholar]
  23. 23. 
    Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F 2014. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur. J. Immunol. 44:1444–53
    [Google Scholar]
  24. 24. 
    Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC et al. 2015. Controlled tetra-Fc sialylation of IVIG results in a drug candidate with consistent enhanced anti-inflammatory activity. PNAS 112:E1297–306
    [Google Scholar]
  25. 25. 
    Shade KT, Platzer B, Washburn N, Mani V, Bartsch YC et al. 2015. A single glycan on IgE is indispensable for initiation of anaphylaxis. J. Exp. Med. 212:457–67
    [Google Scholar]
  26. 26. 
    Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE 1999. Engineered glycoforms of an anti-neuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17:176–80
    [Google Scholar]
  27. 27. 
    Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S et al. 2004. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87:614–22
    [Google Scholar]
  28. 28. 
    Stanley P, Sundaram S, Tang J, Shi S 2005. Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans. Glycobiology 15:43–53
    [Google Scholar]
  29. 29. 
    Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK et al. 2006. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol 24:1591–97
    [Google Scholar]
  30. 30. 
    Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H et al. 2009. Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J. Biol. Chem. 284:20479–85
    [Google Scholar]
  31. 31. 
    Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B et al. 2006. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol 24:210–15
    [Google Scholar]
  32. 32. 
    Zhou Q, Shankara S, Roy A, Qiu H, Estes S et al. 2008. Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol. Bioeng. 99:652–65
    [Google Scholar]
  33. 33. 
    Li C, Wang LX. 2018. Chemoenzymatic methods for the synthesis of glycoproteins. Chem. Rev. 118:8359–413
    [Google Scholar]
  34. 34. 
    Fairbanks AJ. 2017. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem. Soc. Rev. 46:5128–46
    [Google Scholar]
  35. 35. 
    Danby PM, Withers SG. 2016. Advances in enzymatic glycoside synthesis. ACS Chem. Biol. 11:1784–94
    [Google Scholar]
  36. 36. 
    Wang LX, Lomino JV. 2012. Emerging technologies for making glycan-defined glycoproteins. ACS Chem. Biol. 7:110–22
    [Google Scholar]
  37. 37. 
    Agarwal P, Bertozzi CR. 2015. Site-specific antibody–drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26:176–92
    [Google Scholar]
  38. 38. 
    Zauner G, Selman MH, Bondt A, Rombouts Y, Blank D et al. 2013. Glycoproteomic analysis of antibodies. Mol. Cell. Proteom. 12:856–65
    [Google Scholar]
  39. 39. 
    Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R et al. 2009. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9:4143–53
    [Google Scholar]
  40. 40. 
    Wuhrer M, Stam JC, van de Geijn FE, Koeleman CA, Verrips CT et al. 2007. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. Proteomics 7:4070–81
    [Google Scholar]
  41. 41. 
    Stanley P, Siminovitch L. 1977. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somat. Cell Genet. 3:391–405
    [Google Scholar]
  42. 42. 
    Stanley P. 1992. Glycosylation engineering. Glycobiology 2:99–107
    [Google Scholar]
  43. 43. 
    Ripka J, Adamany A, Stanley P 1986. Two Chinese hamster ovary glycosylation mutants affected in the conversion of GDP-mannose to GDP-fucose. Arch. Biochem. Biophys. 249:533–45
    [Google Scholar]
  44. 44. 
    Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, Fukuda M 1998. Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. J. Biol. Chem. 273:14582–87
    [Google Scholar]
  45. 45. 
    Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y et al. 2003. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278:3466–73
    [Google Scholar]
  46. 46. 
    Yver A, Homery MC, Fuseau E, Guemas E, Dhainaut F et al. 2012. Pharmacokinetics and safety of roledumab, a novel human recombinant monoclonal anti‐RhD antibody with an optimized Fc for improved engagement of FCγRIII, in healthy volunteers. Vox Sang 103:213–22
    [Google Scholar]
  47. 47. 
    Sharman JP, Farber CM, Mahadevan D, Schreeder MT, Brooks HD et al. 2017. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 antibody, in combination with ibrutinib is safe and highly active in patients with relapsed and/or refractory chronic lymphocytic leukaemia: results of a phase 2 trial. Br. J. Haematol. 176:412–20
    [Google Scholar]
  48. 48. 
    Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P 2006. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous β1, 4-N-acetylglucosaminyltransferase III and Golgi α-mannosidase II. Biotechnol. Bioeng. 93:851–61
    [Google Scholar]
  49. 49. 
    Ratner M. 2014. Genentech's glyco-engineered antibody to succeed Rituxan. Nat. Biotechnol. 32:6–7
    [Google Scholar]
  50. 50. 
    Yamane-Ohnuki N, Satoh M. 2009. Production of therapeutic antibodies with controlled fucosylation. mAbs 1:230–36
    [Google Scholar]
  51. 51. 
    de Lartigue J. 2012. Mogamulizumab for the treatment of adult T-cell leukemia/lymphoma. Drugs Today 48:655–60
    [Google Scholar]
  52. 52. 
    Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M et al. 2007. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J. Biotechnol. 130:300–10
    [Google Scholar]
  53. 53. 
    Louie S, Haley B, Marshall B, Heidersbach A, Yim M et al. 2017. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnol. Bioeng. 114:632–44
    [Google Scholar]
  54. 54. 
    von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C et al. 2010. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-d-lyxo-4-hexulose reductase. Glycobiology 20:1607–18
    [Google Scholar]
  55. 55. 
    Chan KF, Shahreel W, Wan C, Teo G, Hayati N et al. 2016. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies. Biotechnol. J. 11:399–414
    [Google Scholar]
  56. 56. 
    Okeley NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ et al. 2013. Development of orally active inhibitors of protein and cellular fucosylation. PNAS 110:5404–9
    [Google Scholar]
  57. 57. 
    Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P et al. 2016. Facile modulation of antibody fucosylation with small molecule fucostatin inhibitors and cocrystal structure with GDP-mannose 4,6-dehydratase. ACS Chem. Biol. 11:2734–43
    [Google Scholar]
  58. 58. 
    McKenzie NC, Scott NE, John A, White JM, Goddard-Borger ED 2018. Synthesis and use of 6,6,6-trifluoro-l-fucose to block core-fucosylation in hybridoma cell lines. Carbohydr. Res. 465:4–9
    [Google Scholar]
  59. 59. 
    Hossler P, Chumsae C, Racicot C, Ouellette D, Ibraghimov A et al. 2017. Arabinosylation of recombinant human immunoglobulin-based protein therapeutics. mAbs 9:715–34
    [Google Scholar]
  60. 60. 
    Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y et al. 2009. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–20
    [Google Scholar]
  61. 61. 
    Tada M, Tatematsu K-I, Ishii-Watabe A, Harazono A, Takakura D et al. 2015. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). mAbs 7:1138–50
    [Google Scholar]
  62. 62. 
    Ward M, Lin C, Victoria DC, Fox BP, Fox JA et al. 2004. Characterization of humanized antibodies secreted by Aspergillus niger. Appl. Env. Microbiol 70:2567–76
    [Google Scholar]
  63. 63. 
    Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H 2007. Production of a monoclonal antibody in plants with a humanized N‐glycosylation pattern. Plant Biotechnol. J. 5:657–63
    [Google Scholar]
  64. 64. 
    Strasser R, Stadlmann J, Schähs M, Stiegler G, Quendler H et al. 2008. Generation of glyco‐engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human‐like N‐glycan structure. Plant Biotechnol. J. 6:392–402
    [Google Scholar]
  65. 65. 
    Wildt S, Gerngross TU. 2005. The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3:119–28
    [Google Scholar]
  66. 66. 
    Bosch D, Castilho A, Loos A, Schots A, Steinkellner H 2013. N-glycosylation of plant-produced recombinant proteins. Curr. Pharm. Des. 19:5503–12
    [Google Scholar]
  67. 67. 
    Castilho A, Gattinger P, Grass J, Jez J, Pabst M et al. 2011. N-glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21:813–23
    [Google Scholar]
  68. 68. 
    Castilho A, Bohorova N, Grass J, Bohorov O, Zeitlin L et al. 2011. Rapid high yield production of different glycoforms of Ebola virus monoclonal antibody. PLOS ONE 6:e26040
    [Google Scholar]
  69. 69. 
    Zeitlin L, Pettitt J, Scully C, Bohorova N, Kim D et al. 2011. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. PNAS 108:20690–94
    [Google Scholar]
  70. 70. 
    Mabashi-Asazuma H, Kuo C-W, Khoo K-H, Jarvis DL 2013. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 24:325–40
    [Google Scholar]
  71. 71. 
    Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B et al. 2015. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J. Clin. Invest. 125:4160–70
    [Google Scholar]
  72. 72. 
    Anthony RM, Ravetch JV. 2010. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J. Clin. Immunol. 30:Suppl. 1S9–14
    [Google Scholar]
  73. 73. 
    Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R 1996. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fcγ receptor I and influence the synthesis of its oligosaccharide chains. J. Immunol. 157:4963–69
    [Google Scholar]
  74. 74. 
    Chung CY, Wang Q, Yang S, Ponce SA, Kirsch BJ et al. 2017. Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Biotechnol. Bioeng. 114:2848–56
    [Google Scholar]
  75. 75. 
    Raymond C, Robotham A, Spearman M, Butler M, Kelly J, Durocher Y 2015. Production of α2,6-sialylated IgG1 in CHO cells. mAbs 7:571–83
    [Google Scholar]
  76. 76. 
    Chung CY, Wang Q, Yang S, Yin B, Zhang H, Betenbaugh M 2017. Integrated genome and protein editing swaps α-2,6 sialylation for α-2,3 sialic acid on recombinant antibodies from CHO. Biotechnol. J. 12:1600502
    [Google Scholar]
  77. 77. 
    Hodoniczky J, Zheng YZ, James DC 2005. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21:1644–52
    [Google Scholar]
  78. 78. 
    Wang LX, Amin MN. 2014. Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem. Biol. 21:51–66
    [Google Scholar]
  79. 79. 
    Wei Y, Li C, Huang W, Li B, Strome S, Wang LX 2008. Glycoengineering of human IgG1-Fc through combined yeast expression and in vitro chemoenzymatic glycosylation. Biochemistry 47:10294–304
    [Google Scholar]
  80. 80. 
    Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX 2011. Chemoenzymatic synthesis and Fcγ receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcγIIIa receptor. J. Am. Chem. Soc. 133:18975–91
    [Google Scholar]
  81. 81. 
    Fan SQ, Huang W, Wang LX 2012. Remarkable transglycosylation activity of glycosynthase mutants of Endo-D, an Endo-β-N-acetylglucosaminidase from Streptococcus pneumoniae. J. Biol. Chem 287:11272–81
    [Google Scholar]
  82. 82. 
    Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX 2012. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J. Am. Chem. Soc. 134:12308–18
    [Google Scholar]
  83. 83. 
    Lin CW, Tsai MH, Li ST, Tsai TI, Chu KC et al. 2015. A common glycan structure on immunoglobulin G for enhancement of effector functions. PNAS 112:10611–16
    [Google Scholar]
  84. 84. 
    Kurogochi M, Mori M, Osumi K, Tojino M, Sugawara S et al. 2015. Glycoengineered monoclonal antibodies with homogeneous glycan (M3, G0, G2, and A2) using a chemoenzymatic approach have different affinities for FcγRIIIa and variable antibody-dependent cellular cytotoxicity activities. PLOS ONE 10:e0132848
    [Google Scholar]
  85. 85. 
    Parsons TB, Struwe WB, Gault J, Yamamoto K, Taylor TA et al. 2016. Optimal synthetic glycosylation of a therapeutic antibody. Angew. Chem. Int. Ed. 55:2361–67
    [Google Scholar]
  86. 86. 
    Ahmed AA, Giddens J, Pincetic A, Lomino JV, Ravetch JV et al. 2014. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J. Mol. Biol. 426:3166–79
    [Google Scholar]
  87. 87. 
    Smith EL, Giddens JP, Iavarone AT, Godula K, Wang LX, Bertozzi CR 2014. Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjug. Chem. 25:788–95
    [Google Scholar]
  88. 88. 
    Liu R, Giddens J, McClung CM, Magnelli PE, Wang LX, Guthrie EP 2016. Evaluation of a glycoengineered monoclonal antibody via LC-MS analysis in combination with multiple enzymatic digestion. mAbs 8:340–46
    [Google Scholar]
  89. 89. 
    Collin M, Olsen A. 2001. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–55
    [Google Scholar]
  90. 90. 
    Sjogren J, Cosgrave EF, Allhorn M, Nordgren M, Bjork S et al. 2015. EndoS and EndoS2 hydrolyze Fc-glycans on therapeutic antibodies with different glycoform selectivity and can be used for rapid quantification of high-mannose glycans. Glycobiology 25:1053–63
    [Google Scholar]
  91. 91. 
    Li T, Tong X, Yang Q, Giddens JP, Wang LX 2016. Glycosynthase mutants of endoglycosidase S2 show potent transglycosylation activity and remarkably relaxed substrate specificity for antibody glycosylation remodeling. J. Biol. Chem. 291:16508–18
    [Google Scholar]
  92. 92. 
    Sjogren J, Struwe WB, Cosgrave EF, Rudd PM, Stervander M et al. 2013. EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein. Biochem. J. 455:107–18
    [Google Scholar]
  93. 93. 
    Shivatare SS, Huang LY, Zeng YF, Liao JY, You TH et al. 2018. Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies. Chem. Commun. 54:6161–64
    [Google Scholar]
  94. 94. 
    Li T, Li C, Quan DN, Bentley WE, Wang LX 2018. Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies. Carbohydr. Res 458:77–84
    [Google Scholar]
  95. 95. 
    Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX 2017. Modulating IgG effector function by Fc glycan engineering. PNAS 114:3485–90
    [Google Scholar]
  96. 96. 
    Giddens JP, Lomino JV, Amin MN, Wang LX 2016. Endo-F3 glycosynthase mutants enable chemoenzymatic synthesis of core-fucosylated triantennary complex type glycopeptides and glycoproteins. J. Biol. Chem. 291:9356–70
    [Google Scholar]
  97. 97. 
    Liu CP, Tsai TI, Cheng T, Shivatare VS, Wu CY et al. 2018. Glycoengineering of antibody (Herceptin) through yeast expression and in vitro enzymatic glycosylation. PNAS 115:720–25
    [Google Scholar]
  98. 98. 
    Manabe S, Yamaguchi Y, Abe J, Matsumoto K, Ito Y 2018. Acceptor range of Endo-β-N-acetylglucosaminidase mutant Endo-CC N180H: from monosaccharide to antibody. R. Soc. Open Sci. 5:171521
    [Google Scholar]
  99. 99. 
    Iwamoto M, Sekiguchi Y, Nakamura K, Kawaguchi Y, Honda T, Hasegawa J 2018. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification. PLOS ONE 13:e0193534
    [Google Scholar]
  100. 100. 
    Song R, Oren DA, Franco D, Seaman MS, Ho DD 2013. Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity. Nat. Biotechnol. 31:1047–52
    [Google Scholar]
  101. 101. 
    Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX 2018. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. PNAS 115:12023–27
    [Google Scholar]
  102. 102. 
    Chung CH, Mirakhur B, Chan E, Le QT, Berlin J et al. 2008. Cetuximab-induced anaphylaxis and IgE specific for galactose-α-1,3-galactose. N. Engl. J. Med. 358:1109–17
    [Google Scholar]
  103. 103. 
    Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q 2007. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole–quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 364:8–18
    [Google Scholar]
  104. 104. 
    Janin-Bussat MC, Tonini L, Huillet C, Colas O, Klinguer-Hamour C et al. 2013. Cetuximab Fab and Fc N-glycan fast characterization using IdeS digestion and liquid chromatography coupled to electrospray ionization mass spectrometry. Methods Mol. Biol. 988:93–113
    [Google Scholar]
  105. 105. 
    Tsuchikama K, An Z. 2018. Antibody–drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9:33–46
    [Google Scholar]
  106. 106. 
    Lambert JM, Berkenblit A. 2018. Antibody–drug conjugates for cancer treatment. Annu. Rev. Med. 69:191–207
    [Google Scholar]
  107. 107. 
    Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK 2017. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov. Today 22:1547–56
    [Google Scholar]
  108. 108. 
    Deng S, Lin Z, Li W 2017. Recent advances in antibody–drug conjugates for breast cancer treatment. Curr. Med. Chem. 24:2505–27
    [Google Scholar]
  109. 109. 
    Beck A, Goetsch L, Dumontet C, Corvaia N 2017. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16:315–37
    [Google Scholar]
  110. 110. 
    Kubizek F, Eggenreich B, Spadiut O 2017. Status quo in antibody–drug conjugates—can glyco-enzymes solve the current challenges?. Protein Pept. Lett. 24:686–95
    [Google Scholar]
  111. 111. 
    Donaghy H. 2016. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody–drug conjugates. mAbs 8:659–71
    [Google Scholar]
  112. 112. 
    Casi G, Neri D. 2015. Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem. 58:8751–61
    [Google Scholar]
  113. 113. 
    Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM et al. 2014. Antibody–drug conjugates: current status and future directions. Drug Discov. Today 19:869–81
    [Google Scholar]
  114. 114. 
    Chari RV, Miller ML, Widdison WC 2014. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 53:3796–827
    [Google Scholar]
  115. 115. 
    Sievers EL, Senter PD. 2013. Antibody–drug conjugates in cancer therapy. Annu. Rev. Med. 64:15–29
    [Google Scholar]
  116. 116. 
    Senter PD, Sievers EL. 2012. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat. Biotechnol. 30:631–37
    [Google Scholar]
  117. 117. 
    Lambert JM, Chari RV. 2014. Ado-trastuzumab emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem. 57:6949–64
    [Google Scholar]
  118. 118. 
    Herrera AF, Molina A. 2018. Investigational antibody–drug conjugates for treatment of B-lineage malignancies. Clin. Lymphoma Myeloma Leuk. 18:452–68.e4
    [Google Scholar]
  119. 119. 
    Huang RY, Chen G. 2016. Characterization of antibody–drug conjugates by mass spectrometry: advances and future trends. Drug Discov. Today 21:850–55
    [Google Scholar]
  120. 120. 
    Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J et al. 2016. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody–drug conjugates. Expert Rev. Proteom. 13:157–83
    [Google Scholar]
  121. 121. 
    Behrens CR, Liu B. 2014. Methods for site-specific drug conjugation to antibodies. mAbs 6:46–53
    [Google Scholar]
  122. 122. 
    Panowski S, Bhakta S, Raab H, Polakis P, Junutula JR 2014. Site-specific antibody drug conjugates for cancer therapy. mAbs 6:34–45
    [Google Scholar]
  123. 123. 
    Junutula JR, Gerber HP. 2016. Next-generation antibody–drug conjugates (ADCs) for cancer therapy. ACS Med. Chem. Lett. 7:972–73
    [Google Scholar]
  124. 124. 
    Strop P, Delaria K, Foletti D, Witt JM, Hasa-Moreno A et al. 2015. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat. Biotechnol. 33:694–96
    [Google Scholar]
  125. 125. 
    Dennler P, Chiotellis A, Fischer E, Bregeon D, Belmant C et al. 2014. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug. Chem. 25:569–78
    [Google Scholar]
  126. 126. 
    Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH et al. 2012. Synthesis of site-specific antibody–drug conjugates using unnatural amino acids. PNAS 109:16101–6
    [Google Scholar]
  127. 127. 
    Zuberbuhler K, Casi G, Bernardes GJ, Neri D 2012. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem. Commun. 48:7100–2
    [Google Scholar]
  128. 128. 
    Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B et al. 2014. Site-specific antibody–drug conjugation through glycoengineering. Bioconjug. Chem. 25:510–20
    [Google Scholar]
  129. 129. 
    Li X, Fang T, Boons GJ 2014. Preparation of well-defined antibody–drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew. Chem. Int. Ed. 53:7179–82
    [Google Scholar]
  130. 130. 
    Ramakrishnan B, Qasba PK. 2002. Structure-based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J. Biol. Chem. 277:20833–39
    [Google Scholar]
  131. 131. 
    Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG et al. 2003. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125:16162–63
    [Google Scholar]
  132. 132. 
    Zhu Z, Ramakrishnan B, Li J, Wang Y, Feng Y et al. 2014. Site-specific antibody–drug conjugation through an engineered glycotransferase and a chemically reactive sugar. mAbs 6:1190–200
    [Google Scholar]
  133. 133. 
    Ramakrishnan B, Boeggeman E, Qasba PK 2008. Applications of glycosyltransferases in the site-specific conjugation of biomolecules and the development of a targeted drug delivery system and contrast agents for MRI. Expert Opin. Drug Deliv. 5:149–53
    [Google Scholar]
  134. 134. 
    Tang F, Yang Y, Tang Y, Tang S, Yang L et al. 2016. One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody–drug conjugates. Org. Biomol. Chem. 14:9501–18
    [Google Scholar]
  135. 135. 
    Tang F, Wang LX, Huang W 2017. Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody–drug conjugates. Nat. Protoc. 12:1702–21
    [Google Scholar]
  136. 136. 
    Ramakrishnan B, Boeggeman E, Manzoni M, Zhu Z, Loomis K et al. 2009. Multiple site-specific in vitro labeling of single-chain antibody. Bioconjug. Chem. 20:1383–89
    [Google Scholar]
  137. 137. 
    Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A et al. 2009. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug. Chem. 20:1228–36
    [Google Scholar]
  138. 138. 
    Qasba PK, Ramakrishnan B, Boeggeman E 2008. Structure and function of β-1,4-galactosyltransferase. Curr. Drug Targets 9:292–309
    [Google Scholar]
  139. 139. 
    Qasba PK, Boeggeman E, Ramakrishnan B 2008. Site-specific linking of biomolecules via glycan residues using glycosyltransferases. Biotechnol. Prog. 24:520–26
    [Google Scholar]
  140. 140. 
    Ramakrishnan B, Boeggeman E, Qasba PK 2007. Novel method for in vitro O-glycosylation of proteins: application for bioconjugation. Bioconjug. Chem. 18:1912–18
    [Google Scholar]
  141. 141. 
    Boeggeman E, Ramakrishnan B, Kilgore C, Khidekel N, Hsieh-Wilson LC et al. 2007. Direct identification of nonreducing GlcNAc residues on N-glycans of glycoproteins using a novel chemoenzymatic method. Bioconjug. Chem. 18:806–14
    [Google Scholar]
  142. 142. 
    Qasba PK, Ramakrishnan B, Boeggeman E 2006. Mutant glycosyltransferases assist in the development of a targeted drug delivery system and contrast agents for MRI. AAPS J 8:E190–95
    [Google Scholar]
  143. 143. 
    Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB et al. 2008. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J. Am. Chem. Soc. 130:11576–77
    [Google Scholar]
  144. 144. 
    Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A et al. 2013. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug. Chem. 24:1057–67
    [Google Scholar]
  145. 145. 
    van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA et al. 2015. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mAbs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjug. Chem. 26:2233–42
    [Google Scholar]
  146. 146. 
    Okeley NM, Toki BE, Zhang X, Jeffrey SC, Burke PJ et al. 2013. Metabolic engineering of monoclonal antibody carbohydrates for antibody–drug conjugation. Bioconjug. Chem. 24:1650–55
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012911
Loading
/content/journals/10.1146/annurev-biochem-062917-012911
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error