1932

Abstract

Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P] composes only 1–2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P headgroups, forming nanoscopic PI(4,5)P–cation clusters. The distinct lipid environment surrounding PI(4,5)P affects the degree of PI(4,5)P clustering. In addition, diverse cellular proteins interacting with PI(4,5)P can further regulate PI(4,5)P lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P behavior in both cells and model membranes, with emphasis on both multivalent cation– and protein-induced PI(4,5)P clustering. Understanding the nature of spatially separated pools of PI(4,5)P is fundamental to cell biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-070920-094827
2021-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-070920-094827.html?itemId=/content/journals/10.1146/annurev-biochem-070920-094827&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hokin M, Hokin L. 1953. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. Biol. Chem. 203:2967–77
    [Google Scholar]
  2. 2. 
    Wiedemann C, Cockcroft S. 1998. The role of phosphatidylinositol transfer proteins (PITPs) in intracellular signalling. Trends Endocrinol. Metab. 9:8324–28
    [Google Scholar]
  3. 3. 
    Phillips SE, Vincent P, Rizzieri KE, Schaaf G, Bankaitis VA, Gaucher EA 2006. The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 41:121–49
    [Google Scholar]
  4. 4. 
    Lipp NF, Ikhlef S, Milanini J, Drin G 2020. Lipid exchangers: cellular functions and mechanistic links with phosphoinositide metabolism. Front. Cell Dev. Biol. 8:663
    [Google Scholar]
  5. 5. 
    Shewan A, Eastburn DJ, Mostov K 2011. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 3:8a004796
    [Google Scholar]
  6. 6. 
    Di Paolo G, De Camilli P 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:7112651–57
    [Google Scholar]
  7. 7. 
    Toker A. 1998. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Cell Biol. 10:2254–61
    [Google Scholar]
  8. 8. 
    Martin TF. 2001. PI(4,5)P2 regulation of surface membrane traffic. Curr. Opin. Cell Biol. 13:4493–99
    [Google Scholar]
  9. 9. 
    Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:31019–137
    [Google Scholar]
  10. 10. 
    McLaughlin S, Wang J, Gambhir A, Murray D 2002. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31:151–75
    [Google Scholar]
  11. 11. 
    Tan X, Thapa N, Choi S, Anderson RA 2015. Emerging roles of PtdIns(4,5)P2—beyond the plasma membrane. J. Cell Sci. 128:224047–56
    [Google Scholar]
  12. 12. 
    Brown DA. 2015. PIP2 clustering: from model membranes to cells. Chem. Phys. Lipids 192:33–40
    [Google Scholar]
  13. 13. 
    Kwiatkowska K. 2010. One lipid, multiple functions: how various pools of PI(4,5)P2 are created in the plasma membrane. Cell. Mol. Life Sci. 67:233927–46
    [Google Scholar]
  14. 14. 
    Redfern DA, Gericke A. 2004. Domain formation in phosphatidylinositol monophosphate/phosphatidylcholine mixed vesicles. Biophys. J. 86:52980–92
    [Google Scholar]
  15. 15. 
    Jiang Z, Redfern RE, Isler Y, Ross AH, Gericke A 2014. Cholesterol stabilizes fluid phosphoinositide domains. Chem. Phys. Lipids 182:52–61
    [Google Scholar]
  16. 16. 
    Kooijman EE, Gericke A. 2014. Physical chemistry and biophysics of polyphosphoinositide mediated lipid signaling. Chem. Phys. Lipids 182:1–2
    [Google Scholar]
  17. 17. 
    Graber ZT, Gericke A, Kooijman EE 2014. Phosphatidylinositol-4,5-bisphosphate ionization in the presence of cholesterol, calcium or magnesium ions. Chem. Phys. Lipids 182:62–72
    [Google Scholar]
  18. 18. 
    Graber ZT, Jiang Z, Gericke A, Kooijman EE 2012. Phosphatidylinositol-4,5-bisphosphate ionization and domain formation in the presence of lipids with hydrogen bond donor capabilities. Chem. Phys. Lipids 165:6696–704
    [Google Scholar]
  19. 19. 
    Kooijman EE, King KE, Gangoda M, Gericke A 2009. Ionization properties of phosphatidylinositol polyphosphates in mixed model membranes. Biochemistry 48:409360–71
    [Google Scholar]
  20. 20. 
    van Paridon PA, de Kruijff B, Ouwerkerk R, Wirtz KWA 1986. Polyphosphoinositides undergo charge neutralization in the physiological pH range: a 31P-NMR study. Biochim. Biophys. Acta Lipids Lipid Metab. 877:1216–19
    [Google Scholar]
  21. 21. 
    Toner M, Vaio G, McLaughlin A, McLaughlin S 1988. Adsorption of cations to phosphatidylinositol 4,5-bisphosphate. Biochemistry 27:197435–43
    [Google Scholar]
  22. 22. 
    Moncelli MR, Becucci L, Guidelli R 1994. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. Biophys. J. 66:61969–80
    [Google Scholar]
  23. 23. 
    Tsui FC, Ojcius DM, Hubbell WL 1986. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys. J. 49:2459–68
    [Google Scholar]
  24. 24. 
    Pérez-Lara Á, Thapa A, Nyenhuis SB, Nyenhuis DA, Halder P et al. 2016. PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. eLife 5:e15886
    [Google Scholar]
  25. 25. 
    Traynor-Kaplan A, Kruse M, Dickson EJ, Dai G, Vivas O et al. 2017. Fatty-acyl chain profiles of cellular phosphoinositides. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:5513–22
    [Google Scholar]
  26. 26. 
    Tong J, Nguyen L, Vidal A, Simon SA, Skene JHP, McIntosh TJ 2008. Role of GAP-43 in sequestering phosphatidylinositol 4,5-bisphosphate to raft bilayers. Biophys. J. 94:1125–33
    [Google Scholar]
  27. 27. 
    Simons K, Sampaio JL. 2011. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3:10a004697
    [Google Scholar]
  28. 28. 
    Pike LJ, Miller JM. 1998. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J. Biol. Chem. 273:3522298–304
    [Google Scholar]
  29. 29. 
    Hammond GR V. 2016. Does PtdIns(4,5)P2 concentrate so it can multi-task. ? Biochem. Soc. Trans. 44:1228–33
    [Google Scholar]
  30. 30. 
    Johnson CM, Chichili GR, Rodgers W 2008. Compartmentalization of phosphatidylinositol 4,5-bisphosphate signaling evidenced using targeted phosphatases. J. Biol. Chem. 283:4429920–28
    [Google Scholar]
  31. 31. 
    Sezgin E, Levental I, Mayor S, Eggeling C 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:6361–74
    [Google Scholar]
  32. 32. 
    Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B 2010. Phosphoinositides: lipid regulators of membrane proteins. J. Physiol. 588:173179–85
    [Google Scholar]
  33. 33. 
    Sun Y, Thapa N, Hedman AC, Anderson RA 2013. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. BioEssays 35:6513–22
    [Google Scholar]
  34. 34. 
    Hinchliffe K. 2000. Intracellular signalling: Is PIP2 a messenger too?. Curr. Biol. 10:3104–5
    [Google Scholar]
  35. 35. 
    Berridge MJ, Irvine RF. 1984. Inositol triphosphate, a novel second messenger in cellular transduction. Nature 312:315–21
    [Google Scholar]
  36. 36. 
    Chang CL, Chen YJ, Liou J 2017. ER-plasma membrane junctions: Why and how do we study them?. Biochim. Biophys. Acta Mol. Cell Res. 1864:91494–506
    [Google Scholar]
  37. 37. 
    Czech MP. 2000. PIP2 and PIP3: complex roles at the cell surface. Cell 100:6603–6
    [Google Scholar]
  38. 38. 
    Bunce MW, Bergendahl K, Anderson RA 2006. Nuclear PI(4,5)P2: a new place for an old signal. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:5–6560–69
    [Google Scholar]
  39. 39. 
    Koch M, Holt M. 2012. Coupling exo- and endocytosis: an essential role for PIP2 at the synapse. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821:81114–32
    [Google Scholar]
  40. 40. 
    Hilgemann DW, Feng S, Nasuhoglu C 2003. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci. Signal. 2001:111re19
    [Google Scholar]
  41. 41. 
    Robertson B. 2007. Regulation of ion channels and transporters by phosphatidylinositol 4,5-bisphosphate. J. Physiol. 582:3901–2
    [Google Scholar]
  42. 42. 
    Yin HL, Janmey PA. 2003. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65:761–89
    [Google Scholar]
  43. 43. 
    Simonsen A, Wurmser AE, Emr SD, Stenmark H 2001. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13:4485–92
    [Google Scholar]
  44. 44. 
    Cullen PJ, Cozier GE, Banting G, Mellor H 2001. Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking. Curr. Biol. 11:21882–93
    [Google Scholar]
  45. 45. 
    Martin TFJ. 2012. Role of PI(4,5)P2 in vesicle exocytosis and membrane fusion. Phosphoinositides II: The Diverse Biological Functions T Balla, M Wymann, JD York 111–30 Subcell. Biochem. 59 Dordrecht, Neth: Springer
    [Google Scholar]
  46. 46. 
    Krahn MP, Wodarz A. 2012. Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays Biochem 53:15–27
    [Google Scholar]
  47. 47. 
    Scott CC, Dobson W, Botelho RJ, Coady-Osberg N, Chavrier P et al. 2005. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol. 169:1139–49
    [Google Scholar]
  48. 48. 
    Ling K, Schill NJ, Wagoner MP, Sun Y, Anderson RA 2006. Movin’ on up: the role of PtdIns(4,5)P2 in cell migration. Trends Cell Biol. 16:6276–84
    [Google Scholar]
  49. 49. 
    Skwarek LC, Boulianne GL. 2009. Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev. Cell 16:112–20
    [Google Scholar]
  50. 50. 
    Liu Y, Bankaitis VA. 2010. Phosphoinositide phosphatases in cell biology and disease. Prog. Lipid Res. 49:3201–17
    [Google Scholar]
  51. 51. 
    Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L et al. 2008. The PI(3,5)P2 and PI(4,5)P2 interactomes. J. Proteome Res. 7:125295–313
    [Google Scholar]
  52. 52. 
    Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL 1998. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr. Biol. 8:251399–404
    [Google Scholar]
  53. 53. 
    Takenawa T. 2010. Phosphoinositide-binding interface proteins involved in shaping cell membranes. Proc. Jpn. Acad. Ser. B 86:5509–23
    [Google Scholar]
  54. 54. 
    Saarikangas J, Zhao H, Lappalainen P 2010. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90:1259–89
    [Google Scholar]
  55. 55. 
    Rebecchi MJ, Scarlata S. 1998. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27:503–28
    [Google Scholar]
  56. 56. 
    Lemmon MA. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:299–111
    [Google Scholar]
  57. 57. 
    Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB 1995. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83:61037–46
    [Google Scholar]
  58. 58. 
    Harlan JE, Hajduk PJ, Yoon HS, Fesik SW 1994. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:16493168–70
    [Google Scholar]
  59. 59. 
    Hyvönen M, Macias MJ, Nilges M, Oschkinat H, Saraste M, Wilmanns M 1995. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14:194676–85
    [Google Scholar]
  60. 60. 
    Jian X, Tang W-K, Zhai P, Roy NS, Luo R et al. 2015. Molecular basis for cooperative binding of anionic phospholipids to the PH domain of the Arf GAP ASAP1. Structure 23:111977–88
    [Google Scholar]
  61. 61. 
    Vonkova I, Saliba AE, Deghou S, Anand K, Ceschia S et al. 2015. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep 12:91519–30
    [Google Scholar]
  62. 62. 
    Stauffer TP, Ahn S, Meyer T 1998. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8:6343–46
    [Google Scholar]
  63. 63. 
    Várnai P, Balla T. 1998. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H] inositol-labeled phosphoinositide pools. J. Cell Biol. 143:2501–10
    [Google Scholar]
  64. 64. 
    Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA et al. 1995. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34:4916228–34
    [Google Scholar]
  65. 65. 
    Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. PNAS 92:2310472–76
    [Google Scholar]
  66. 66. 
    Niggli V, Andréoli C, Roy C, Mangeat P 1995. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 376:3172–76
    [Google Scholar]
  67. 67. 
    Frame MC, Patel H, Serrels B, Lietha D, Eck MJ 2010. The FERM domain: organizing the structure and function of FAK. Nat. Rev. Mol. Cell Biol. 11:11802–14
    [Google Scholar]
  68. 68. 
    Fehon RG, McClatchey AI, Bretscher A 2010. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11:4276–87
    [Google Scholar]
  69. 69. 
    Hamada K, Shimizu T, Matsui T, Tsukita S, Tsukita S, Hakoshima T 2000. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 19:174449–62
    [Google Scholar]
  70. 70. 
    Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS 2004. ENTH/ANTH proteins and clathrin-mediated membrane budding. J. Cell Sci. 117:19–18
    [Google Scholar]
  71. 71. 
    Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T 2001. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291:55061047–51
    [Google Scholar]
  72. 72. 
    Arbuzova A, Murray D, McLaughlin S 1998. MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim. Biophys. Acta Rev. Biomembr. 1376:3369–79
    [Google Scholar]
  73. 73. 
    Golebiewska U, Gambhir A, Hangyás-Mihályné G, Zaitseva I, Rädler J, McLaughlin S 2006. Membrane-bound basic peptides sequester multivalent (PIP2), but not monovalent (PS), acidic lipids. Biophys. J. 91:2588–99
    [Google Scholar]
  74. 74. 
    Wang J, Gambhir A, Hangyás-Mihályné G, Murray D, Golebiewska U, McLaughlin S 2002. Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J. Biol. Chem. 277:3734401–12
    [Google Scholar]
  75. 75. 
    Gambhir A, Hangyás-Mihályné G, Zaitseva I, Cafiso DS, Wang J et al. 2004. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys. J. 86:42188–207
    [Google Scholar]
  76. 76. 
    Rauch ME, Ferguson CG, Prestwich GD, Cafiso DS 2002. Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters spin-labeled phosphatidylinositol 4,5-bisphosphate in lipid bilayers. J. Biol. Chem. 277:1614068–76
    [Google Scholar]
  77. 77. 
    Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P 2000. GAP43, MARCKS, and CAP23 modulate PI(4,5)P2 at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J. Cell Biol. 149:71455–72
    [Google Scholar]
  78. 78. 
    Arni S, Keilbaugh SA, Ostermeyer AG, Brown DA 1998. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J. Biol. Chem. 273:4328478–85
    [Google Scholar]
  79. 79. 
    Cossart P, Helenius A. 2014. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol. 6:8a016972
    [Google Scholar]
  80. 80. 
    DeTulleo L, Kirchhausen T. 1998. The clathrin endocytic pathway in viral infection. EMBO J 17:164585–93
    [Google Scholar]
  81. 81. 
    Vázquez-Calvo Á, Sobrino F, Martín-Acebes MA 2012. Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus. PLOS ONE 7:9e45172
    [Google Scholar]
  82. 82. 
    Barrero-Villar M, Barroso-Gonzalez J, Cabrero JR, Gordon-Alonso M, Alvarez-Losada S et al. 2008. PI4P5-kinase Iα is required for efficient HIV-1 entry and infection of T cells. J. Immunol. 181:106882–88
    [Google Scholar]
  83. 83. 
    Egger D, Wölk B, Gosert R, Bianchi L, Blum HE et al. 2002. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76:125974–84
    [Google Scholar]
  84. 84. 
    Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M et al. 2007. A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J. Virol. 81:2011096–105
    [Google Scholar]
  85. 85. 
    Waheed AA, Freed EO. 2018. The role of lipids in retroviral replication. Retrovirus-Cell Interactions L Parent 353–99 Cambridge, MA: Acad. Press
    [Google Scholar]
  86. 86. 
    Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO 2004. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. PNAS 101:4114889–94
    [Google Scholar]
  87. 87. 
    Chukkapalli V, Hogue IB, Boyko V, Hu W-S, Ono A et al. 2008. Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient Gag membrane binding. J. Virol. 82:52405–17
    [Google Scholar]
  88. 88. 
    Mücksch F, Laketa V, Müller B, Schultz C, Kräusslich HG 2017. Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring. eLife 6:e25287
    [Google Scholar]
  89. 89. 
    Dick RA, Goh SL, Feigenson GW, Vogt VM 2012. HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. PNAS 109:4618761–66
    [Google Scholar]
  90. 90. 
    Olety B, Ono A. 2014. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res 193:108–15
    [Google Scholar]
  91. 91. 
    Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF 2006. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. PNAS 103:3011364–69
    [Google Scholar]
  92. 92. 
    Chan R, Uchil PD, Jin J, Shui G, Ott DE et al. 2008. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides. J. Virol. 82:2211228–38
    [Google Scholar]
  93. 93. 
    Mücksch F, Citir M, Lüchtenborg C, Glass B, Traynor-Kaplan A et al. 2019. Quantification of phosphoinositides reveals strong enrichment of PIP2 in HIV-1 compared to producer cell membranes. Sci. Rep. 9:117661
    [Google Scholar]
  94. 94. 
    Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Kräusslich HG 2006. The HIV lipidome: a raft with an unusual composition. PNAS 103:82641–46
    [Google Scholar]
  95. 95. 
    Lorizate M, Sachsenheimer T, Glass B, Habermann A, Gerl MJ et al. 2013. Comparative lipidomics analysis of HIV‐1 particles and their producer cell membrane in different cell lines. Cell Microbiol 15:2292–304
    [Google Scholar]
  96. 96. 
    Hamard-Peron E, Juillard F, Saad JS, Roy C, Roingeard P et al. 2010. Targeting of murine leukemia virus Gag to the plasma membrane is mediated by PI(4,5)P2/PS and a polybasic region in the matrix. J. Virol. 84:1503–15
    [Google Scholar]
  97. 97. 
    Prchal J, Kroupa T, Ruml T, Hrabal R 2014. Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane. Front. Microbiol. 4:423
    [Google Scholar]
  98. 98. 
    Fernandes F, Chen K, Ehrlich LS, Jin J, Chen MH et al. 2011. Phosphoinositides direct equine infectious anemia virus Gag trafficking and release. Traffic 12:4438–51
    [Google Scholar]
  99. 99. 
    Inlora J, Chukkapalli V, Derse D, Ono A 2011. Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type-1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag. J. Virol. 85:83802–10
    [Google Scholar]
  100. 100. 
    Chan J, Dick RA, Vogt VM 2011. Rous sarcoma virus Gag has no specific requirement for phosphatidylinositol-(4,5)-bisphosphate for plasma membrane association in vivo or for liposome interaction in vitro. J. Virol. 85:2010851–60
    [Google Scholar]
  101. 101. 
    Johnson KA, Taghon GJF, Scott JL, Stahelin RV 2016. The Ebola virus matrix protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for extensive oligomerization at the plasma membrane and viral egress. Sci. Rep. 6:19125
    [Google Scholar]
  102. 102. 
    Wijesinghe KJ, Stahelin RV. 2016. Investigation of the lipid binding properties of the Marburg virus matrix protein VP40. J. Virol. 90:63074–85
    [Google Scholar]
  103. 103. 
    Wallace J, Mlodzianoski MJ, Maginnis MS, Lilieholm J, Mehmood K et al. 2019. Influenza hemagglutinin modulates phosphatidylinositol (4,5)-bisphosphate membrane clustering. Biophys. J. 116:5893–909
    [Google Scholar]
  104. 104. 
    Alvarez RA, Barría MI, Chen BK 2014. Unique features of HIV-1 spread through T cell virological synapses. PLOS Pathog 10:12e1004513
    [Google Scholar]
  105. 105. 
    Clapham PR, Weiss RA. 1997. Spoilt for choice of co-receptors. Nature 388:6639230–31
    [Google Scholar]
  106. 106. 
    Jolly C, Kashefi K, Hollinshead M, Sattentau QJ 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199:2283–93
    [Google Scholar]
  107. 107. 
    Hirai M, Takizawa T, Yabuki S, Hirai T, Hayashi K 1995. Thermotropic phase transition of phosphatidylinositol 4,5-bis(phosphate) aggregates in aqueous solution. J. Phys. Chem. 99:4817456–60
    [Google Scholar]
  108. 108. 
    Hendrickson HS. 1969. Physical properties and interactions of phosphoinositides. Ann. N.Y. Acad. Sci. 165:2668–76
    [Google Scholar]
  109. 109. 
    Chakraborty T, Chakraborty I, Ghosh S 2011. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab. J. Chem. 4:3265–70
    [Google Scholar]
  110. 110. 
    Moens PD, Bagatolli LA. 2007. Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate. Biochim. Biophys. Acta Biomembranes 1768:3439–49
    [Google Scholar]
  111. 111. 
    Huang F, Huang K. 1991. Interaction of protein kinase C isozymes with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 266:148727–33
    [Google Scholar]
  112. 112. 
    Lee EN, Lee SY, Lee D, Kim J, Paik SR 2003. Lipid interaction of α-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2. J. Neurochem. 84:51128–42
    [Google Scholar]
  113. 113. 
    Palmer FS. 1981. The phosphatidyl-myo-inositol-4,5-biphosphate phosphatase from Crithidia fasciculata. Can. J. Biochem. 59:7469–76
    [Google Scholar]
  114. 114. 
    Sugiura Y. 1981. Structure of molecular aggregates of 1-(3-sn-phosphatidyl)-l-myo-inositol 3,4-bis(phosphate) in water. Biochim. Biophys. Acta Biomembr 641:1148–59
    [Google Scholar]
  115. 115. 
    Hendrickson HS, Reinertsen JL. 1969. Comparison of metal-binding properties of trans-1,2-cyclohexanediol diphosphate and deacylated phosphoinositides. Biochemistry 8:124855–58
    [Google Scholar]
  116. 116. 
    Janmey PA, Iida K, Yin HL, Stossel TP 1987. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J. Biol. Chem. 262:2512228–36
    [Google Scholar]
  117. 117. 
    Flanagan LA, Cunningham CC, Chen J, Prestwich GD, Kosik KS, Janmey PA 1997. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys. J. 73:31440–47
    [Google Scholar]
  118. 118. 
    Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T 2009. A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. PNAS 106:239256–61
    [Google Scholar]
  119. 119. 
    Wang J, Richards DA. 2012. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol. Open 1:9857–62
    [Google Scholar]
  120. 120. 
    van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI et al. 2011. Membrane protein sequestering by ionic protein-lipid interactions. Nature 479:7374552–55
    [Google Scholar]
  121. 121. 
    Ji C, Zhang Y, Xu P, Xu T, Lou X 2015. Nanoscale landscape of phosphoinositides revealed by specific pleckstrin homology (PH) domains using single-molecule superresolution imaging in the plasma membrane. J. Biol. Chem. 290:4526978–93
    [Google Scholar]
  122. 122. 
    Carvalho K, Ramos L, Roy C, Picart C 2008. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality. Biophys. J. 95:94348–60
    [Google Scholar]
  123. 123. 
    Honigmann A, van den Bogaart G, Iraheta E, Risselada HJ, Milovanovic D et al. 2013. Phosphatidyl-inositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nat. Struct. Mol. Biol. 20:6679–86
    [Google Scholar]
  124. 124. 
    Myat MM, Anderson S, Allen L-AH, Aderem A 1997. MARCKS regulates membrane ruffling and cell spreading. Curr. Biol. 7:8611–14
    [Google Scholar]
  125. 125. 
    Allen L-AH, Aderem A. 1995. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J. Exp. Med. 182:3829–40
    [Google Scholar]
  126. 126. 
    van Rheenen J, Mulugeta Achame E, Janssen H, Calafat J, Jalink K 2005. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J 24:91664–73
    [Google Scholar]
  127. 127. 
    Milovanovic D, Platen M, Junius M, Diederichsen U, Schaap IAT et al. 2016. Calcium promotes the formation of syntaxin 1 mesoscale domains through phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 291:157868–76
    [Google Scholar]
  128. 128. 
    Doughman RL, Firestone AJ, Anderson RA 2003. Phosphatidylinositol phosphate kinases put PI4,5P2 in its place. J. Membr. Biol. 194:277–89
    [Google Scholar]
  129. 129. 
    van den Bout I, Divecha N 2009. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell Sci. 122:213837–50
    [Google Scholar]
  130. 130. 
    Nishioka T, Aoki K, Hikake K, Yoshizaki H, Kiyokawa E, Matsuda M 2008. Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells. Mol. Biol. Cell 19:104213–23
    [Google Scholar]
  131. 131. 
    Wen Y, Vogt VM, Feigenson GW 2018. Multivalent cation-bridged PI(4,5)P2 clusters form at very low concentrations. Biophys. J. 114:112630–39
    [Google Scholar]
  132. 132. 
    Slochower DR, Wang YH, Tourdot RW, Radhakrishnan R, Janmey PA 2014. Counterion-mediated pattern formation in membranes containing anionic lipids. Adv. Colloid Interface Sci. 208:177–88
    [Google Scholar]
  133. 133. 
    Wang YH, Slochower DR, Janmey PA 2014. Counterion-mediated cluster formation by polyphosphoinositides. Chem. Phys. Lipids 182:38–51
    [Google Scholar]
  134. 134. 
    Slochower DR, Huwe PJ, Radhakrishnan R, Janmey PA 2013. Quantum and all-atom molecular dynamics simulations of protonation and divalent ion binding to phosphatidylinositol 4,5-bisphosphate (PIP2). J. Phys. Chem. B 117:288322–29
    [Google Scholar]
  135. 135. 
    Levental I, Cebers A, Janmey PA 2008. Combined electrostatics and hydrogen bonding determine PIP2 intermolecular interactions. J. Am. Chem. Soc. 130:289025–30
    [Google Scholar]
  136. 136. 
    Hendrickson H, Ballou C. 1964. Ion exchange chromatography of intact brain phosphoinositides on diethylaminoethyl cellulose by gradient salt elution in a mixed solvent system. J. Biol. Chem. 239:51369–73
    [Google Scholar]
  137. 137. 
    Fullington JG, Hendrickson HS. 1966. Phospholipid-metal complexes. J. Biol. Chem. 241:174098–100
    [Google Scholar]
  138. 138. 
    Hauser H, Dawson RM. 1967. The binding of calcium at lipid‐water interfaces. Eur. J. Biochem. 1:161–69
    [Google Scholar]
  139. 139. 
    Buckley JT, Hawthorne JN. 1972. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J. Biol. Chem. 247:227218–23
    [Google Scholar]
  140. 140. 
    Levental I, Christian DA, Wang YH, Madara JJ, Discher DE, Janmey PA 2009. Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry 48:348241–48
    [Google Scholar]
  141. 141. 
    Wang YH, Collins A, Guo L, Smith-Dupont KB, Gai F et al. 2012. Divalent cation-induced cluster formation by polyphosphoinositides in model membranes. J. Am. Chem. Soc. 134:73387–95
    [Google Scholar]
  142. 142. 
    Ellenbroek WG, Wang YH, Christian DA, Discher DE, Janmey PA, Liu AJ 2011. Divalent cation-dependent formation of electrostatic PIP2 clusters in lipid monolayers. Biophys. J. 101:92178–84
    [Google Scholar]
  143. 143. 
    Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F 2014. Ca2+ induces PI(4,5)P2 clusters on lipid bilayers at physiological PI(4,5)P2 and Ca2+ concentrations. Biochim. Biophys. Acta Biomembr. 1838:3822–30
    [Google Scholar]
  144. 144. 
    Hansen SD, Huang WY, Lee YK, Bieling P, Christensen SM, Groves JT 2019. Stochastic geometry sensing and polarization in a lipid kinase-phosphatase competitive reaction. PNAS 116:3015013–22
    [Google Scholar]
  145. 145. 
    Lagerholm BC, Weinreb GE, Jacobson K, Thompson NL 2005. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56:309–36
    [Google Scholar]
  146. 146. 
    Golebiewska U, Nyako M, Woturski W, Zaitseva I, McLaughlin S 2008. Diffusion coefficient of fluorescent phosphatidylinositol 4,5-bisphosphate in the plasma membrane of cells. Mol. Biol. Cell 19:41663–69
    [Google Scholar]
  147. 147. 
    Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F 2017. Membrane order is a key regulator of divalent cation-induced clustering of PI(3,5)P2 and PI(4,5)P2. Langmuir 33:4312463–77
    [Google Scholar]
  148. 148. 
    Rodushkin I, Engström E, Baxter DC 2010. Sources of contamination and remedial strategies in the multi-elemental trace analysis laboratory. Anal. Bioanal. Chem. 396:1365–77
    [Google Scholar]
  149. 149. 
    Wen Y, Feigenson GW, Vogt VM, Dick RA 2020. Mechanisms of PI(4,5)P2 enrichment in HIV-1 viral membranes. J. Mol. Biol. 19:5343–64
    [Google Scholar]
  150. 150. 
    Suh BC, Hille B. 2007. Electrostatic interaction of internal Mg2+ with membrane PIP2 seen with KCNQ K+ channels. J. Gen. Physiol. 130:3241–56
    [Google Scholar]
  151. 151. 
    Seo JB, Jung SR, Huang W, Zhang Q, Koh DS 2015. Charge shielding of PIP2 by cations regulates enzyme activity of phospholipase C. PLOS ONE 10:12e0144432
    [Google Scholar]
  152. 152. 
    Wang P, Wang ZY. 2017. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res. Rev. 35:265–90
    [Google Scholar]
  153. 153. 
    Bilkova E, Pleskot R, Rissanen S, Sun S, Czogalla A et al. 2017. Calcium directly regulates phosphatidylinositol 4,5-bisphosphate headgroup conformation and recognition. J. Am. Chem. Soc. 139:114019–24
    [Google Scholar]
  154. 154. 
    Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA 2005. A polybasic motif allows N-WASP to act as a sensor of PIP2 density. Mol. Cell 17:2181–91
    [Google Scholar]
  155. 155. 
    Xhao H, Michelot A, Koskela EV, Tkach V, Stamou D et al. 2013. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep 4:61213–23
    [Google Scholar]
  156. 156. 
    Picas L, Viaud J, Schauer K, Vanni S, Hnia K et al. 2014. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat. Commun. 5:5647
    [Google Scholar]
  157. 157. 
    Zheng J, Cahill SM, Lemmon MA, Fushman D, Schlessinger J, Cowburn D 1996. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: implications for stimulation of GTPase activity. J. Mol. Biol. 255:114–21
    [Google Scholar]
  158. 158. 
    Bethoney KA, King MC, Lemmon MA, Ostap EM, Hinshaw JE 2009. A possible effector role for the pleckstrin homology (PH) domain of dynamin. PNAS 106:3213359–64
    [Google Scholar]
  159. 159. 
    Klein DE, Lee A, Frank DW, Marks MS, Lemmon MA 1998. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem. 273:4227725–33
    [Google Scholar]
  160. 160. 
    Yandrapalli N, Lubart Q, Tanwar HS, Picart C, Mak J et al. 2016. Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/cholesterol nanoclusters. Sci. Rep. 6:39332
    [Google Scholar]
  161. 161. 
    Favard C, Chojnacki J, Merida P, Yandrapalli N, Mak J et al. 2019. HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. Sci. Adv. 5:10eaaw8651
    [Google Scholar]
  162. 162. 
    Que EL, Bleher R, Duncan FE, Kong BY, Gleber SC et al. 2014. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nat. Chem. 7:2130–39
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-070920-094827
Loading
/content/journals/10.1146/annurev-biochem-070920-094827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error