1932

Abstract

Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-081720-023244
2021-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-081720-023244.html?itemId=/content/journals/10.1146/annurev-biochem-081720-023244&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Iggo A, Andres KH. 1982. Morphology of cutaneous receptors. Annu. Rev. Neurosci. 5:1–31
    [Google Scholar]
  2. 2. 
    Sherrington C. 1906. The Integrative Action of the Nervous System New Haven: Yale Univ. Press
  3. 3. 
    Perl E 1968. Myelinated afferent fibres innervating the primate skin and their response to noxious stimuli. J. Physiol. 197:593–615
    [Google Scholar]
  4. 4. 
    Burgess P, Petit D, Warren RM. 1968. Receptor types in cat hairy skin supplied by myelinated fibers. J. Neurophysiol. 31:833–48
    [Google Scholar]
  5. 5. 
    Brown A, Iggo A. 1967. A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J. Physiol. 193:707–33
    [Google Scholar]
  6. 6. 
    Loewenstein WR, Rathkamp R. 1958. Localization of generator structures of electric activity in a Pacinian corpuscle. Science 127:341
    [Google Scholar]
  7. 7. 
    Alvarez-Buylla R, De Arellano JR. 1952. Local responses in Pacinian corpuscles. Am. J. Physiol. 172:237–44
    [Google Scholar]
  8. 8. 
    Corey D, Hudspeth A. 1979. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–77
    [Google Scholar]
  9. 9. 
    Neher E, Sakmann B. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802
    [Google Scholar]
  10. 10. 
    Guharay F, Sachs F. 1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701
    [Google Scholar]
  11. 11. 
    Sakmann B, Bormann J, Hamill OP. 1983. Ion transport by single receptor channels. Cold Spring Harb. Symp. Quant. Biol. 48:Part 1247–57
    [Google Scholar]
  12. 12. 
    Chalfie M. 2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10:44–52
    [Google Scholar]
  13. 13. 
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  14. 14. 
    Julius D 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  15. 15. 
    Dhaka A, Viswanath V, Patapoutian A. 2006. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29:135–61
    [Google Scholar]
  16. 16. 
    Martinac B, Buechner M, Delcour AH, Adler J, Kung C 1987. Pressure-sensitive ion channel in Escherichia coli. PNAS 84:2297–301
    [Google Scholar]
  17. 17. 
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C. 1994. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–68
    [Google Scholar]
  18. 18. 
    Gustin MC, Zhou X-L, Martinac B, Kung C. 1988. A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–65
    [Google Scholar]
  19. 19. 
    Martinac B, Adler J, Kung C. 1990. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–63
    [Google Scholar]
  20. 20. 
    Chalfie M, Au M. 1989. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–33
    [Google Scholar]
  21. 21. 
    O'Hagan R, Chalfie M, Goodman MB. 2005. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8:43–50
    [Google Scholar]
  22. 22. 
    Walker RG, Willingham AT, Zuker CS. 2000. A Drosophila mechanosensory transduction channel. Science 287:2229–34
    [Google Scholar]
  23. 23. 
    Petit C. 2006. From deafness genes to hearing mechanisms: harmony and counterpoint. Trends Mol. Med. 12:57–64
    [Google Scholar]
  24. 24. 
    Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S et al. 2016. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med. 375:1355–64
    [Google Scholar]
  25. 25. 
    Lumpkin EA, Bautista DM. 2005. Feeling the pressure in mammalian somatosensation. Curr. Opin. Neurobiol. 15:382–88
    [Google Scholar]
  26. 26. 
    McBride DW Jr., Hamill OP. 1993. Pressure-clamp technique for measurement of the relaxation kinetics of mechanosensitive channels. Trends Neurosci 16:341–45
    [Google Scholar]
  27. 27. 
    McCarter GC, Reichling DB, Levine JD. 1999. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273:179–82
    [Google Scholar]
  28. 28. 
    Delmas P, Hao J, Rodat-Despoix L. 2011. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12:139–53
    [Google Scholar]
  29. 29. 
    Drew LJ, Wood JN, Cesare P. 2002. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22:Rc228
    [Google Scholar]
  30. 30. 
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60
    [Google Scholar]
  31. 31. 
    McHugh BJ, Buttery R, Lad Y, Banks S, Haslett C, Sethi T. 2010. Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J. Cell Sci. 123:51–61
    [Google Scholar]
  32. 32. 
    Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. 2012. The role of Drosophila Piezo in mechanical nociception. Nature 483:209–12
    [Google Scholar]
  33. 33. 
    Faucherre A, Nargeot J, Mangoni ME, Jopling C. 2013. piezo2b regulates vertebrate light touch response. J. Neurosci. 33:17089–94
    [Google Scholar]
  34. 34. 
    Schneider ER, Mastrotto M, Laursen WJ, Schulz VP, Goodman JB et al. 2014. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. PNAS 111:14941–46
    [Google Scholar]
  35. 35. 
    Ranade SS, Woo S-H, Dubin AE, Moshourab RA, Wetzel C et al. 2014. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–25
    [Google Scholar]
  36. 36. 
    Coste B, Houge G, Murray MF, Stitziel N, Bandell M et al. 2013. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. PNAS 110:4667–72
    [Google Scholar]
  37. 37. 
    Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F et al. 2018. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci. Transl. Med. 10:eaat9897
    [Google Scholar]
  38. 38. 
    Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R et al. 2018. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 10:eaat9892
    [Google Scholar]
  39. 39. 
    Woo S-H, Lukacs V, De Nooij JC, Zaytseva D, Criddle CR et al. 2015. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18:1756–62
    [Google Scholar]
  40. 40. 
    Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW et al. 2018. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362:464–67
    [Google Scholar]
  41. 41. 
    Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y et al. 2015. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat. Commun. 6:7223
    [Google Scholar]
  42. 42. 
    Szczot M, Pogorzala LA, Solinski HJ, Young L, Yee P et al. 2017. Cell-type-specific splicing of Piezo2 regulates mechanotransduction. Cell Rep 21:2760–71
    [Google Scholar]
  43. 43. 
    Xiao B. 2020. Levering mechanically activated Piezo channels for potential pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 60:195–218
    [Google Scholar]
  44. 44. 
    Liao M, Cao E, Julius D, Cheng Y 2013. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–12
    [Google Scholar]
  45. 45. 
    Guo YR, MacKinnon R. 2017. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife 6:e33660
    [Google Scholar]
  46. 46. 
    Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. 2018. Structure of the mechanically activated ion channel Piezo1. Nature 554:481–86
    [Google Scholar]
  47. 47. 
    Zhao Q, Zhou H, Chi S, Wang Y, Wang J et al. 2018. Structure and mechanogating mechanism of the Piezo1 channel. Nature 554:487–92
    [Google Scholar]
  48. 48. 
    Wang L, Zhou H, Zhang M, Liu W, Deng T et al. 2019. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573:225–29
    [Google Scholar]
  49. 49. 
    Taberner FJ, Prato V, Schaefer I, Schrenk-Siemens K, Heppenstall PA, Lechner SG 2019. Structure-guided examination of the mechanogating mechanism of PIEZO2. PNAS 116:14260–69
    [Google Scholar]
  50. 50. 
    Romero LO, Caires R, Nickolls AR, Chesler AT, Cordero-Morales JF, Vásquez V. 2020. A dietary fatty acid counteracts neuronal mechanical sensitization. Nat. Commun. 11:2997
    [Google Scholar]
  51. 51. 
    Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. 2019. Force-induced conformational changes in PIEZO1. Nature 573:230–34
    [Google Scholar]
  52. 52. 
    Chesler AT, Szczot M. 2018. Piezo ion channels: portraits of a pressure sensor. eLife 7:e34396
    [Google Scholar]
  53. 53. 
    Geng J, Liu W, Zhou H, Zhang T, Wang L et al. 2020. A plug-and-latch mechanism for gating the mechanosensitive Piezo channel. Neuron 106:438–51.e6
    [Google Scholar]
  54. 54. 
    Kung C. 2005. A possible unifying principle for mechanosensation. Nature 436:647–54
    [Google Scholar]
  55. 55. 
    Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V et al. 2016. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7:10366
    [Google Scholar]
  56. 56. 
    Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS et al. 2016. Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–46
    [Google Scholar]
  57. 57. 
    Moroni M, Servin-Vences MR, Fleischer R, Sánchez-Carranza O, Lewin GR. 2018. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 9:1096
    [Google Scholar]
  58. 58. 
    Shin KC, Park HJ, Kim JG, Lee IH, Cho H et al. 2019. The Piezo2 ion channel is mechanically activated by low-threshold positive pressure. Sci. Rep. 9:6446
    [Google Scholar]
  59. 59. 
    Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC et al. 2019. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10:1200
    [Google Scholar]
  60. 60. 
    Eijkelkamp N, Linley J, Torres J, Bee L, Dickenson A et al. 2013. A role for Piezo2 in EPAC1-dependent mechanical allodynia. Nat. Commun. 4:1682
    [Google Scholar]
  61. 61. 
    Hu J, Chiang LY, Koch M, Lewin GR. 2010. Evidence for a protein tether involved in somatic touch. EMBO J 29:855–67
    [Google Scholar]
  62. 62. 
    Wu J, Lewis AH, Grandl J. 2017. Touch, tension, and transduction—the function and regulation of Piezo ion channels. Trends Biochem. Sci. 42:57–71
    [Google Scholar]
  63. 63. 
    Cordero-Morales JF, Vásquez V. 2018. How lipids contribute to ion channel function, a fat perspective on direct and indirect interactions. Curr. Opin. Struct. Biol. 51:92–98
    [Google Scholar]
  64. 64. 
    Weinrich M, Worcester DL, Bezrukov SM. 2017. Lipid nanodomains change ion channel function. Nanoscale 9:13291–97
    [Google Scholar]
  65. 65. 
    Qi Y, Andolfi L, Frattini F, Mayer F, Lazzarino M, Hu J. 2015. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 6:8512
    [Google Scholar]
  66. 66. 
    Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. 2014. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 5:3520
    [Google Scholar]
  67. 67. 
    Borbiro I, Badheka D, Rohacs T. 2015. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci. Signal. 8:ra15
    [Google Scholar]
  68. 68. 
    Narayanan P, Hütte M, Kudryasheva G, Taberner FJ, Lechner SG et al. 2018. Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. eLife 7:e32346
    [Google Scholar]
  69. 69. 
    Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. 2018. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels. Cell Rep 23:701–8
    [Google Scholar]
  70. 70. 
    Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA et al. 2019. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. eLife 8:e46084
    [Google Scholar]
  71. 71. 
    Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M et al. 2015. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–403
    [Google Scholar]
  72. 72. 
    Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y et al. 2013. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–25
    [Google Scholar]
  73. 73. 
    Walker RG, Willingham AT, Zuker CS. 2000. A Drosophila mechanosensory transduction channel. Science 287:2229–34
    [Google Scholar]
  74. 74. 
    Chiang L-Y, Poole K, Oliveira BE, Duarte N, Sierra YAB et al. 2011. Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nat. Neurosci. 14:993–1000
    [Google Scholar]
  75. 75. 
    Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. 2017. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat. Commun. 8:1797
    [Google Scholar]
  76. 76. 
    Narayanan P, Sondermann J, Rouwette T, Karaca S, Urlaub H et al. 2016. Native Piezo2 interactomics identifies pericentrin as a novel regulator of Piezo2 in somatosensory neurons. J. Proteome Res. 15:2676–87
    [Google Scholar]
  77. 77. 
    Woo S-H, Ranade S, Weyer AD, Dubin AE, Baba Y et al. 2014. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–26
    [Google Scholar]
  78. 78. 
    Schrenk-Siemens K, Wende H, Prato V, Song K, Rostock C et al. 2015. PIEZO2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat. Neurosci. 18:10–16
    [Google Scholar]
  79. 79. 
    von Buchholtz LJ, Ghitani N, Lam RM, Licholai JA, Chesler AT, Ryba NJ. 2021. Decoding cellular mechanisms for mechanosensory discrimination. Neuron 109:285–98.e5
    [Google Scholar]
  80. 80. 
    Hook SS, Means AR. 2001. Ca2+/CaM-dependent kinases: from activation to function. Annu. Rev. Pharmacol. Toxicol. 41:471–505
    [Google Scholar]
  81. 81. 
    Song Y, Li D, Farrelly O, Miles L, Li F et al. 2019. The mechanosensitive ion channel piezo inhibits axon regeneration. Neuron 102:373–89.e6
    [Google Scholar]
  82. 82. 
    Pardo-Pastor C, Rubio-Moscardo F, Vogel-González M, Serra SA, Afthinos A et al. 2018. Piezo2 channel regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses. PNAS 115:1925–30
    [Google Scholar]
  83. 83. 
    Zhou T, Gao B, Fan Y, Liu Y, Feng S et al. 2020. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. eLife 9:e52779
    [Google Scholar]
  84. 84. 
    Dubin AE, Schmidt M, Mathur J, Petrus MJ, Xiao B et al. 2012. Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep 2:511–17
    [Google Scholar]
  85. 85. 
    Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F et al. 2016. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. PNAS 113:3036–41
    [Google Scholar]
  86. 86. 
    Del Rosario JS, Yudin Y, Su S, Hartle CM, Mirshahi T, Rohacs T. 2020. Gi-coupled receptor activation potentiates Piezo2 currents via Gβγ. EMBO Rep 21:e49124
    [Google Scholar]
  87. 87. 
    Hucho TB, Dina OA, Levine JD. 2005. Epac mediates a cAMP-to-PKC signaling in inflammatory pain: an isolectin B4(+) neuron-specific mechanism. J. Neurosci. 25:6119–26
    [Google Scholar]
  88. 88. 
    Lechner SG, Lewin GR. 2009. Peripheral sensitisation of nociceptors via G-protein-dependent potentiation of mechanotransduction currents. J. Physiol. 587:3493–503
    [Google Scholar]
  89. 89. 
    Borbiro I, Rohacs T. 2017. Regulation of Piezo channels by cellular signaling pathways. Curr. Top. Membr. 79:245–61
    [Google Scholar]
  90. 90. 
    Nickolls AR, Lee MM, Espinoza DF, Szczot M, Lam RM et al. 2020. Transcriptional programming of human mechanosensory neuron subtypes from pluripotent stem cells. Cell Rep 30:932–46.e7
    [Google Scholar]
  91. 91. 
    Delle Vedove A, Storbeck M, Heller R, Hölker I, Hebbar M et al. 2016. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am. J. Hum. Genet. 99:1206–16
    [Google Scholar]
  92. 92. 
    Haliloglu G, Becker K, Temucin C, Talim B, Küçükşahin N et al. 2017. Recessive PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, scoliosis and proprioception defects. J. Hum. Genet. 62:497–501
    [Google Scholar]
  93. 93. 
    Mahmud A, Nahid N, Nassif C, Sayeed M, Ahmed M et al. 2017. Loss of the proprioception and touch sensation channel PIEZO2 in siblings with a progressive form of contractures. Clin. Genet. 91:470–75
    [Google Scholar]
  94. 94. 
    Case LK, Liljencrantz J, Madian N, Necaise A, Tubbs J et al. 2021. Innocuous pressure sensation requires A-type afferents but not functional ΡΙΕΖΟ2 channels in humans. Nat. Commun. 12:1657
    [Google Scholar]
  95. 95. 
    McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ et al. 2014. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am. J. Hum. Genet. 94:734–44
    [Google Scholar]
  96. 96. 
    Okubo M, Fujita A, Saito Y, Komaki H, Ishiyama A et al. 2015. A family of distal arthrogryposis type 5 due to a novel PIEZO2 mutation. Am. J. Med. Genet. Part A 167:1100–6
    [Google Scholar]
  97. 97. 
    Alisch F, Weichert A, Kalache K, Paradiso V, Longardt AC et al. 2017. Familial Gordon syndrome associated with a PIEZO2 mutation. Am. J. Med. Genet. Part A 173:254–59
    [Google Scholar]
  98. 98. 
    Nguyen MQ, Wu Y, Bonilla LS, von Buchholtz LJ, Ryba NJ 2017. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLOS ONE 12:e0185543
    [Google Scholar]
  99. 99. 
    Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. 2019. Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. Neuron 103:598–616.e7
    [Google Scholar]
  100. 100. 
    Sharma N, Flaherty K, Lezgiyeva K, Wagner DE, Klein AM, Ginty DD. 2020. The emergence of transcriptional identity in somatosensory neurons. Nature 577:392–98
    [Google Scholar]
  101. 101. 
    von Buchholtz LJ, Lam RM, Emrick JJ, Chesler AT, Ryba NJ. 2020. Assigning transcriptomic class in the trigeminal ganglion using multiplex in situ hybridization and machine learning. Pain 161:2212–24
    [Google Scholar]
  102. 102. 
    Kandel ER, Jessell TM, Schwartz JH, Siegelbaum SA, Hudspeth AJ, Mack S 2013. Principles of Neural Science New York: McGraw-Hill Educ. , 5th ed..
  103. 103. 
    Umans BD, Liberles SD. 2018. Neural sensing of organ volume. Trends Neurosci 41:911–24
    [Google Scholar]
  104. 104. 
    Min S, Chang RB, Prescott SL, Beeler B, Joshi NR et al. 2019. Arterial baroreceptors sense blood pressure through decorated aortic claws. Cell Rep 29:2192–201.e3
    [Google Scholar]
  105. 105. 
    Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. 2020. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181:574–89
    [Google Scholar]
  106. 106. 
    Nguyen MQ, Le Pichon CE, Ryba N 2019. Stereotyped transcriptomic transformation of somatosensory neurons in response to injury. eLife 8:e49679
    [Google Scholar]
  107. 107. 
    Chang R, Strochlic D, Nonomura K, Patapoutian A, Liberles S. 2018. Airway mechanoreceptors that control breathing. FASEB J 32:893.3
    [Google Scholar]
  108. 108. 
    Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z et al. 2017. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541:176–81
    [Google Scholar]
  109. 109. 
    Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ et al. 2017. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595:79–91
    [Google Scholar]
  110. 110. 
    Iggo A, Muir AR. 1969. The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. 200:763–796.4
    [Google Scholar]
  111. 111. 
    Diamond J, Mills L, Mearow K. 1988. Evidence that the Merkel cell is not the transducer in the mechanosensory Merkel cell–neurite complex. Prog. Brain Res. 74:51–56
    [Google Scholar]
  112. 112. 
    Mills L, Diamond J. 1995. Merkel cells are not the mechanosensory transducers in the touch dome of the rat. J. Neurocytol. 24:117–34
    [Google Scholar]
  113. 113. 
    Anand A, Iggo A, Paintal AS. 1979. Lability of granular vesicles in Merkel cells of the type I slowly-adapting cutaneous receptors of the cat [proceedings. ]. J. Physiol. 296:19P–20P
    [Google Scholar]
  114. 114. 
    Maksimovic S, Baba Y, Lumpkin EA. 2013. Neurotransmitters and synaptic components in the Merkel cell–neurite complex, a gentle touch receptor. Ann. N. Y. Acad. Sci. 1279:13–21
    [Google Scholar]
  115. 115. 
    Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ et al. 2009. Merkel cells are essential for light-touch responses. Science 324:1580–82
    [Google Scholar]
  116. 116. 
    Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL et al. 2014. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–21
    [Google Scholar]
  117. 117. 
    Woo S-H, Lumpkin EA, Patapoutian A. 2015. Merkel cells and neurons keep in touch. Trends Cell Biol 25:74–81
    [Google Scholar]
  118. 118. 
    Murthy SE, Dubin AE, Whitwam T, Jojoa-Cruz S, Cahalan SM et al. 2018. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7:e41844
    [Google Scholar]
  119. 119. 
    Beaulieu-Laroche L, Christin M, Donoghue A, Agosti F, Yousefpour N et al. 2020. TACAN is an ion channel involved in sensing mechanical pain. Cell 180:956–67.e17
    [Google Scholar]
  120. 120. 
    Abdo H, Calvo-Enrique L, Lopez JM, Song J, Zhang M-D et al. 2019. Specialized cutaneous Schwann cells initiate pain sensation. Science 365:695–99
    [Google Scholar]
  121. 121. 
    Dhandapani R, Arokiaraj CM, Taberner FJ, Pacifico P, Raja S et al. 2018. Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat. Commun. 9:1640
    [Google Scholar]
  122. 122. 
    Bautista DM, Wilson SR, Hoon MA. 2014. Why we scratch an itch: the molecules, cells and circuits of itch. Nat. Neurosci. 17:175–82
    [Google Scholar]
  123. 123. 
    Feng J, Luo J, Yang P, Du J, Kim BS, Hu H. 2018. Piezo2 channel–Merkel cell signaling modulates the conversion of touch to itch. Science 360:530–33
    [Google Scholar]
  124. 124. 
    Feng J, Hu H. 2019. A novel player in the field: Merkel disc in touch, itch and pain. Exp. Dermatol. 28:1412–15
    [Google Scholar]
  125. 125. 
    Sherrington CS. 1907. On the proprio-ceptive system, especially in its reflex aspect. Brain 29:467–82
    [Google Scholar]
  126. 126. 
    Florez-Paz D, Bali KK, Kuner R, Gomis A. 2016. A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci. Rep. 6:25923
    [Google Scholar]
  127. 127. 
    Zhang J, Walker JF, Guardiola J, Yu J 2006. Pulmonary sensory and reflex responses in the mouse. J. Appl. Physiol. 101:986–92
    [Google Scholar]
  128. 128. 
    Schelegle ES, Green JF. 2001. An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors. Respir. Physiol. 125:17–31
    [Google Scholar]
  129. 129. 
    Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y et al. 2019. Genetic identification of vagal sensory neurons that control feeding. Cell 179:1129–43.e23
    [Google Scholar]
  130. 130. 
    Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. 2015. Vagal sensory neuron subtypes that differentially control breathing. Cell 161:622–33
    [Google Scholar]
  131. 131. 
    Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. 2019. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep 27:2508–23.e4
    [Google Scholar]
  132. 132. 
    Hockley JR, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A et al. 2019. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68:633–44
    [Google Scholar]
  133. 133. 
    Bülbring E, Crema A. 1959. The action of 5-hydroxytryptamine, 5-hydroxytryptophan and reserpine on intestinal peristalsis in anaesthetized guinea-pigs. J. Physiol. 146:29–53
    [Google Scholar]
  134. 134. 
    Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR et al. 2018. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. PNAS 115:E7632–41
    [Google Scholar]
  135. 135. 
    Najjar SA, Davis BM, Albers KM. 2020. Epithelial-neuronal communication in the colon: implications for visceral pain. Trends Neurosci 43:170–81
    [Google Scholar]
  136. 136. 
    Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y et al. 2015. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Investig. 125:782–86
    [Google Scholar]
  137. 137. 
    Bellono NW, Bayrer JR, Leitch DB, Castro J, Zhang C et al. 2017. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170:185–98.e16
    [Google Scholar]
  138. 138. 
    Kaelberer MM, Buchanan KL, Klein ME, Barth BB, Montoya MM et al. 2018. A gut-brain neural circuit for nutrient sensory transduction. Science 361:eaat5236
    [Google Scholar]
  139. 139. 
    McMahon SB, Koltzenburg M, Tracey I, Turk D 2013. Wall & Melzack's Textbook of Pain Philadelphia: Elsevier/Saunders. , 6th ed..
  140. 140. 
    Prato V, Taberner FJ, Hockley JR, Callejo G, Arcourt A et al. 2017. Functional and molecular characterization of mechanoinsensitive “silent” nociceptors. Cell Rep 21:3102–15
    [Google Scholar]
  141. 141. 
    Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M et al. 2020. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 588:290–95
    [Google Scholar]
  142. 142. 
    Kumada M, Terui N, Kuwaki T. 1990. Arterial baroreceptor reflex: its central and peripheral neural mechanisms. Progress Neurobiol 35:331–61
    [Google Scholar]
  143. 143. 
    Miglis MG, Muppidi S. 2019. Ion channels PIEZOs identified as the long-sought baroreceptor mechanosensors for blood pressure control, and other updates on autonomic research. Clin. Auton. Res. 29:9–11
    [Google Scholar]
  144. 144. 
    Won J, Vang H, Lee P, Kim Y, Kim H et al. 2017. Piezo2 expression in mechanosensitive dental primary afferent neurons. J. Dent. Res. 96:931–37
    [Google Scholar]
  145. 145. 
    Emrick J, von Buchholtz L, Ryba N. 2020. Transcriptomic classification of neurons innervating teeth. J. Dent. Res. 99:1478–85
    [Google Scholar]
  146. 146. 
    Moayedi Y, Duenas-Bianchi LF, Lumpkin EA 2018. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci. Rep. 8:9975
    [Google Scholar]
  147. 147. 
    Du G, Li L, Zhang X, Liu J, Hao J et al. 2020. Roles of TRPV4 and piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp. Biol. Med. 245:180–89
    [Google Scholar]
  148. 148. 
    Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA et al. 2014. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. PNAS 111:E5114–22
    [Google Scholar]
  149. 149. 
    Lee W, Guilak F, Liedtke W. 2017. Role of Piezo channels in joint health and injury. Curr. Top. Membr. 79:263–73
    [Google Scholar]
  150. 150. 
    Assaraf E, Blecher R, Heinemann-Yerushalmi L, Krief S, Vinestock RC et al. 2020. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat. Commun. 11:3168
    [Google Scholar]
  151. 151. 
    Wu Z, Grillet N, Zhao B, Cunningham C, Harkins-Perry S et al. 2017. Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat. Neurosci. 20:24–33
    [Google Scholar]
  152. 152. 
    Beurg M, Fettiplace R. 2017. PIEZO2 as the anomalous mechanotransducer channel in auditory hair cells. J. Physiol. 595:7039–48
    [Google Scholar]
  153. 153. 
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30:918–20
    [Google Scholar]
  154. 154. 
    Southam L, Gilly A, Süveges D, Farmaki A-E, Schwartzentruber J et al. 2017. Whole genome sequencing and imputation in isolated populations identify genetic associations with medically-relevant complex traits. Nat. Commun. 8:15606
    [Google Scholar]
  155. 155. 
    Eberhardt E, Havlicek S, Schmidt D, Link AS, Neacsu C et al. 2015. Pattern of functional TTX-resistant sodium channels reveals a developmental stage of human iPSC- and ESC-derived nociceptors. Stem Cell Rep 5:305–13
    [Google Scholar]
  156. 156. 
    Jones I, Yelhekar TD, Wiberg R, Kingham PJ, Johansson S et al. 2018. Development and validation of an in vitro model system to study peripheral sensory neuron development and injury. Sci. Rep. 8:15961
    [Google Scholar]
  157. 157. 
    Alshawaf AJ, Viventi S, Qiu W, D'Abaco G, Nayagam B et al. 2018. Phenotypic and functional characterization of peripheral sensory neurons derived from human embryonic stem cells. Sci. Rep. 8:603
    [Google Scholar]
  158. 158. 
    McDermott LA, Weir GA, Themistocleous AC, Segerdahl AR, Blesneac I et al. 2019. Defining the functional role of Nav1.7 in human nociception. Neuron 101:905–19.e8
    [Google Scholar]
  159. 159. 
    Schrenk-Siemens K, Pohle J, Rostock C, El Hay MA, Lam RM et al. 2019. HESC-derived sensory neurons reveal an unexpected role for PIEZO2 in nociceptor mechanotransduction. bioRxiv 741660. https://doi.org/10.1101/741660
    [Crossref]
  160. 160. 
    Kupari J, Usoskin D, Parisien M, Lou D, Hu Y et al. 2020. Single cell transcriptomics of primate sensory neurons identifies cell types associated with human chronic pain. Nat. Commun. 12:1510
    [Google Scholar]
  161. 161. 
    Syeda R, Xu J, Dubin AE, Coste B, Mathur J et al. 2015. Chemical activation of the mechanotransduction channel Piezo1. eLife 4:e07369
    [Google Scholar]
  162. 162. 
    Wang Y, Chi S, Guo H, Li G, Wang L et al. 2018. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 9:1300
    [Google Scholar]
  163. 163. 
    Feng J, Luo J, Yang P, Du J, Kim BS, Hu H. 2018. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science 360:530–33
    [Google Scholar]
  164. 164. 
    Gnanasambandam R, Ghatak C, Yasmann A, Nishizawa K, Sachs F et al. 2017. GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J. 112:31–45
    [Google Scholar]
  165. 165. 
    Lewis AH, Cui AF, McDonald MF, Grandl J. 2017. Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels. Cell Rep 19:2572–85
    [Google Scholar]
  166. 166. 
    Wu J, Goyal R, Grandl J. 2016. Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 7:12939
    [Google Scholar]
  167. 167. 
    Liu C, Li T, Chen J 2019. Role of high-throughput electrophysiology in drug discovery. Curr. Protoc. Pharmacol. 87:e69
    [Google Scholar]
  168. 168. 
    Mohanraj B, Hou C, Meloni GR, Cosgrove BD, Dodge GR, Mauck RL. 2014. A high throughput mechanical screening device for cartilage tissue engineering. J. Biomech. 47:2130–36
    [Google Scholar]
  169. 169. 
    Gregurec D, Senko AW, Chuvilin A, Reddy PD, Sankararaman A et al. 2020. Magnetic vortex nanodiscs enable remote magnetomechanical neural stimulation. ACS Nano 14:8036–45
    [Google Scholar]
  170. 170. 
    Montel L, Sotiropoulos A, Hénon S. 2019. The nature and intensity of mechanical stimulation drive different dynamics of MRTF-A nuclear redistribution after actin remodeling in myoblasts. PLOS ONE 14:e0214385
    [Google Scholar]
  171. 171. 
    Matsui TS, Wu H, Deguchi S. 2018. Deformable 96-well cell culture plate compatible with high-throughput screening platforms. PLOS ONE 13:e0203448
    [Google Scholar]
  172. 172. 
    Xu J, Mathur J, Vessières E, Hammack S, Nonomura K et al. 2018. GPR68 senses flow and is essential for vascular physiology. Cell 173:762–75.e16
    [Google Scholar]
  173. 173. 
    Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD. 2016. Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs. Cell 166:299–313
    [Google Scholar]
  174. 174. 
    Neubarth NL, Emanuel AJ, Liu Y, Springel MW, Handler A et al. 2020. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368:eabb2751
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-081720-023244
Loading
/content/journals/10.1146/annurev-biochem-081720-023244
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error