1932

Abstract

The polyamines putrescine, spermidine, and spermine are abundant polycations of vital importance in mammalian cells. Their cellular levels are tightly regulated by degradation and synthesis, as well as by uptake and export. Here, we discuss the delicate balance between the neuroprotective and neurotoxic effects of polyamines in the context of Parkinson's disease (PD). Polyamine levels decline with aging and are altered in patients with PD, whereas recent mechanistic studies on ATP13A2 (PARK9) demonstrated a driving role of a disturbed polyamine homeostasis in PD. Polyamines affect pathways in PD pathogenesis, such as α-synuclein aggregation, and influence PD-related processes like autophagy, heavy metal toxicity, oxidative stress, neuroinflammation, and lysosomal/mitochondrial dysfunction. We formulate outstanding research questions regarding the role of polyamines in PD, their potential as PD biomarkers, and possible therapeutic strategies for PD targeting polyamine homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-071322-021330
2023-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/92/1/annurev-biochem-071322-021330.html?itemId=/content/journals/10.1146/annurev-biochem-071322-021330&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Maserejian N, Vinikoor-Imler L, Dilley A. 2020. Estimation of the 2020 global population of Parkinson's Disease (PD). Mov. Disord. 35:Suppl. 1198 Abstr. )
    [Google Scholar]
  2. 2.
    Balestrino R, Schapira AHV. 2020. Parkinson disease. Eur. J. Neurol. 27:27–42
    [Google Scholar]
  3. 3.
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P et al. 2017. Parkinson disease. Nat. Rev. Dis. Primers 3:17013
    [Google Scholar]
  4. 4.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. 1997. α-Synuclein in Lewy bodies. Nature 388:839–40
    [Google Scholar]
  5. 5.
    Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE et al. 2019. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22:1099–109
    [Google Scholar]
  6. 6.
    Panicker N, Ge P, Dawson VL, Dawson TM. 2021. The cell biology of Parkinson's disease. J. Cell Biol. 220:4e202012095
    [Google Scholar]
  7. 7.
    Vazquez-Velez GE, Zoghbi HY 2021. Parkinson's disease genetics and pathophysiology. Annu. Rev. Neurosci. 44:87–108
    [Google Scholar]
  8. 8.
    Milanese C, Payan-Gomez C, Galvani M, Molano Gonzalez N, Tresini M et al. 2019. Peripheral mitochondrial function correlates with clinical severity in idiopathic Parkinson's disease. Mov. Disord. 34:1192–202
    [Google Scholar]
  9. 9.
    Sanchez-Jimenez F, Medina MA, Villalobos-Rueda L, Urdiales JL. 2019. Polyamines in mammalian pathophysiology. Cell. Mol. Life Sci. 76:3987–4008
    [Google Scholar]
  10. 10.
    Minois N, Carmona-Gutierrez D, Madeo F. 2011. Polyamines in aging and disease. Aging 3:716–32
    [Google Scholar]
  11. 11.
    Pegg AE. 2016. Functions of polyamines in mammals. J. Biol. Chem. 291:14904–12
    [Google Scholar]
  12. 12.
    Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M 2015. Remaining mysteries of molecular biology: the role of polyamines in the cell. J. Mol. Biol. 427:3389–406
    [Google Scholar]
  13. 13.
    Bae DH, Lane DJR, Jansson PJ, Richardson DR. 2018. The old and new biochemistry of polyamines. Biochim. Biophys. Acta Gen. Subj. 1862:2053–68
    [Google Scholar]
  14. 14.
    Pegg AE. 2018. Introduction to the thematic minireview series: sixty plus years of polyamine research. J. Biol. Chem. 293:18681–92
    [Google Scholar]
  15. 15.
    Ramos-Molina B, Lambertos A, Penafiel R. 2018. Antizyme inhibitors in polyamine metabolism and beyond: physiopathological implications. Med. Sci. 6:489
    [Google Scholar]
  16. 16.
    Wu H, Min J, Ikeguchi Y, Zeng H, Dong A et al. 2007. Structure and mechanism of spermidine synthases. Biochemistry 46:8331–39
    [Google Scholar]
  17. 17.
    Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y et al. 2008. Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J. Biol. Chem. 283:16135–46
    [Google Scholar]
  18. 18.
    Pegg AE. 2009. S-adenosylmethionine decarboxylase. Essays Biochem. 46:25–45
    [Google Scholar]
  19. 19.
    Pegg AE. 2008. Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am. J. Physiol. Endocrinol. Metab. 294:E995–1010
    [Google Scholar]
  20. 20.
    Erwin BG, Persson L, Pegg AE. 1984. Differential inhibition of histone and polyamine acetylases by multisubstrate analogues. Biochemistry 23:4250–55
    [Google Scholar]
  21. 21.
    Cervelli M, Amendola R, Polticelli F, Mariottini P. 2012. Spermine oxidase: ten years after. Amino Acids 42:441–50
    [Google Scholar]
  22. 22.
    Pegg AE. 2013. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 26:1782–800
    [Google Scholar]
  23. 23.
    Wood PL, Khan MA, Moskal JR. 2007. The concept of “aldehyde load” in neurodegenerative mechanisms: cytotoxicity of the polyamine degradation products hydrogen peroxide, acrolein, 3-aminopropanal, 3-acetamidopropanal and 4-aminobutanal in a retinal ganglion cell line. Brain Res. 1145:150–56
    [Google Scholar]
  24. 24.
    van Veen S, Martin S, Van den Haute C, Benoy V, Lyons J et al. 2020. ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578:419–24
    [Google Scholar]
  25. 25.
    Hiasa M, Miyaji T, Haruna Y, Takeuchi T, Harada Y et al. 2014. Identification of a mammalian vesicular polyamine transporter. Sci. Rep. 4:6836
    [Google Scholar]
  26. 26.
    Lawal HO, Krantz DE. 2013. SLC18: vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol. Aspects Med. 34:360–72
    [Google Scholar]
  27. 27.
    Jacobsson JA, Stephansson O, Fredriksson R. 2010. C6ORF192 forms a unique evolutionary branch among solute carriers (SLC16, SLC17, and SLC18) and is abundantly expressed in several brain regions. J. Mol. Neurosci. 41:230–42
    [Google Scholar]
  28. 28.
    Moriyama Y, Hatano R, Moriyama S, Uehara S. 2020. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. Biochim. Biophys. Acta Biomembr. 1862:183208
    [Google Scholar]
  29. 29.
    Fredriksson R, Sreedharan S, Nordenankar K, Alsiö J, Lindberg FA et al. 2019. The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain. PLOS Genet. 15:e1008455
    [Google Scholar]
  30. 30.
    Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38:1184–91
    [Google Scholar]
  31. 31.
    Sorensen DM, Holemans T, van Veen S, Martin S, Arslan T et al. 2018. Parkinson disease related ATP13A2 evolved early in animal evolution. PLOS ONE 13:e0193228
    [Google Scholar]
  32. 32.
    De La Hera DP, Corradi GR, Adamo HP, De Tezanos Pinto F. 2013. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake. Biochem. J. 450:47–53
    [Google Scholar]
  33. 33.
    Heinick A, Urban K, Roth S, Spies D, Nunes F et al. 2010. Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J. 24:206–17
    [Google Scholar]
  34. 34.
    Holemans T, Sorensen DM, van Veen S, Martin S, Hermans D et al. 2015. A lipid switch unlocks Parkinson's disease-associated ATP13A2. PNAS 112:9040–45
    [Google Scholar]
  35. 35.
    Sim SI, von Bulow S, Hummer G, Park E 2021. Structural basis of polyamine transport by human ATP13A2 (PARK9). Mol. Cell 81:4635–49.e8
    [Google Scholar]
  36. 36.
    Chen X, Zhou M, Zhang S, Yin J, Zhang P et al. 2021. Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2. Cell Discov. 7:106
    [Google Scholar]
  37. 37.
    Tomita A, Daiho T, Kusakizako T, Yamashita K, Ogasawara S et al. 2021. Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2. Mol. Cell 81:4799–809.e5
    [Google Scholar]
  38. 38.
    Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK 2021. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Mol. Cell 81:4650–62.e4
    [Google Scholar]
  39. 39.
    Si J, Van den Haute C, Lobbestael E, Martin S, van Veen S et al. 2021. ATP13A2 regulates cellular α-synuclein multimerization, membrane association, and externalization. Int. J. Mol. Sci. 22:52689
    [Google Scholar]
  40. 40.
    Poulin R, Casero RA, Soulet D. 2012. Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42:711–23
    [Google Scholar]
  41. 41.
    Belting M, Mani K, Jonsson M, Cheng F, Sandgren S et al. 2003. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivotal role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278:47181–89
    [Google Scholar]
  42. 42.
    Uemura T, Stringer DE, Blohm-Mangone KA, Gerner EW. 2010. Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 299:G517–22
    [Google Scholar]
  43. 43.
    Cheng F, Mani K, van den Born J, Ding K, Belting M, Fransson LA. 2002. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J. Biol. Chem. 277:44431–39
    [Google Scholar]
  44. 44.
    Igarashi K, Kashiwagi K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271:559–64
    [Google Scholar]
  45. 45.
    Soulet D, Gagnon B, Rivest S, Audette M, Poulin R. 2004. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 279:49355–66
    [Google Scholar]
  46. 46.
    Vrijsen S, Besora-Casals L, van Veen S, Zielich J, Van den Haute C et al. 2020. ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress. PNAS 117:31198–207
    [Google Scholar]
  47. 47.
    Vanhoutte R, Kahler JP, Martin S, van Veen S, Verhelst SHL. 2018. Clickable polyamine derivatives as chemical probes for the polyamine transport system. ChemBioChem 19:907–11
    [Google Scholar]
  48. 48.
    White A, Bardocz S 1999. Estimation of the polyamine body pool: contribution by de novo biosynthesis, diet and luminal bacteria. Polyamines in Health and Nutrition S Bardocz, A White 117–27. Boston, MA: Kluwer Acad. Publ.
    [Google Scholar]
  49. 49.
    Larque E, Sabater-Molina M, Zamora S. 2007. Biological significance of dietary polyamines. Nutrition 23:87–95
    [Google Scholar]
  50. 50.
    Milovic V. 2001. Polyamines in the gut lumen: bioavailability and biodistribution. Eur. J. Gastroenterol. Hepatol. 13:1021–25
    [Google Scholar]
  51. 51.
    Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F. 2009. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp. Gerontol. 44:727–32
    [Google Scholar]
  52. 52.
    Munoz-Esparza NC, Latorre-Moratalla ML, Comas-Baste O, Toro-Funes N, Veciana-Nogues MT, Vidal-Carou MC. 2019. Polyamines in food. Front. Nutr. 6:108
    [Google Scholar]
  53. 53.
    Tofalo R, Cocchi S, Suzzi G. 2019. Polyamines and gut microbiota. Front. Nutr. 6:16
    [Google Scholar]
  54. 54.
    Russell DH. 1983. Clinical relevance of polyamines. Crit. Rev. Clin. Lab. Sci. 18:261–311
    [Google Scholar]
  55. 55.
    Morrison LD, Becker L, Ang LC, Kish SJ. 1995. Polyamines in human brain: regional distribution and influence of aging. J. Neurochem. 65:636–42
    [Google Scholar]
  56. 56.
    Bartos F, Bartos D, Grettie DP, Campbell RA. 1977. Polyamine levels in normal human serum. Comparison of analytical methods. Biochem. Biophys. Res. Commun. 75:915–19
    [Google Scholar]
  57. 57.
    Uemura T, Akasaka Y, Ikegaya H. 2020. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon 6:e05031
    [Google Scholar]
  58. 58.
    Nishimura K, Shiina R, Kashiwagi K, Igarashi K. 2006. Decrease in polyamines with aging and their ingestion from food and drink. J. Biochem. 139:81–90
    [Google Scholar]
  59. 59.
    Jaenne J, Raina A, Siimes M 1964. Spermidine and spermine in rat tissues at different ages. Acta Physiol. Scand. 62:352–58
    [Google Scholar]
  60. 60.
    Sturman JA, Gaull GE. 1975. Polyamine metabolism in the brain and liver of the developing monkey. J. Neurochem. 25:267–72
    [Google Scholar]
  61. 61.
    Vivo M, de Vera N, Cortes R, Mengod G, Camon L, Martinez E. 2001. Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci. Lett. 304:107–11
    [Google Scholar]
  62. 62.
    Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM et al. 2012. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 15:590–95
    [Google Scholar]
  63. 63.
    Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22:1428–38
    [Google Scholar]
  64. 64.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C et al. 2009. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11:1305–14
    [Google Scholar]
  65. 65.
    Kiechl S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B et al. 2018. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 108:371–80
    [Google Scholar]
  66. 66.
    Xu TT, Li H, Dai Z, Lau GK, Li BY et al. 2020. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging 12:6401–14
    [Google Scholar]
  67. 67.
    Messerer J, Wrede C, Schipke J, Brandenberger C, Abdellatif M et al. 2023. Spermidine supplementation influences mitochondrial number and morphology in the heart of aged mice. J. Anat. 242:191–101
    [Google Scholar]
  68. 68.
    Lagishetty CV, Naik SR. 2008. Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Indian J. Pharmacol. 40:121–25
    [Google Scholar]
  69. 69.
    Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A et al. 2013. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16:1453–60
    [Google Scholar]
  70. 70.
    Schroeder S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C et al. 2021. Dietary spermidine improves cognitive function. Cell Rep. 35:108985
    [Google Scholar]
  71. 71.
    Soda K, Uemura T, Sanayama H, Igarashi K, Fukui T. 2021. Polyamine-rich diet elevates blood spermine levels and inhibits pro-inflammatory status: an interventional study. Med. Sci. 9:222
    [Google Scholar]
  72. 72.
    Schwarz C, Horn N, Benson G, Wrachtrup Calzado I, Wurdack K et al. 2020. Spermidine intake is associated with cortical thickness and hippocampal volume in older adults. Neuroimage 221:117132
    [Google Scholar]
  73. 73.
    Paik MJ, Ahn YH, Lee PH, Kang H, Park CB et al. 2010. Polyamine patterns in the cerebrospinal fluid of patients with Parkinson's disease and multiple system atrophy. Clin. Chim. Acta 411:1532–35
    [Google Scholar]
  74. 74.
    Saiki S, Sasazawa Y, Fujimaki M, Kamagata K, Kaga N et al. 2019. A metabolic profile of polyamines in Parkinson disease: a promising biomarker. Ann. Neurol. 86:251–63
    [Google Scholar]
  75. 75.
    Roede JR, Uppal K, Park Y, Lee K, Tran V et al. 2013. Serum metabolomics of slow versus rapid motor progression Parkinson's disease: a pilot study. PLOS ONE 8:e77629
    [Google Scholar]
  76. 76.
    Gomes-Trolin C, Nygren I, Aquilonius SM, Askmark H. 2002. Increased red blood cell polyamines in ALS and Parkinson's disease. Exp. Neurol. 177:515–20
    [Google Scholar]
  77. 77.
    Ekegren T, Gomes-Trolin C, Nygren I, Askmark H. 2004. Maintained regulation of polyamines in spinal cord from patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 222:49–53
    [Google Scholar]
  78. 78.
    Morrison LD, Kish SJ. 1995. Brain polyamine levels are altered in Alzheimer's disease. Neurosci. Lett. 197:5–8
    [Google Scholar]
  79. 79.
    Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C et al. 2007. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:1557–62
    [Google Scholar]
  80. 80.
    van Veen S, Sorensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P. 2014. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders. Front. Mol. Neurosci. 7:48
    [Google Scholar]
  81. 81.
    Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D et al. 2017. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 140:287–305
    [Google Scholar]
  82. 82.
    Spataro R, Kousi M, Farhan SMK, Willer JR, Ross JP et al. 2019. Mutations in ATP13A2 (PARK9) are associated with an amyotrophic lateral sclerosis-like phenotype, implicating this locus in further phenotypic expansion. Hum. Genom. 13:19
    [Google Scholar]
  83. 83.
    Bras J, Verloes A, Schneider SA, Mole SE, Guerreiro RJ. 2012. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum. Mol. Genet. 21:2646–50
    [Google Scholar]
  84. 84.
    Grunewald A, Arns B, Seibler P, Rakovic A, Munchau A et al. 2012. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol. Aging 33:1843.e1–7
    [Google Scholar]
  85. 85.
    Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH et al. 2012. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. PNAS 109:9611–16
    [Google Scholar]
  86. 86.
    Schultheis PJ, Fleming SM, Clippinger AK, Lewis J, Tsunemi T et al. 2013. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22:2067–82
    [Google Scholar]
  87. 87.
    Kett LR, Stiller B, Bernath MM, Tasset I, Blesa J et al. 2015. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J. Neurosci. 35:5724–42
    [Google Scholar]
  88. 88.
    Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D. 2012. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J. Neurosci. 32:4240–46
    [Google Scholar]
  89. 89.
    Wang R, Tan J, Chen T, Han H, Tian R et al. 2019. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J. Cell Biol. 218:267–84
    [Google Scholar]
  90. 90.
    Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC. 2016. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nat. Commun. 7:11803
    [Google Scholar]
  91. 91.
    Wang C, Kang X, Zhou L, Chai Z, Wu Q et al. 2018. Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson's disease-like pathology. Nat. Commun. 9:81
    [Google Scholar]
  92. 92.
    Gusdon AM, Zhu J, Van Houten B, Chu CT. 2012. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiol. Dis. 45:962–72
    [Google Scholar]
  93. 93.
    Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML et al. 2010. Polyamine pathway contributes to the pathogenesis of Parkinson disease. PNAS 107:16970–75
    [Google Scholar]
  94. 94.
    Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D et al. 2012. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation. PLOS Genet. 8:e1002794
    [Google Scholar]
  95. 95.
    Cervetto C, Averna M, Vergani L, Pedrazzi M, Amato S et al. 2021. Reactive astrocytosis in a mouse model of chronic polyamine catabolism activation. Biomolecules 11:91274
    [Google Scholar]
  96. 96.
    Cabezas R, Avila MF, Torrente D, El-Bachá RS, Morales L et al. 2012. Astrocytes role in Parkinson: a double-edged sword. Neurodegenerative Diseases U Kishore 491–517. London: IntechOpen
    [Google Scholar]
  97. 97.
    Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T et al. 2020. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J. Neuroinflammation 17:301
    [Google Scholar]
  98. 98.
    Krasnoslobodtsev AV, Peng J, Asiago JM, Hindupur J, Rochet JC, Lyubchenko YL. 2012. Effect of spermidine on misfolding and interactions of alpha-synuclein. PLOS ONE 7:e38099
    [Google Scholar]
  99. 99.
    Grabenauer M, Bernstein SL, Lee JC, Wyttenbach T, Dupuis NF et al. 2008. Spermine binding to Parkinson's protein α-synuclein and its disease-related A30P and A53T mutants. J. Phys. Chem. B 112:11147–54
    [Google Scholar]
  100. 100.
    Antony T, Hoyer W, Cherny D, Heim G, Jovin TM, Subramaniam V. 2003. Cellular polyamines promote the aggregation of α-synuclein. J. Biol. Chem. 278:3235–40
    [Google Scholar]
  101. 101.
    Kudou M, Shiraki K, Fujiwara S, Imanaka T, Takagi M. 2003. Prevention of thermal inactivation and aggregation of lysozyme by polyamines. Eur. J. Biochem. 270:4547–54
    [Google Scholar]
  102. 102.
    Buttner S, Broeskamp F, Sommer C, Markaki M, Habernig L et al. 2014. Spermidine protects against α-synuclein neurotoxicity. Cell Cycle 13:3903–8
    [Google Scholar]
  103. 103.
    Yang X, Zhang M, Dai Y, Sun Y, Aman Y et al. 2020. Spermidine inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent mitophagy pathway in C. elegans. Aging 12:16852–66
    [Google Scholar]
  104. 104.
    Hudak A, Kusz E, Domonkos I, Josvay K, Kodamullil AT et al. 2019. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci. Rep. 9:16543
    [Google Scholar]
  105. 105.
    Ihse E, Yamakado H, van Wijk XM, Lawrence R, Esko JD, Masliah E. 2017. Cellular internalization of α-synuclein aggregates by cell surface heparan sulfate depends on aggregate conformation and cell type. Sci. Rep. 7:9008
    [Google Scholar]
  106. 106.
    Ren C, Ding Y, Wei S, Guan L, Zhang C et al. 2019. G2019S variation in LRRK2: an ideal model for the study of Parkinson's disease?. Front. Hum. Neurosci. 13:306
    [Google Scholar]
  107. 107.
    Sonninen TM, Hamalainen RH, Koskuvi M, Oksanen M, Shakirzyanova A et al. 2020. Metabolic alterations in Parkinson's disease astrocytes. Sci. Rep. 10:14474
    [Google Scholar]
  108. 108.
    Skatchkov SN, Woodbury-Farina MA, Eaton M. 2014. The role of glia in stress: polyamines and brain disorders. Psychiatr. Clin. North Am. 37:653–78
    [Google Scholar]
  109. 109.
    Laube G, Veh RW. 1997. Astrocytes, not neurons, show most prominent staining for spermidine/spermine-like immunoreactivity in adult rat brain. Glia 19:171–79
    [Google Scholar]
  110. 110.
    Bernstein HG, Muller M. 1999. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems. Prog. Neurobiol. 57:485–505
    [Google Scholar]
  111. 111.
    Masuko T, Kusama-Eguchi K, Sakata K, Kusama T, Chaki S et al. 2003. Polyamine transport, accumulation, and release in brain. J. Neurochem. 84:610–17
    [Google Scholar]
  112. 112.
    Makletsova MG, Syatkin SP, Poleshchuk VV, Urazgildeeva GR, Chigaleychik LA et al. 2019. Polyamines in Parkinson's disease: their role in oxidative stress induction and protein aggregation. J. Neurol. Res. 9:1–7
    [Google Scholar]
  113. 113.
    Fleidervish IA, Libman L, Katz E, Gutnick MJ. 2008. Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. PNAS 105:18994–99
    [Google Scholar]
  114. 114.
    Chen W, Harnett MT, Smith SM. 2007. Modulation of neuronal voltage-activated calcium and sodium channels by polyamines and pH. Channels 1:281–90
    [Google Scholar]
  115. 115.
    Nichols CG, Lee SJ. 2018. Polyamines and potassium channels: a 25-year romance. J. Biol. Chem. 293:18779–88
    [Google Scholar]
  116. 116.
    Bowie D. 2018. Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. J. Biol. Chem. 293:18789–802
    [Google Scholar]
  117. 117.
    Mony L, Zhu S, Carvalho S, Paoletti P. 2011. Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 30:3134–46
    [Google Scholar]
  118. 118.
    Limon A, Delbruck E, Yassine A, Pandya D, Myers RM et al. 2019. Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABAA receptors. Transl. Psychiatry 9:218
    [Google Scholar]
  119. 119.
    Donevan SD, Rogawski MA. 1995. Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. PNAS 92:9298–302
    [Google Scholar]
  120. 120.
    Rock DM, Macdonald RL. 1992. The polyamine spermine has multiple actions on N-methyl-D-aspartate receptor single-channel currents in cultured cortical neurons. Mol. Pharmacol. 41:83–88
    [Google Scholar]
  121. 121.
    Beuming T, Kniazeff J, Bergmann ML, Shi L, Gracia L et al. 2008. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11:780–89
    [Google Scholar]
  122. 122.
    Ritz MC, Mantione CR, London ED. 1994. Spermine interacts with cocaine binding sites on dopamine transporters. Psychopharmacology 114:47–52
    [Google Scholar]
  123. 123.
    Law CL, Wong PC, Fong WF. 1984. Effects of polyamines on the uptake of neurotransmitters by rat brain synaptosomes. J. Neurochem. 42:870–72
    [Google Scholar]
  124. 124.
    Szabo Z, Peter M, Heja L, Kardos J. 2021. Dual role for astroglial copper-assisted polyamine metabolism during intense network activity. Biomolecules 11:4604
    [Google Scholar]
  125. 125.
    Ma B, Buckalew R, Du Y, Kiyoshi CM, Alford CC et al. 2016. Gap junction coupling confers isopotentiality on astrocyte syncytium. Glia 64:214–26
    [Google Scholar]
  126. 126.
    Kucheryavykh LY, Benedikt J, Cubano LA, Skatchkov SN, Bukauskas FF, Kucheryavykh YV. 2017. Polyamines preserve connexin 43-mediated gap junctional communication during intracellular hypercalcemia and acidosis. NeuroReport 28:208–13
    [Google Scholar]
  127. 127.
    Benedikt J, Inyushin M, Kucheryavykh YV, Rivera Y, Kucheryavykh LY et al. 2012. Intracellular polyamines enhance astrocytic coupling. NeuroReport 23:1021–25
    [Google Scholar]
  128. 128.
    Desforges B, Curmi PA, Bounedjah O, Nakib S, Hamon L et al. 2013. An intercellular polyamine transfer via gap junctions regulates proliferation and response to stress in epithelial cells. Mol. Biol. Cell 24:1529–43
    [Google Scholar]
  129. 129.
    Maegawa H, Niwa H. 2021. Generation of mitochondrial toxin rodent models of Parkinson's disease using 6-OHDA, MPTP, and rotenone. Methods Mol. Biol. 2322:95–110
    [Google Scholar]
  130. 130.
    Chai N, Zhang H, Li L, Yu X, Liu Y et al. 2019. Spermidine prevents heart injury in neonatal rats exposed to intrauterine hypoxia by inhibiting oxidative stress and mitochondrial fragmentation. Oxid. Med. Cell. Longev. 2019:5406468
    [Google Scholar]
  131. 131.
    Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC et al. 2004. Neuroprotective effects of spermine following hypoxic-ischemic-induced brain damage: a mechanistic study. FASEB J. 18:1114–16
    [Google Scholar]
  132. 132.
    Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS et al. 2018. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol. Ther. 26:146–56
    [Google Scholar]
  133. 133.
    Tkachenko AG, Nesterova LY. 2003. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry 68:850–56
    [Google Scholar]
  134. 134.
    Wu X, Cao W, Jia G, Zhao H, Chen X et al. 2017. New insights into the role of spermine in enhancing the antioxidant capacity of rat spleen and liver under oxidative stress. Anim. Nutr. 3:85–90
    [Google Scholar]
  135. 135.
    Drolet G, Dumbroff EB, Legge RL, Thompson JE. 1986. Radical scavenging properties of polyamines. Phytochemistry 25:367–71
    [Google Scholar]
  136. 136.
    Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr. 1998. The natural polyamine spermine functions directly as a free radical scavenger. PNAS 95:11140–45
    [Google Scholar]
  137. 137.
    Condello S, Curro M, Ferlazzo N, Caccamo D, Satriano J, Ientile R. 2011. Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J. Neurochem. 116:67–75
    [Google Scholar]
  138. 138.
    Rajagopalan S, Rane A, Chinta SJ, Andersen JK. 2016. Regulation of ATP13A2 via PHD2-HIF1α signaling is critical for cellular iron homeostasis: implications for Parkinson's disease. J. Neurosci. 36:1086–95
    [Google Scholar]
  139. 139.
    Wu D, Noda K, Murata M, Liu Y, Kanda A, Ishida S. 2020. Regulation of spermine oxidase through hypoxia-inducible factor-1α signaling in retinal glial cells under hypoxic conditions. Invest. Ophthalmol. Vis. Sci. 61:52
    [Google Scholar]
  140. 140.
    Sharma S, Kumar P, Deshmukh R. 2018. Neuroprotective potential of spermidine against rotenone induced Parkinson's disease in rats. Neurochem. Int. 116:104–11
    [Google Scholar]
  141. 141.
    Meiser J, Weindl D, Hiller K. 2013. Complexity of dopamine metabolism. Cell Commun. Signal. 11:34
    [Google Scholar]
  142. 142.
    Umek N, Gersak B, Vintar N, Sostaric M, Mavri J. 2018. Dopamine autoxidation is controlled by acidic pH. Front. Mol. Neurosci. 11:467
    [Google Scholar]
  143. 143.
    Pifl C, Rajput A, Reither H, Blesa J, Cavada C et al. 2014. Is Parkinson's disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J. Neurosci. 34:8210–18
    [Google Scholar]
  144. 144.
    Ullah I, Zhao L, Hai Y, Fahim M, Alwayli D et al. 2021. Metal elements and pesticides as risk factors for Parkinson's disease—a review. Toxicol. Rep. 8:607–16
    [Google Scholar]
  145. 145.
    Lovaas E. 1997. Antioxidative and metal-chelating effects of polyamines. Adv. Pharmacol. 38:119–49
    [Google Scholar]
  146. 146.
    Adhami VM, Husain R, Husain R, Seth PK. 1996. Influence of iron deficiency and lead treatment on behavior and cerebellar and hippocampal polyamine levels in neonatal rats. Neurochem. Res. 21:915–22
    [Google Scholar]
  147. 147.
    Vijayan B, Raj V, Nandakumar S, Kishore A, Thekkuveettil A. 2019. Spermine protects α-synuclein expressing dopaminergic neurons from manganese-induced degeneration. Cell Biol. Toxicol. 35:147–59
    [Google Scholar]
  148. 148.
    Anand N, Holcom A, Broussalian M, Schmidt M, Chinta SJ et al. 2020. Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function. Neurobiol. Dis. 139:104786
    [Google Scholar]
  149. 149.
    Schneider SA, Paisan-Ruiz C, Quinn NP, Lees AJ, Houlden H et al. 2010. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov. Disord. 25:979–84
    [Google Scholar]
  150. 150.
    Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S et al. 2009. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41:308–15
    [Google Scholar]
  151. 151.
    Martin S, van Veen S, Holemans T, Demirsoy S, van den Haute C et al. 2016. Protection against mitochondrial and metal toxicity depends on functional lipid binding sites in ATP13A2. Parkinson's Dis. 2016:9531917
    [Google Scholar]
  152. 152.
    Demirsoy S, Martin S, Motamedi S, van Veen S, Holemans T et al. 2017. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Hum. Mol. Genet. 26:1656–69
    [Google Scholar]
  153. 153.
    Despotovic D, Longo LM, Aharon E, Kahana A, Scherf T et al. 2020. Polyamines mediate folding of primordial hyperacidic helical proteins. Biochemistry 59:4456–62
    [Google Scholar]
  154. 154.
    Singh BP, Saha I, Nandi I, Swamy MJ. 2017. Spermine and spermidine act as chemical chaperones and enhance chaperone-like and membranolytic activities of major bovine seminal plasma protein, PDC-109. Biochem. Biophys. Res. Commun. 493:1418–24
    [Google Scholar]
  155. 155.
    Perepelytsya S, Ulicny J, Laaksonen A, Mocci F. 2019. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4+. Nucleic Acids Res. 47:6084–97
    [Google Scholar]
  156. 156.
    Lee CY, Su GC, Huang WY, Ko MY, Yeh HY et al. 2019. Promotion of homology-directed DNA repair by polyamines. Nat. Commun. 10:65
    [Google Scholar]
  157. 157.
    Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. 2004. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6:168–70
    [Google Scholar]
  158. 158.
    Gorbunova V, Seluanov A, Mao Z, Hine C. 2007. Changes in DNA repair during aging. Nucleic Acids Res. 35:7466–74
    [Google Scholar]
  159. 159.
    Schuber F. 1989. Influence of polyamines on membrane functions. Biochem. J. 260:1–10
    [Google Scholar]
  160. 160.
    Ballas SK, Mohandas N, Marton LJ, Shohet SB. 1983. Stabilization of erythrocyte membranes by polyamines. PNAS 80:1942–46
    [Google Scholar]
  161. 161.
    Hernandez SM, Sanchez MS, de Tarlovsky MN. 2006. Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi. Acta Trop. 98:94–102
    [Google Scholar]
  162. 162.
    Iyer A, Claessens M. 2019. Disruptive membrane interactions of alpha-synuclein aggregates. Biochim. Biophys. Acta Proteins Proteom. 1867:468–82
    [Google Scholar]
  163. 163.
    Pajares M, Rojo AI, Manda G, Bosca L, Cuadrado A. 2020. Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells 9:71687
    [Google Scholar]
  164. 164.
    Jang H, Boltz DA, Webster RG, Smeyne RJ. 2009. Viral parkinsonism. Biochim. Biophys. Acta 1792:714–21
    [Google Scholar]
  165. 165.
    Chen QQ, Haikal C, Li W, Li JY 2019. Gut inflammation in association with pathogenesis of Parkinson's disease. Front. Mol. Neurosci. 12:218
    [Google Scholar]
  166. 166.
    Choi YH, Park HY. 2012. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19:31
    [Google Scholar]
  167. 167.
    Qiao C, Yin N, Gu HY, Zhu JL, Ding JH et al. 2016. Atp13a2 deficiency aggravates astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation. CNS Neurosci. Ther. 22:451–60
    [Google Scholar]
  168. 168.
    Jiang J, Wang W, Sun F, Zhang Y, Liu Q, Yang D 2021. Bacterial infection reinforces host metabolic flux from arginine to spermine for NLRP3 inflammasome evasion. Cell Rep. 34:108832
    [Google Scholar]
  169. 169.
    Liu Z, Zhao H, Liu W, Li T, Wang Y, Zhao M. 2015. NLRP3 inflammasome activation is essential for paraquat-induced acute lung injury. Inflammation 38:433–44
    [Google Scholar]
  170. 170.
    Tabbaa M, Ruz Gomez T, Campelj DG, Gregorevic P, Hayes A, Goodman CA 2021. The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: a potential role for mTORC1. Am. J. Physiol. Cell Physiol. 320:C987–99
    [Google Scholar]
  171. 171.
    Zabala-Letona A, Arruabarrena-Aristorena A, Martin-Martin N, Fernandez-Ruiz S, Sutherland JD et al. 2017. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547:109–13
    [Google Scholar]
  172. 172.
    Lescoat G, Gouffier L, Cannie I, Lowe O, Morel I et al. 2013. Involvement of polyamines in iron(III) transport in human intestinal Caco-2 cell lines. Mol. Cell. Biochem. 378:205–15
    [Google Scholar]
  173. 173.
    Jonas AJ, Symons LJ, Speller RJ. 1987. Polyamines stimulate lysosomal cystine transport. J. Biol. Chem. 262:16391–93
    [Google Scholar]
  174. 174.
    Zhang H, Alsaleh G, Feltham J, Sun Y, Napolitano G et al. 2019. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76:110–25.e9
    [Google Scholar]
  175. 175.
    Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A et al. 2016. Spermidine suppresses age-associated memory impairment by preventing adverse increase of presynaptic active zone size and release. PLOS Biol. 14:e1002563
    [Google Scholar]
  176. 176.
    Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San Pedro JM et al. 2015. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Differ. 22:509–16
    [Google Scholar]
  177. 177.
    Phadwal K, Kurian D, Salamat MKF, MacRae VE, Diack AB, Manson JC. 2018. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci. Rep. 8:10004
    [Google Scholar]
  178. 178.
    Dernie F. 2020. Mitophagy in Parkinson's disease: from pathogenesis to treatment target. Neurochem. Int. 138:104756
    [Google Scholar]
  179. 179.
    Qi Y, Qiu Q, Gu X, Tian Y, Zhang Y. 2016. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts. Sci. Rep. 6:24700
    [Google Scholar]
  180. 180.
    Hoshino K, Momiyama E, Yoshida K, Nishimura K, Sakai S et al. 2005. Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans. J. Biol. Chem. 280:42801–8
    [Google Scholar]
  181. 181.
    Toninello A, Dalla Via L, Siliprandi D, Garlid KD 1992. Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J. Biol. Chem. 267:18393–97
    [Google Scholar]
  182. 182.
    Toninello A, Miotto G, Siliprandi D, Siliprandi N, Garlid KD. 1988. On the mechanism of spermine transport in liver mitochondria. J. Biol. Chem. 263:19407–11
    [Google Scholar]
  183. 183.
    Das KC, Misra HP. 2004. Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol. Cell. Biochem. 262:127–33
    [Google Scholar]
  184. 184.
    Papadakis AK, Roubelakis-Angelakis KA. 2005. Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826–37
    [Google Scholar]
  185. 185.
    Yoshino M, Yamada Y, Murakami K. 1991. Activation by spermine of citrate synthase from porcine heart. Biochim. Biophys. Acta 1073:200–2
    [Google Scholar]
  186. 186.
    Damuni Z, Humphreys JS, Reed LJ. 1984. Stimulation of pyruvate dehydrogenase phosphatase activity by polyamines. Biochem. Biophys. Res. Commun. 124:95–99
    [Google Scholar]
  187. 187.
    Pezzato E, Battaglia V, Brunati AM, Agostinelli E, Toninello A. 2009. Ca2+-independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2+. Amino Acids 36:449–56
    [Google Scholar]
  188. 188.
    Igarashi K, Kashiwagi K, Kobayashi H, Ohnishi R, Kakegawa T et al. 1989. Effect of polyamines on mitochondrial F1-ATPase catalyzed reactions. J. Biochem. 106:294–98
    [Google Scholar]
  189. 189.
    Puleston DJ, Buck MD, Klein Geltink RI, Kyle RL, Caputa G et al. 2019. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30:352–63.e8
    [Google Scholar]
  190. 190.
    Christian BE, Haque ME, Spremulli LL. 2010. The effect of spermine on the initiation of mitochondrial protein synthesis. Biochem. Biophys. Res. Commun. 391:942–46
    [Google Scholar]
  191. 191.
    D'Souza AR, Minczuk M 2018. Mitochondrial transcription and translation: overview. Essays Biochem. 62:309–20
    [Google Scholar]
  192. 192.
    Jensen JR, Lynch G, Baudry M. 1987. Polyamines stimulate mitochondrial calcium transport in rat brain. J. Neurochem. 48:765–72
    [Google Scholar]
  193. 193.
    Scorziello A, Borzacchiello D, Sisalli MJ, Di Martino R, Morelli M, Feliciello A. 2020. Mitochondrial homeostasis and signaling in Parkinson's disease. Front. Aging Neurosci. 12:100
    [Google Scholar]
  194. 194.
    Barba-Aliaga M, Alepuz P 2022. Role of eIF5A in mitochondrial function. Int. J. Mol. Sci. 23:31284
    [Google Scholar]
  195. 195.
    Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH. 2013. Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. PNAS 110:2169–74
    [Google Scholar]
  196. 196.
    Liang Y, Piao C, Beuschel CB, Toppe D, Kollipara L et al. 2021. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 35:108941
    [Google Scholar]
  197. 197.
    Faundes V, Jennings MD, Crilly S, Legraie S, Withers SE et al. 2021. Impaired eIF5A function causes a Mendelian disorder that is partially rescued in model systems by spermidine. Nat. Commun. 12:833
    [Google Scholar]
  198. 198.
    Sun L, Luo C, Long J, Wei D, Liu J. 2006. Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6:136–42
    [Google Scholar]
  199. 199.
    Wang HT, Lin JH, Yang CH, Haung CH, Weng CW et al. 2017. Acrolein induces mtDNA damages, mitochondrial fission and mitophagy in human lung cells. Oncotarget 8:70406–21
    [Google Scholar]
  200. 200.
    Wang YT, Lin HC, Zhao WZ, Huang HJ, Lo YL et al. 2017. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: involvement of α-synuclein aggregation and programmed cell death. Sci. Rep. 7:45741
    [Google Scholar]
  201. 201.
    Shamoto-Nagai M, Maruyama W, Hashizume Y, Yoshida M, Osawa T et al. 2007. In parkinsonian substantia nigra, α-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity. J. Neural Transm. 114:1559–67
    [Google Scholar]
  202. 202.
    Ambaw A, Zheng L, Tambe MA, Strathearn KE, Acosta G et al. 2018. Acrolein-mediated neuronal cell death and α-synuclein aggregation: implications for Parkinson's disease. Mol. Cell. Neurosci. 88:70–82
    [Google Scholar]
  203. 203.
    Takano K, Ogura M, Yoneda Y, Nakamura Y. 2005. Oxidative metabolites are involved in polyamine-induced microglial cell death. Neuroscience 134:1123–31
    [Google Scholar]
  204. 204.
    Li C, Brazill JM, Liu S, Bello C, Zhu Y et al. 2017. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat. Commun. 8:1257
    [Google Scholar]
  205. 205.
    Abela L, Simmons L, Steindl K, Schmitt B, Mastrangelo M et al. 2016. N8-acetylspermidine as a potential plasma biomarker for Snyder-Robinson syndrome identified by clinical metabolomics. J. Inherit. Metab. Dis. 39:131–37
    [Google Scholar]
  206. 206.
    Tantak MP, Sekhar V, Tao X, Zhai RG, Phanstiel Ot. 2021. Development of a redox-sensitive spermine prodrug for the potential treatment of Snyder Robinson Syndrome. J. Med. Chem. 64:15593–607
    [Google Scholar]
  207. 207.
    Gilad GM, Gilad VH. 2003. Overview of the brain polyamine-stress-response: regulation, development, and modulation by lithium and role in cell survival. Cell. Mol. Neurobiol. 23:637–49
    [Google Scholar]
  208. 208.
    Rhee HJ, Kim EJ, Lee JK. 2007. Physiological polyamines: simple primordial stress molecules. J. Cell. Mol. Med. 11:685–703
    [Google Scholar]
  209. 209.
    Banerjee B, Khrystoforova I, Polis B, Zvi IB, Karasik D. 2021. Acute hypoxia elevates arginase 2 and induces polyamine stress response in zebrafish via evolutionarily conserved mechanism. Cell. Mol. Life Sci. 79:141
    [Google Scholar]
  210. 210.
    Polis B, Karasik D, Samson AO. 2021. Alzheimer's disease as a chronic maladaptive polyamine stress response. Aging 13:10770–95
    [Google Scholar]
  211. 211.
    Sakamoto A, Terui Y, Uemura T, Igarashi K, Kashiwagi K. 2020. Polyamines regulate gene expression by stimulating translation of histone acetyltransferase mRNAs. J. Biol. Chem. 295:8736–45
    [Google Scholar]
  212. 212.
    Soulet D, Rivest S. 2003. Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system. J. Cell Biol. 162:257–68
    [Google Scholar]
  213. 213.
    Wang L, Liu Y, Qi C, Shen L, Wang J et al. 2018. Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells. Sci. Rep. 8:10384
    [Google Scholar]
  214. 214.
    Wirth M, Benson G, Schwarz C, Kobe T, Grittner U et al. 2018. The effect of spermidine on memory performance in older adults at risk for dementia: a randomized controlled trial. Cortex 109:181–88
    [Google Scholar]
  215. 215.
    Wirth M, Schwarz C, Benson G, Horn N, Buchert R et al. 2019. Effects of spermidine supplementation on cognition and biomarkers in older adults with subjective cognitive decline (SmartAge)—study protocol for a randomized controlled trial. Alzheimer's Res. Ther. 11:36
    [Google Scholar]
  216. 216.
    Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M et al. 2022. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat. Prod. Rep. 39:742–53
    [Google Scholar]
  217. 217.
    Perni M, Galvagnion C, Maltsev A, Dobson CM. 2017. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. PNAS 114:6E1009–17
    [Google Scholar]
  218. 218.
    West CL, Mao Y-K, Delungahawatta T, Amin JY, Farhin S et al. 2020. Squalamine restores the function of the enteric nervous system in mouse models of Parkinson's disease. J. Parkinsons Dis. 10:41477–91
    [Google Scholar]
  219. 219.
    Hauser RA, Sutherland D, Madrid JA, Rol MA, Frucht S et al. 2019. Targeting neurons in the gastrointestinal tract to treat Parkinson's disease. Clin. Parksinsonism Relat. Disord. 1:2–7
    [Google Scholar]
  220. 220.
    Camilleri M, Subramanian T, Pagan F, Isaacson S, Gil R et al. 2022. Oral ENT-01 targets enteric neurons to treat constipation in Parkinson disease: a randomized controlled trial. Ann. Intern. Med. 175:121666–74
    [Google Scholar]
  221. 221.
    LoGiudice N, Le L, Abuan I, Leizorek Y, Roberts SC. 2018. α-Difluoromethylornithine, an irreversible inhibitor of polyamine biosynthesis, as a therapeutic strategy against hyperproliferative and infectious diseases. Med. Sci. 6:112
    [Google Scholar]
  222. 222.
    Khan A, Gamble LD, Upton DH, Ung C, Yu DMT et al. 2021. Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat. Commun. 12:971
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-071322-021330
Loading
/content/journals/10.1146/annurev-biochem-071322-021330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error