1932

Abstract

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS–tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-071620-021218
2021-06-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-071620-021218.html?itemId=/content/journals/10.1146/annurev-biochem-071620-021218&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hofstadter DR. 1979. Gödel, Escher, Bach: An Eternal Golden Braid New York: Basic Books, Inc777
  2. 2. 
    Koonin EV, Novozhilov AS. 2017. Origin and evolution of the universal genetic code. Annu. Rev. Genet. 51:45–62
    [Google Scholar]
  3. 3. 
    Woese CR, Olsen GJ, Ibba M, Söll D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64:202–36
    [Google Scholar]
  4. 4. 
    Carter CW Jr., Wills PR 2018. Interdependence, reflexivity, fidelity, and impedance matching, and the evolution of genetic coding. Mol. Biol. Evol. 35:269–86Discusses in detail the problems solved by bidirectional coding, enabling reflexivity necessary for genetic coding.
    [Google Scholar]
  5. 5. 
    Wills PR, Carter CW Jr 2018. Insuperable problems of an initial genetic code emerging from an RNA World. BioSystems 164:155–66Promotes gene, replicase, translatase as simplest origin of genetics; argues against emergence from an RNA World.
    [Google Scholar]
  6. 6. 
    Eriani G, Delarue M, Poch O, Gangloff J, Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–6
    [Google Scholar]
  7. 7. 
    Rodin SN, Ohno S 1995. Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Origins Life Evol. Biosphere 25:565–89Presents initial evidence for the hypothesis of bidirectional coding ancestry of class I and class II aaRSs.
    [Google Scholar]
  8. 8. 
    Carter CW Jr., Li L, Weinreb V, Collier M, Gonzales-Rivera K et al. 2014. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol. Direct 9:11Summarizes evidence that the preliminary characterization of Urzymes supported bidirectional coding ancestry.
    [Google Scholar]
  9. 9. 
    Carter CW Jr. 2017. Coding of class I and II aminoacyl-tRNA synthetases. Adv. Exp. Med. Biol. Protein Rev. 18:103–48
    [Google Scholar]
  10. 10. 
    Pham Y, Li L, Kim A, Erdogan O, Weinreb V et al. 2007. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol. Cell 25:851–62The TrpRS Urzyme showed that the conserved framework consistent with bidirectional coding retained function.
    [Google Scholar]
  11. 11. 
    Carter CW Jr., Duax WL. 2002. Did tRNA synthetase classes arise on opposite strands of the same gene?. Mol. Cell 10:705–8
    [Google Scholar]
  12. 12. 
    Chandrasekaran SN, Yardimci G, Erdogan O, Roach JM, Carter CW Jr. 2013. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol. Biol. Evol. 30:1588–604
    [Google Scholar]
  13. 13. 
    Rodin A, Rodin SN, Carter CW Jr. 2009. On primordial sense-antisense coding. J. Mol. Evol. 69:555–67
    [Google Scholar]
  14. 14. 
    Martinez L, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T, Li L et al. 2015. Functional class I and II amino acid activating enzymes can be coded by opposite strands of the same gene. J. Biol. Chem. 290:19710–25Experimentally implements bidirectional coding of functional class I and class II aaRS ATP-binding sites.
    [Google Scholar]
  15. 15. 
    Carter CW Jr. 2014. Urzymology: experimental access to a key transition in the appearance of enzymes. J. Biol. Chem. 289:30213–20
    [Google Scholar]
  16. 16. 
    Li L, Francklyn C, Carter CW Jr 2013. Aminoacylating Urzymes challenge the RNA World hypothesis. J. Biol. Chem. 288:26856–63Demonstrates that both class I and class II Urzymes accelerate acylation of cognate tRNAs.
    [Google Scholar]
  17. 17. 
    Li L, Weinreb V, Francklyn C, Carter CW Jr. 2011. Histidyl-tRNA synthetase Urzymes: Class I and II aminoacyl-tRNA synthetase Urzymes have comparable catalytic activities for cognate amino acid activation. J. Biol. Chem. 286:10387–95
    [Google Scholar]
  18. 18. 
    Pham Y, Kuhlman B, Butterfoss GL, Hu H, Weinreb V, Carter CW Jr. 2010. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation. J. Biol. Chem. 285:38590–601
    [Google Scholar]
  19. 19. 
    Wills PR, Carter CW Jr. 2020. Impedance matching and the choice between alternative pathways for the origin of genetic coding. Int. J. Mol. Sci. 21:7392
    [Google Scholar]
  20. 20. 
    Carter CW Jr. 2015. What RNA World? Why a peptide/RNA partnership merits renewed experimental attention. Life 5:294–320
    [Google Scholar]
  21. 21. 
    Weinreb V, Li L, Chandrasekaran SN, Koehl P, Delarue M, Carter CW Jr. 2014. Enhanced amino acid selection in fully-evolved tryptophanyl-tRNA synthetase, relative to its Urzyme, requires domain movement sensed by the D1 switch, a remote, dynamic packing motif. J. Biol. Chem. 289:4367–76
    [Google Scholar]
  22. 22. 
    Li L, Carter CW Jr. 2013. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling. J. Biol. Chem. 288:34736–45
    [Google Scholar]
  23. 23. 
    Carter CW Jr., Wolfenden R. 2016. Acceptor-stem and anticodon bases embed amino acid chemistry into tRNA. RNA Biol 13:145–51
    [Google Scholar]
  24. 24. 
    Carter CW Jr, Wolfenden R 2015. tRNA acceptor-stem and anticodon bases form independent codes related to protein folding. PNAS 112:7489–94Demonstrates that tRNA bases direct class-specific aaRS amino acid recognition according to their role in protein folding.
    [Google Scholar]
  25. 25. 
    Wolfenden R, Lewis CA, Yuan Y, Carter CW Jr. 2015. Temperature dependence of amino acid hydrophobicities. PNAS 112:7484–88
    [Google Scholar]
  26. 26. 
    Wolfenden R, Cullis PM, Southgate CCF. 1979. Water, protein folding, and the genetic code. Science 206:575–77
    [Google Scholar]
  27. 27. 
    Carter CW Jr., Wills PR. 2019. Experimental solutions to problems defining the origin of codon-directed protein synthesis. BioSystems 183:103979
    [Google Scholar]
  28. 28. 
    Schimmel P, Giegé R, Moras D, Yokoyama S 1993. An operational RNA code for amino acids and possible relationship to genetic code. PNAS 90:8763–68
    [Google Scholar]
  29. 29. 
    Carter CW Jr, Wills PR 2018. Hierarchical groove discrimination by class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Res 46:9667–83Discovers tRNA acceptor-stem bases responsible for forming aaRS–tRNA cognate pairs.
    [Google Scholar]
  30. 30. 
    Di Giulio M. 2009. A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J. Mol. Evol. 69:1–9
    [Google Scholar]
  31. 31. 
    Di Giulio M. 2008. Transfer RNA genes in pieces are an ancestral character. EMBO Rep 9:820
    [Google Scholar]
  32. 32. 
    Di Giulio M. 2004. The origin of the tRNA molecule: implications for the origin of protein synthesis. J. Theor. Biol. 226:89–93
    [Google Scholar]
  33. 33. 
    Wong JT-F, Ng S-K, Mat W-K, Hu T, Xue H. 2016. Coevolution theory of the genetic code at age forty: pathway to translation and synthetic life. Life 6:12
    [Google Scholar]
  34. 34. 
    Caetano-Anollés D, Caetano-Anollés G. 2016. Piecemeal buildup of the genetic code, ribosomes, and genomes from primordial tRNA building blocks. Life 6:43
    [Google Scholar]
  35. 35. 
    Francis BR. 2015. The hypothesis that the genetic code originated in coupled synthesis of proteins and the evolutionary predecessors of nucleic acids in primitive cells. Life 5:467–505
    [Google Scholar]
  36. 36. 
    Koonin EV, Novozhilov AS. 2009. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111
    [Google Scholar]
  37. 37. 
    Takénaka A, Moras D. 2020. Correlation between equi-partition of aminoacyl-tRNA synthetases and amino-acid biosynthesis pathways. Nucleic Acids Res 48:3277–85
    [Google Scholar]
  38. 38. 
    Kun Á, Szilágyi A, Könnyü B, Boza G, Zachar I, Szathmáry E. 2015. The dynamics of the RNA world: insights and challenges. Ann. N.Y. Acad. Sci. 1341:75–95
    [Google Scholar]
  39. 39. 
    Bernhardt HS. 2012. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol. Direct 7:23
    [Google Scholar]
  40. 40. 
    Yarus M. 2011. Life from an RNA World: The Ancestor Within Cambridge, MA: Harvard Univ. Press208 pp.
  41. 41. 
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of the Cell New York: Garland Science
  42. 42. 
    Gilbert W. 1986. Origin of life: the RNA world. Nature 319:618
    [Google Scholar]
  43. 43. 
    Doudna JA, Cech TR. 2002. The chemical repertoire of natural ribozymes. Nature 418:222–43
    [Google Scholar]
  44. 44. 
    Wolf YI, Koonin EV. 2007. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol. Direct. 2:14
    [Google Scholar]
  45. 45. 
    Carter CW Jr., Popinga A, Bouckaert R, Wills PR. 2020. High-resolution, multidimensional phylogenetic metrics identify class I aminoacyl-tRNA synthetase evolutionary mosaicity and inter-modular coupling. bioRxiv 033712. https://doi.org/10.1101/2020.04.09.033712
    [Crossref]
  46. 46. 
    Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress A, von Haesler A 1989. How old is the genetic code? Statistical geometry of tRNA provides an answer. Science 244:673–79
    [Google Scholar]
  47. 47. 
    Eigen M, McCaskill JS, Schuster P. 1988. Molecular quasi-species. J. Phys. Chem. 92:6881–91
    [Google Scholar]
  48. 48. 
    Eigen M, Schuster P. 1978. The hypercycle: a principle of natural self-organization. Part C: the realistic hypercycle. Naturwissenschaften 65:341–69
    [Google Scholar]
  49. 49. 
    Eigen M, Schuster P. 1977. The hypercycle: a principle of natural self-organization. Part A: emergence of the hypercycle. Naturwissenschaften 64:541–65
    [Google Scholar]
  50. 50. 
    Eigen M. 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523
    [Google Scholar]
  51. 51. 
    Eigen M. 1971. Molecular self-organisation and the early stages of evolution. Q. Rev. Biophys. 4:149–212
    [Google Scholar]
  52. 52. 
    Delarue M. 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13:161–69First attempt to reconcile the appearance of codons with the aaRS class distinction.
    [Google Scholar]
  53. 53. 
    O'Donoghue P, Luthey-Schulten Z. 2003. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev 67:550–73
    [Google Scholar]
  54. 54. 
    Caetano-Anollés G, Wang M, Caetano-Anollés D. 2013. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLOS ONE 8:e72225
    [Google Scholar]
  55. 55. 
    Caetano-Anollés G, Kim HS, Mittenthal JE 2007. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. PNAS 104:9358–63
    [Google Scholar]
  56. 56. 
    Woese CR. 1973. Evolution of the genetic code. Naturwissenschaften 60:447–59
    [Google Scholar]
  57. 57. 
    Mathew DC, Luthey-Schulten Z. 2008. On the physical basis of the amino acid polar requirement. J. Mol. Evol. 66:519–28
    [Google Scholar]
  58. 58. 
    Štambuk N, Konjevoda P. 2020. Determining amino acid scores of the genetic code table: complementarity, structure, function and evolution. BioSystems 187:104026
    [Google Scholar]
  59. 59. 
    Koonin EV. 2011. The Logic of Chance: The Nature and Origin of Biological Evolution Upper Saddle River, NJ: FT Press Science
  60. 60. 
    Shaul S, Berel D, Benjamini Y, Graur D. 2010. Revisiting the operational RNA code for amino acids: ensemble attributes and their implications. RNA 16:141–53
    [Google Scholar]
  61. 61. 
    Carter CW Jr., Wills PR. 2019. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase●tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life 71:1088–98
    [Google Scholar]
  62. 62. 
    Carter CW Jr. 2016. An alternative to the RNA World. Nat. Hist. 125:28–33
    [Google Scholar]
  63. 63. 
    Rodin SN, Rodin A. 2006. Origin of the genetic code: First aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–75
    [Google Scholar]
  64. 64. 
    Tyson NdG@neiltyson 2013. Just to settle it once and for all: Which came first the Chicken or the Egg? The Egg - laid by a bird that was not a Chicken. Twitter, Jan. 28, 2013, 7:40 p.m.
  65. 65. 
    Goldring K. 2020. Which came first, the chicken or the egg?. Perspective. https://www.theperspective.com/debates/living/which-came-first-the-chicken-or-the-egg/
    [Google Scholar]
  66. 66. 
    Francis BR. 2011. An alternative to the RNA world hypothesis. Trends Evol. Biol. 3:2–11
    [Google Scholar]
  67. 67. 
    Francis BR. 2000. Evolution of ribosomal protein synthesis. Chemtracts Biochem. Mol. Biol. 13:153–91
    [Google Scholar]
  68. 68. 
    Sutherland JD. 2016. The origin of life—out of the blue. Angew. Chem. Int. Ed. 55:104–21
    [Google Scholar]
  69. 69. 
    Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. 2015. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7:301–7
    [Google Scholar]
  70. 70. 
    Kurakin A. 2005. Self-organization versus watchmaker: stochastic dynamics of cellular organization. Biol. Chem. 386:247–54
    [Google Scholar]
  71. 71. 
    Weber BH, Depew DJ. 1996. Natural selection and self-organization dynamical models as clues to a new evolutionary synthesis. Biol. Philos. 11:33–65
    [Google Scholar]
  72. 72. 
    Crick FHC. 1955. On degenerate templates and the adaptor hypothesis: a note for the RNA Tie Club. https://profiles.nlm.nih.gov/spotlight/sc/catalog/nlm:nlmuid-101584582X73-doc
  73. 73. 
    Koonin EV. 2015. Why the Central Dogma: on the nature of the great biological exclusion principle. Biol. Direct. 10:52
    [Google Scholar]
  74. 74. 
    Crick F. 1970. Central dogma of molecular biology. Nature 227:561–63
    [Google Scholar]
  75. 75. 
    Wills PR. 2009. Informed generation: physical origin and biological evolution of genetic codescript interpreters. J. Theor. Biol. 257:345–58
    [Google Scholar]
  76. 76. 
    Bull JJ, Meyers LA, Lachmann M. 2005. Quasispecies made simple. PLOS Comput. Biol. 1:e61
    [Google Scholar]
  77. 77. 
    Fox GE, Tran Q, Yonath A. 2012. An exit cavity was crucial to the polymerase activity of the early ribosome. Astrobiology 12:57–60
    [Google Scholar]
  78. 78. 
    Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR et al. 2015. History of the ribosome and the origin of translation. PNAS 112:15396–401
    [Google Scholar]
  79. 79. 
    Davidovich C, Belousoff M, Wekselman I, Shapira T, Krupkin M et al. 2010. The proto-ribosome: an ancient nano-machine for peptide bond formation. Isr. J. Chem. 50:29–35
    [Google Scholar]
  80. 80. 
    Kovacs NA, Petrov AS, Lanier KA, Williams LD. 2017. Frozen in time: the history of proteins. Mol. Biol. Evol. 34:1252–60
    [Google Scholar]
  81. 81. 
    Szathmáry E. 2015. Toward major evolutionary transitions theory 2.0. PNAS 112:10104–11
    [Google Scholar]
  82. 82. 
    Szathmáry E, Maynard Smith J 1995. The major evolutionary transitions. Nature 374:227–32
    [Google Scholar]
  83. 83. 
    Prigogine I, Nicolis G. 1971. Biological order, structure and instabilities. Q. Rev. Biophys. 4:107–48
    [Google Scholar]
  84. 84. 
    Kauffman SA. 1993. The Origins of Order: Self-Organization and Selection in Evolution New York: Oxford Univ. Press
  85. 85. 
    Smith JI, Steel M, Hordijk W. 2014. Autocatalytic sets in a partitioned biochemical network. J. Syst. Chem. 5:2
    [Google Scholar]
  86. 86. 
    Huber C, Eisenreich W, Hecht S, Wächtershäuser G. 2003. A possible primordial peptide cycle. Science 301:938–40
    [Google Scholar]
  87. 87. 
    Wächtershäuser G. 1988. An all-purine precursor of nucleic acids. PNAS 85:1134–35
    [Google Scholar]
  88. 88. 
    Powner MW, Gerland B, Sutherland JD. 2009. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–42
    [Google Scholar]
  89. 89. 
    Benner SA, Bell EA, Biondi E, Brasser R, Carell T et al. 2019. When did life likely emerge on Earth in an RNA-first process?. Chem. Syst. Chem. 1:e1900035
    [Google Scholar]
  90. 90. 
    Frenkel-Pinter M, Haynes JW, Mohyeldin AM, Martin C, Sargon AB et al. 2020. Mutually stabilizing interactions between proto-peptides and RNA. Nat. Commun. 11:3137
    [Google Scholar]
  91. 91. 
    Bowman JC, Hud NV, Williams LD. 2015. The ribosome challenge to the RNA World. J. Mol. Evol. 80:143–61
    [Google Scholar]
  92. 92. 
    Carter CW Jr. 1975. Cradles for molecular evolution. New Sci. 27:784–87
    [Google Scholar]
  93. 93. 
    Carter CW Jr., Kraut J. 1974. A proposed model for interaction of polypeptides with RNA. PNAS 71:283–87
    [Google Scholar]
  94. 94. 
    Cai W, Pei J, Grishin NV 2004. Reconstruction of ancestral protein sequences and its applications. BMC Evol. Biol. 4:33
    [Google Scholar]
  95. 95. 
    Watson JD, Crick FHC. 1953. A structure for deoxyribose nucleic acid. Nature 171:737–38
    [Google Scholar]
  96. 96. 
    Zull JE, Smith SK. 1990. Is genetic code redundancy related to retention of structural information in both DNA strands?. Trends Biochem. Sci. 15:257–61
    [Google Scholar]
  97. 97. 
    Opuu V, Silvert M, Simonson T. 2017. Computational design of fully overlapping coding schemes for protein pairs and triplets. Sci. Rep. 7:15873
    [Google Scholar]
  98. 98. 
    Freeland SJ, Hurst LD. 1998. The genetic code is one in a million. J. Mol. Evol. 47:238–48
    [Google Scholar]
  99. 99. 
    Sapienza PJ, Li L, Williams T, Lee AL, Carter CW Jr. 2016. An ancestral tryptophanyl-tRNA synthetase precursor achieves high catalytic rate enhancement without ordered ground-state tertiary structures. ACS Chem. Biol. 11:1661–68
    [Google Scholar]
  100. 100. 
    Burbaum JJ, Starzyk RM, Schimmel P. 1990. Understanding structural relationships in proteins of unsolved three-dimensional structure. Proteins Struct. Funct. Genet. 7:99–111
    [Google Scholar]
  101. 101. 
    Perona JJ, Gruic-Sovulj I. 2013. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top. Curr. Chem 344:1–41
    [Google Scholar]
  102. 102. 
    Bullock T, Uter N, Nissan TA, Perona JJ. 2003. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J. Mol. Biol. 328:395–408
    [Google Scholar]
  103. 103. 
    Sever S, Rogers K, Rogers MJ, Carter CW Jr., Söll D. 1996. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Biochemistry 35:32–40
    [Google Scholar]
  104. 104. 
    Chandrasekaran SN, Carter CW Jr. 2017. Adding torsional interaction terms to the anisotropic network model improves the PATH performance, enabling detailed comparison with experimental rate data. Struct. Dyn. 4:032103
    [Google Scholar]
  105. 105. 
    Giegé R. 1972. Recherches sur la spécificité de reconnaissance des acides ribonucléiques de transfert par les aminoacyl-tRNA synthétases [Study on the specificity of recognition of transfer ribonucleic acids by aminoacyl-tRNA synthetases] PhD Thesis, Univ. Louis Pasteur Strasbourg, France:
  106. 106. 
    Kaiser F, Krautwurst S, Salentin S, Haupt VJ, Leberecht C et al. 2020. The structural basis of the genetic code: amino acid recognition by aminoacyl-tRNA synthetases. Sci. Rep. 10:12647
    [Google Scholar]
  107. 107. 
    Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ et al. 2018. Backbone brackets and arginine tweezers delineate class I and class II aminoacyl tRNA synthetases. PLOS Comput. Biol. 14:e1006101
    [Google Scholar]
  108. 108. 
    Jones OW Jr., Nirenberg MW. 1966. Degeneracy in the amino acid code. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 119:400–6
    [Google Scholar]
  109. 109. 
    Trupin JS, Rottman FM, Brimacome R, Leder P, Bernfield MR, Nirenberg M 1965. RNA codewords and protein synthesis, VI. On the nucleotide sequences of degenerate codeword sets for isoleucine, tyrosine, asparagine, and lysine. PNAS 53:807–11
    [Google Scholar]
  110. 110. 
    Nirenberg MW, Matthaei JH 1961. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. PNAS 47:1588–602
    [Google Scholar]
  111. 111. 
    Wills PR, Nieselt K, McCaskill JS. 2015. Emergence of coding and its specificity as a physico-informatic problem. Orig. Life Evol. Biosphere 45:249–55
    [Google Scholar]
  112. 112. 
    Johnson BR, Lam SK. 2010. Self-organization, natural selection, and evolution: cellular hardware and genetic software. BioScience 60:879–85
    [Google Scholar]
  113. 113. 
    Pilla SP, Thomas A, Bahadur RP. 2019. Dissecting macromolecular recognition sites in ribosome: implication to its self-assembly. RNA Biol 16:1300–12
    [Google Scholar]
  114. 114. 
    Woodson SA. 2011. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 44:1312–19
    [Google Scholar]
  115. 115. 
    Caspar DLD, Klug A. 1962. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27:1–24
    [Google Scholar]
  116. 116. 
    Israelachvili JN. 2011. Intermolecular and Surface Forces Burlington, MA: Elsevier635 pp.
  117. 117. 
    Carter CW Jr., Wills PR. 2021. Reciprocally-coupled gating: strange loops in bioenergetics, genetics, and catalysis. Biomolecules 11:265
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-071620-021218
Loading
/content/journals/10.1146/annurev-biochem-071620-021218
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error