1932

Abstract

The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein–nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-090120-125407
2021-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-090120-125407.html?itemId=/content/journals/10.1146/annurev-biochem-090120-125407&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Watson JD, Crick FH. 1953. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18:123–31
    [Google Scholar]
  2. 2. 
    Meselson M, Stahl FW 1958. The replication of DNA in Escherichia coli. PNAS 44:7671–82
    [Google Scholar]
  3. 3. 
    Ogura T, Wilkinson AJ. 2001. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6:7575–97
    [Google Scholar]
  4. 4. 
    Franklin RE, Gosling RG. 1953. Molecular configuration in sodium thymonucleate. Nature 171:4356740–41
    [Google Scholar]
  5. 5. 
    Wilkins MHF, Stokes AR, Wilson HR. 1953. Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171:4356738–40
    [Google Scholar]
  6. 6. 
    Jacob F, Brenner S, Cuzin F. 1963. On the regulation of DNA replication in bacteria. Cold Spring Harb. Symp. Quant. Biol. 28:329–48
    [Google Scholar]
  7. 7. 
    Lehman IR, Bessman MJ, Simms ES, Kornberg A. 1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233:1163–70
    [Google Scholar]
  8. 8. 
    Méchali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11:10728–38
    [Google Scholar]
  9. 9. 
    Leonard AC, Méchali M. 2013. DNA replication origins. Cold Spring Harb. Perspect. Biol. 5:10a010116
    [Google Scholar]
  10. 10. 
    Cvetic C, Walter JC. 2005. Eukaryotic origins of DNA replication: Could you please be more specific?. Semin. Cell Dev. Biol. 16:3343–53
    [Google Scholar]
  11. 11. 
    Bell SP, Stillman B. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:6374128–34
    [Google Scholar]
  12. 12. 
    Diffley JFX, Cocker JH. 1992. Protein-DNA interactions at a yeast replication origin. Nature 357:6374169–72
    [Google Scholar]
  13. 13. 
    Yan H, Merchant AM, Tye BK. 1993. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev 7:112149–60
    [Google Scholar]
  14. 14. 
    Ishimi Y. 1997. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272:3924508–13
    [Google Scholar]
  15. 15. 
    You Z, Komamura Y, Ishimi Y. 1999. Biochemical analysis of the intrinsic Mcm4-Mcm6-Mcm7 DNA helicase activity. Mol. Cell. Biol. 19:128003–15
    [Google Scholar]
  16. 16. 
    Lee JK, Hurwitz J. 2000. Isolation and characterization of various complexes of the minichromosome maintenance proteins of Schizosaccharomyces pombe. J. Biol. Chem. 275:2518871–78
    [Google Scholar]
  17. 17. 
    Labib K, Tercero JA, Diffley JFX. 2000. Uninterrupted MCH2–7 function required for DNA replication fork progression. Science 288:54711643–47
    [Google Scholar]
  18. 18. 
    Zwerschke W, Rottjakob HW, Küntzel H. 1994. The Saccharomyces cerevisiae CDC6 gene is transcribed at late mitosis and encodes a ATP/GTPase controlling S phase initiation. J. Biol. Chem. 269:3723351–56
    [Google Scholar]
  19. 19. 
    Weinreich M, Liang C, Stillman B. 1999. The Cdc6p nucleotide-binding motif is required for loading Mcm proteins onto chromatin. PNAS 96:2441–46
    [Google Scholar]
  20. 20. 
    Takahashi N, Tsutsumi S, Tsuchiya T, Stillman B, Mizushima T. 2002. Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J. Biol. Chem. 277:1816033–40
    [Google Scholar]
  21. 21. 
    Bowers JL, Randell JCW, Chen S, Bell SP 2004. ATP hydrolysis by ORC catalyzes reiterative Mcm2–7 assembly at a defined origin of replication. Mol. Cell 16:6967–78
    [Google Scholar]
  22. 22. 
    Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. 2009. Concerted loading of Mcm2–7 double hexamers around DNA during DNA replication origin licensing. Cell 139:4719–30
    [Google Scholar]
  23. 23. 
    Evrin C, Clarke P, Zech J, Lurz R, Sun J et al. 2009. A double-hexameric MCM2–7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. PNAS 106:4820240–45
    [Google Scholar]
  24. 24. 
    Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP. 2015. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161:3513–25
    [Google Scholar]
  25. 25. 
    Chesnokov IN, Chesnokova ON, Botchan M 2003. A cytokinetic function of Drosophila ORC6 protein resides in a domain distinct from its replication activity. PNAS 100:169150–55
    [Google Scholar]
  26. 26. 
    Bleichert F, Botchan MR, Berger JM. 2015. Crystal structure of the eukaryotic origin recognition complex. Nature 519:7543321–26
    [Google Scholar]
  27. 27. 
    Tocilj A, On KF, Yuan Z, Sun J, Elkayam E et al. 2017. Structure of the active form of human origin recognition complex and its ATPase motor module. eLife 6:e20818
    [Google Scholar]
  28. 28. 
    Li N, Lam WH, Zhai Y, Cheng J, Cheng E et al. 2018. Structure of the origin recognition complex bound to DNA replication origin. Nature 559:7713217–22
    [Google Scholar]
  29. 29. 
    Klemm RD, Austin RJ, Bell SP, Baker T, Wickner S et al. 1997. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 88:4493–502
    [Google Scholar]
  30. 30. 
    Schmidt JM, Bleichert F. 2020. Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Nat. Commun. 11:14263
    [Google Scholar]
  31. 31. 
    Chesnokov I, Remus D, Botchan M 2001. Functional analysis of mutant and wild-type Drosophila origin recognition complex. PNAS 98:2111997–2002
    [Google Scholar]
  32. 32. 
    Marahrens Y, Stillman B. 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:5046817–23
    [Google Scholar]
  33. 33. 
    Rao H, Marahrens Y, Stillman B. 1994. Functional conservation of multiple elements in yeast chromosomal replicators. Mol. Cell. Biol. 14:117643–51
    [Google Scholar]
  34. 34. 
    Theis JF, Newlon CS. 1994. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol. Cell. Biol. 14:117652–59
    [Google Scholar]
  35. 35. 
    Dai J, Chuang R-Y, Kelly TJ. 2005. DNA replication origins in the Schizosaccharomyces pombe genome. PNAS 102:2337–42
    [Google Scholar]
  36. 36. 
    Heichinger C, Penkett CJ, Bähler J, Nurse P. 2006. Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25:215171–79
    [Google Scholar]
  37. 37. 
    Segurado M, de Luis A, Antequera F. 2003. Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 4:111048–53
    [Google Scholar]
  38. 38. 
    Ekundayo B, Bleichert F. 2019. Origins of DNA replication. PLOS Genet. 15:9e1008320
    [Google Scholar]
  39. 39. 
    Bleichert F, Leitner A, Aebersold R, Botchan MR, Berger JM 2018. Conformational control and DNA-binding mechanism of the metazoan origin recognition complex. PNAS 115:26E5906–15
    [Google Scholar]
  40. 40. 
    Jaremko MJ, On KF, Thomas DR, Stillman B, Joshua-Tor L. 2020. The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. eLife 9:e58622
    [Google Scholar]
  41. 41. 
    Dueber ELC, Corn JE, Bell SD, Berger JM. 2007. Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science 317:58421210–13
    [Google Scholar]
  42. 42. 
    Gaudier M, Schuwirth BS, Westcott SL, Wigley DB. 2007. Structural basis of DNA replication origin recognition by an ORC protein. Science 317:58421213–16
    [Google Scholar]
  43. 43. 
    Crevel G. 2001. Nearest neighbour analysis of MCM protein complexes in Drosophila melanogaster. Nucleic Acids Res 29:234834–42
    [Google Scholar]
  44. 44. 
    Davey MJ, Indiani C, O'Donnell M. 2003. Reconstitution of the Mcm2–7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 278:74491–99
    [Google Scholar]
  45. 45. 
    Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E et al. 2011. The structural basis for MCM2–7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 18:4471–77
    [Google Scholar]
  46. 46. 
    Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z et al. 2014. Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Genes Dev 28:202291–303
    [Google Scholar]
  47. 47. 
    Bochman ML, Schwacha A. 2008. The Mcm2–7 complex has in vitro helicase activity. Mol. Cell 31:2287–93
    [Google Scholar]
  48. 48. 
    Lyubimov AY, Costa A, Bleichert F, Botchan MR, Berger JM 2012. ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote. PNAS 109:3011999–2004
    [Google Scholar]
  49. 49. 
    Boskovic J, Bragado-Nilsson E, Saligram Prabhakar B, Yefimenko I, Martínez-Gago J et al. 2016. Molecular architecture of the recombinant human MCM2–7 helicase in complex with nucleotides and DNA. Cell Cycle 15:182431–40
    [Google Scholar]
  50. 50. 
    Froelich CA, Kang S, Epling LB, Bell SP, Enemark EJ. 2014. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife 3:e01993
    [Google Scholar]
  51. 51. 
    Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS 2003. The structure and function of MCM from archaeal M. thermoautotrophicum. Nat. Struct. Biol. 10:3160–67
    [Google Scholar]
  52. 52. 
    Meagher M, Epling LB, Enemark EJ. 2019. DNA translocation mechanism of the MCM complex and implications for replication initiation. Nat. Commun. 10:13117
    [Google Scholar]
  53. 53. 
    Tanaka S, Diffley JFX. 2002. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2–7 during G1 phase. Nat. Cell Biol. 4:3198–207
    [Google Scholar]
  54. 54. 
    Kawasaki Y, Kim H-D, Kojima A, Seki T, Sugino A. 2006. Reconstitution of Saccharomyces cerevisiae prereplicative complex assembly in vitro. Genes Cells 11:7745–56
    [Google Scholar]
  55. 55. 
    Takara TJ, Bell SP. 2011. Multiple Cdt1 molecules act at each origin to load replication-competent Mcm2–7 helicases. EMBO J 30:244885–96
    [Google Scholar]
  56. 56. 
    Zhai Y, Cheng E, Wu H, Li N, Yung PYK et al. 2017. Open-ringed structure of the Cdt1-Mcm2–7 complex as a precursor of the MCM double hexamer. Nat. Struct. Mol. Biol. 24:3300–8
    [Google Scholar]
  57. 57. 
    Frigola J, He J, Kinkelin K, Pye VE, Renault L et al. 2017. Cdt1 stabilizes an open MCM ring for helicase loading. Nat. Commun. 8:15720
    [Google Scholar]
  58. 58. 
    Parker MW, Bell M, Mir M, Kao JA, Darzacq X et al. 2019. A new class of disordered elements controls DNA replication through initiator self-assembly. eLife 8:e48562
    [Google Scholar]
  59. 59. 
    Yanagi KI, Mizuno T, You Z, Hanaoka F. 2002. Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J. Biol. Chem. 277:4340871–80
    [Google Scholar]
  60. 60. 
    Houchens CR, Lu W, Chuang R-Y, Frattini MG, Fuller A et al. 2008. Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. J. Biol. Chem. 283:4430216–24
    [Google Scholar]
  61. 61. 
    Miller TCR, Locke J, Greiwe JF, Diffley JFX, Costa A 2019. Mechanism of head-to-head MCM double-hexamer formation revealed by cryo-EM. Nature 575:7784704–10
    [Google Scholar]
  62. 62. 
    Yuan Z, Schneider S, Dodd T, Riera A, Bai L et al. 2020. Structural mechanism of helicase loading onto replication origin DNA by ORC-Cdc6. PNAS 117:3017747–56
    [Google Scholar]
  63. 63. 
    Yuan Z, Riera A, Bai L, Sun J, Nandi S et al. 2017. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat. Struct. Mol. Biol. 24:3316–24
    [Google Scholar]
  64. 64. 
    Evrin C, Clarke P, Zech J, Lurz R, Sun J et al. 2009. A double-hexameric MCM2–7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. PNAS 106:4820240–45
    [Google Scholar]
  65. 65. 
    Tsakraklides V, Bell SP. 2010. Dynamics of pre-replicative complex assembly. J. Biol. Chem. 285:139437–43
    [Google Scholar]
  66. 66. 
    Coster G, Frigola J, Beuron F, Morris EP, Diffley JFX. 2014. Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol. Cell 55:5666–77
    [Google Scholar]
  67. 67. 
    Kang S, Warner MD, Bell SP. 2014. Multiple functions for Mcm2–7 ATPase motifs during replication initiation. Mol. Cell 55:5655–65
    [Google Scholar]
  68. 68. 
    Coster G, Diffley JFX. 2017. Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 357:6348314–18
    [Google Scholar]
  69. 69. 
    Li N, Zhai Y, Zhang Y, Li W, Yang M et al. 2015. Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524:7564186–91
    [Google Scholar]
  70. 70. 
    Noguchi Y, Yuan Z, Bai L, Schneider S, Zhao G et al. 2017. Cryo-EM structure of Mcm2–7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. PNAS 114:45E9529–38
    [Google Scholar]
  71. 71. 
    Abid Ali F, Douglas ME, Locke J, Pye VE, Nans A et al. 2017. Cryo-EM structure of a licensed DNA replication origin. Nat. Commun. 8:12241
    [Google Scholar]
  72. 72. 
    Moyer SE, Lewis PW, Botchan MR 2006. Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. PNAS 103:2710236–41
    [Google Scholar]
  73. 73. 
    Ilves I, Petojevic T, Pesavento JJ, Botchan MR. 2010. Activation of the MCM2–7 helicase by association with Cdc45 and GINS proteins. Mol. Cell 37:2247–58
    [Google Scholar]
  74. 74. 
    Sheu YJ, Stillman B. 2010. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463:7277113–17
    [Google Scholar]
  75. 75. 
    Labib K. 2010. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes Dev 24:121208–19
    [Google Scholar]
  76. 76. 
    Deegan TD, Yeeles JT, Diffley JF. 2016. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J 35:9961–73
    [Google Scholar]
  77. 77. 
    Zegerman P, Diffley JFX. 2007. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:7125281–85
    [Google Scholar]
  78. 78. 
    Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H. 2010. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ε, and GINS in budding yeast. Genes Dev 24:6602–12
    [Google Scholar]
  79. 79. 
    Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX. 2015. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:7544431–35
    [Google Scholar]
  80. 80. 
    Douglas ME, Abid Ali F, Costa A, Diffley JFX 2018. The mechanism of eukaryotic CMG helicase activation. Nature 555:7695265–68
    [Google Scholar]
  81. 81. 
    Sanchez-Pulido L, Ponting CP. 2011. Cdc45: the missing RecJ ortholog in eukaryotes?. Bioinformatics 27:141885–88
    [Google Scholar]
  82. 82. 
    Simon AC, Sannino V, Costanzo V, Pellegrini L. 2016. Structure of human Cdc45 and implications for CMG helicase function. Nat. Commun. 7:11638
    [Google Scholar]
  83. 83. 
    Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ et al. 2014. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 3:e03273
    [Google Scholar]
  84. 84. 
    Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT et al. 2015. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22:12976–82
    [Google Scholar]
  85. 85. 
    Petojevic T, Pesavento JJ, Costa A, Liang J, Wang Z et al. 2015. Cdc45 (cell division cycle protein 45) guards the gate of the eukaryote replisome helicase stabilizing leading strand engagement. PNAS 112:3E249–58
    [Google Scholar]
  86. 86. 
    Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A et al. 2016. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat. Commun. 7:10708
    [Google Scholar]
  87. 87. 
    McGeoch AT, Trakselis MA, Laskey RA, Bell SD. 2005. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat. Struct. Mol. Biol. 12:9756–62
    [Google Scholar]
  88. 88. 
    Rothenberg E, Trakselis MA, Bell SD, Ha T. 2007. MCM forked substrate specificity involves dynamic interaction with the 5′-tail. J. Biol. Chem. 282:4734229–34
    [Google Scholar]
  89. 89. 
    Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM et al. 2008. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. PNAS 105:5120191–96
    [Google Scholar]
  90. 90. 
    Georgescu R, Yuan Z, Bai L, De Luna Almeida Santos R, Sun J et al. 2017. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. PNAS 114:5E697–706
    [Google Scholar]
  91. 91. 
    Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F et al. 2019. Molecular basis for ATP-hydrolysis-driven DNA translocation by the CMG helicase of the eukaryotic replisome. Cell Rep 28:102673–88.e8
    [Google Scholar]
  92. 92. 
    Enemark EJ, Joshua-Tor L. 2006. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442:7100270–75
    [Google Scholar]
  93. 93. 
    Lee S-J, Syed S, Enemark EJ, Schuck S, Stenlund A et al. 2014. Dynamic look at DNA unwinding by a replicative helicase. PNAS 111:9E827–35
    [Google Scholar]
  94. 94. 
    Fang L, Davey MJ, O'Donnell M. 1999. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell 4:4541–53
    [Google Scholar]
  95. 95. 
    Leipe DD, Aravind L, Koonin EV. 1999. Did DNA replication evolve twice independently?. Nucleic Acids Res. 27:173389–401
    [Google Scholar]
  96. 96. 
    Iyer LM, Leipe DD, Koonin EV, Aravind L. 2004. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146:1–211–31
    [Google Scholar]
  97. 97. 
    Bochman ML, Bell SP, Schwacha A. 2008. Subunit organization of Mcm2–7 and the unequal role of active sites in ATP hydrolysis and viability. Mol. Cell. Biol. 28:195865–73
    [Google Scholar]
  98. 98. 
    Yuan Z, Georgescu R, Bai L, Zhang D, Li H, O'Donnell ME 2020. DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nat. Commun. 11:1688
    [Google Scholar]
  99. 99. 
    Yuan Z, Bai L, Sun J, Georgescu R, Liu J et al. 2016. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat. Struct. Mol. Biol. 23:3217–24
    [Google Scholar]
  100. 100. 
    Itsathitphaisarn O, Wing RA, Eliason WK, Wang J, Steitz TA 2012. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151:2267–77
    [Google Scholar]
  101. 101. 
    Gao Y, Cui Y, Fox T, Lin S, Wang H et al. 2019. Structures and operating principles of the replisome. Science 363:6429eaav7003
    [Google Scholar]
  102. 102. 
    Lyubimov AY, Strycharska M, Berger JM. 2011. The nuts and bolts of ring-translocase structure and mechanism. Curr. Opin. Struct. Biol. 21:2240–48
    [Google Scholar]
  103. 103. 
    Sheaff RJ, Kuchta RD. 1993. Mechanism of calf thymus DNA primase: slow initiation, rapid polymerization, and intelligent termination. Biochemistry 32:123027–37
    [Google Scholar]
  104. 104. 
    Nethanel T, Reisfeld S, Dinter-Gottlieb G, Kaufmann G. 1988. An Okazaki piece of simian virus 40 may be synthesized by ligation of shorter precursor chains. J. Virol. 62:82867–73
    [Google Scholar]
  105. 105. 
    Bullock PA, Seo YS, Hurwitz J. 1991. Initiation of simian virus 40 DNA synthesis in vitro. Mol. Cell. Biol. 11:52350–61
    [Google Scholar]
  106. 106. 
    Pursell ZF, Isoz I, Lundström E-B, Johansson E, Kujkel TA 2007. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:5834127–30
    [Google Scholar]
  107. 107. 
    Nick McElhinny SA, Stith CM, Burgers PMJ, Kunkel TA. 2007. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase δ. J. Biol. Chem. 282:42324–32
    [Google Scholar]
  108. 108. 
    Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PMJ, Kunkel TA. 2008. Division of labor at the eukaryotic replication fork. Mol. Cell 30:2137–44
    [Google Scholar]
  109. 109. 
    Miyabe I, Kunkel TA, Carr AM. 2011. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLOS Genet 7:12e1002407
    [Google Scholar]
  110. 110. 
    Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D et al. 2014. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21:8664–70
    [Google Scholar]
  111. 111. 
    Yu C, Gan H, Han J, Zhou ZX, Jia S et al. 2014. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56:4551–63
    [Google Scholar]
  112. 112. 
    Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O et al. 2015. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 2015:4e04988
    [Google Scholar]
  113. 113. 
    Schauer GD, O'Donnell ME 2017. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. PNAS 114:4675–80
    [Google Scholar]
  114. 114. 
    Ishimi Y, Claude A, Bullock P, Hurwitz J 1988. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem. 263:3619723–33
    [Google Scholar]
  115. 115. 
    Siegal G, Turchi JJ, Myers TW, Bambara RA 1992. A 5′ to 3′ exonuclease functionally interacts with calf DNA polymerase ε. PNAS 89:209377–81
    [Google Scholar]
  116. 116. 
    Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA. 2004. On the roles of Saccharomyces cerevisiae Dna2p and flap endonuclease 1 in Okazaki fragment processing. J. Biol. Chem. 279:1515014–24
    [Google Scholar]
  117. 117. 
    Turchi JJ, Huang L, Murante RS, Kim Y, Bambara RA 1994. Enzymatic completion of mammalian lagging-strand DNA replication. PNAS 91:219803–7
    [Google Scholar]
  118. 118. 
    Doublié S, Zahn KE. 2014. Structural insights into eukaryotic DNA replication. Front. Microbiol. 5:444
    [Google Scholar]
  119. 119. 
    Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV. 2009. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct. 4:11
    [Google Scholar]
  120. 120. 
    Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK. 2009. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat. Struct. Mol. Biol. 16:9979–86
    [Google Scholar]
  121. 121. 
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA. 1992. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:50651783–90
    [Google Scholar]
  122. 122. 
    Steitz TA. 1999. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274:2517395–98
    [Google Scholar]
  123. 123. 
    Hogg M, Osterman P, Bylund GO, Ganai RA, Lundström EB et al. 2014. Structural basis for processive DNA synthesis by yeast DNA polymerase ε. Nat. Struct. Mol. Biol. 21:149–55
    [Google Scholar]
  124. 124. 
    Jain R, Vanamee ES, Dzikovski BG, Buku A, Johnson RE et al. 2014. An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ε. J. Mol. Biol. 426:2301–8
    [Google Scholar]
  125. 125. 
    Johnson SJ, Beese LS. 2004. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116:6803–16
    [Google Scholar]
  126. 126. 
    Morales JC, Kool ET. 1998. Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat. Struct. Biol. 5:11950–54
    [Google Scholar]
  127. 127. 
    Stocki SA, Nonay RL, Reha-Krantz LJ. 1995. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3′ → 5′ exonuclease activities. J. Mol. Biol. 254:115–28
    [Google Scholar]
  128. 128. 
    Reha-Krantz LJ, Marquez LA, Elisseeva E, Baker RP, Bloom LB et al. 1998. The proofreading pathway of bacteriophage T4 DNA polymerase. J. Biol. Chem. 273:3622969–76
    [Google Scholar]
  129. 129. 
    Hogg M, Aller P, Konigsberg W, Wallace SS, Doublie S. 2007. Structural and biochemical investigation of the role in proofreading of a β hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. J. Biol. Chem. 282:21432–44
    [Google Scholar]
  130. 130. 
    Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA. 2006. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr. Biol. 16:2202–7
    [Google Scholar]
  131. 131. 
    Johansson E, MacNeill SA. 2010. The eukaryotic replicative DNA polymerases take shape. Trends Biochem. Sci. 35:6339–47
    [Google Scholar]
  132. 132. 
    Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D et al. 2012. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8:1125–32
    [Google Scholar]
  133. 133. 
    Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV et al. 2008. X-ray structure of the complex of regulatory subunits of human DNA polymerase δ. Cell Cycle 7:193026–36
    [Google Scholar]
  134. 134. 
    Klinge S, Ñez-Ramírez R, Llorca O, Pellegrini L. 2009. 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:131978–87
    [Google Scholar]
  135. 135. 
    Núñez-Ramírez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA et al. 2011. Flexible tethering of primase and DNA Pol α in the eukaryotic primosome. Nucleic Acids Res 39:188187–99
    [Google Scholar]
  136. 136. 
    Baranovskiy AG, Babayeva ND, Zhang Y, Gu J, Suwa Y et al. 2016. Mechanism of concerted RNA-DNA primer synthesis by the human primosome. J. Biol. Chem. 291:1910006–20
    [Google Scholar]
  137. 137. 
    Grosse F, Krauss G. 1985. The primase activity of DNA polymerase α from calf thymus. J. Biol. Chem. 260:31881–88
    [Google Scholar]
  138. 138. 
    Kirk BW, Kuchta RD. 1999. Human DNA primase: anion inhibition, manganese stimulation, and their effects on in vitro start-site selection. Biochemistry 38:3110126–34
    [Google Scholar]
  139. 139. 
    Kilkenny ML, Longo MA, Perera RL, Pellegrini L 2013. Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering. PNAS 110:4015961–66
    [Google Scholar]
  140. 140. 
    Vaithiyalingam S, Arnett DR, Aggarwal A, Eichman BF, Fanning E, Chazin WJ. 2014. Insights into eukaryotic primer synthesis from structures of the p48 subunit of human DNA primase. J. Mol. Biol. 426:3558–69
    [Google Scholar]
  141. 141. 
    Perera RL, Torella R, Klinge S, Kilkenny ML, Maman JD, Pellegrini L. 2013. Mechanism for priming DNA synthesis by yeast DNA polymerase α. eLife 2:e00482
    [Google Scholar]
  142. 142. 
    Coloma J, Johnson RE, Prakash L, Prakash S, Aggarwal AK. 2016. Human DNA polymerase α in binary complex with a DNA:DNA template-primer. Sci. Rep. 6:23784
    [Google Scholar]
  143. 143. 
    Zhang S, Zhou Y, Trusa S, Meng X, Lee EYC, Lee MYWT. 2007. A novel DNA damage response: rapid degradation of the p12 subunit of DNA polymerase δ. J. Biol. Chem. 282:2115330–40
    [Google Scholar]
  144. 144. 
    Jain R, Rice WJ, Malik R, Johnson RE, Prakash L et al. 2019. Cryo-EM structure and dynamics of eukaryotic DNA polymerase δ holoenzyme. Nat. Struct. Mol. Biol. 26:10955–62
    [Google Scholar]
  145. 145. 
    Lancey C, Tehseen M, Raducanu V-S, Rashid F, Merino N et al. 2020. Structure of the processive human Pol δ holoenzyme. Nat. Commun. 11:11109
    [Google Scholar]
  146. 146. 
    Aravind L, Koonin EV. 1998. Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:163746–52
    [Google Scholar]
  147. 147. 
    Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P et al. 2007. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35:196588–97
    [Google Scholar]
  148. 148. 
    Mondol T, Stodola JL, Galletto R, Burgers PM. 2019. PCNA accelerates the nucleotide incorporation rate by DNA polymerase. Nucleic Acids Res 47:41977–86
    [Google Scholar]
  149. 149. 
    Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH. 2012. DNA polymerase δ and ζ switch by sharing accessory subunits of DNA polymerase δ. J. Biol. Chem. 287:2117281–87
    [Google Scholar]
  150. 150. 
    Jozwiakowski SK, Kummer S, Gari K. 2019. Human DNA polymerase delta requires an iron-sulfur cluster for high-fidelity DNA synthesis. Life Sci. Alliance 2:4e201900321
    [Google Scholar]
  151. 151. 
    Johnson RE, Prakash L, Prakash S 2012. Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. PNAS 109:3112455–60
    [Google Scholar]
  152. 152. 
    Marquez LA, Reha-Krantz LJ. 1996. Using 2-aminopurine fluorescence and mutational analysis to demonstrate an active role of bacteriophage T4 DNA polymerase in strand separation required for 3′ → 5′-exonuclease activity. J. Biol. Chem. 271:4628903–11
    [Google Scholar]
  153. 153. 
    Shamoo Y, Steitz TA. 1999. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99:2155–66
    [Google Scholar]
  154. 154. 
    Meng X, Zhou Y, Zhang S, Lee EYC, Frick DN, Lee MYWT. 2009. DNA damage alters DNA polymerase δ to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Res 37:2647–57
    [Google Scholar]
  155. 155. 
    Meng X, Zhou Y, Lee EYC, Lee MYWT, Frick DN. 2010. The p12 subunit of human polymerase δ modulates the rate and fidelity of DNA synthesis. Biochemistry 49:173545–54
    [Google Scholar]
  156. 156. 
    He H, Li Y, Dong Q, Chang A-Y, Gao F et al. 2017. Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex. PNAS 114:4712524–29
    [Google Scholar]
  157. 157. 
    Iida T, Araki H. 2004. Noncompetitive counteractions of DNA polymerase ε and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:1217–27
    [Google Scholar]
  158. 158. 
    Tackett AJ, Dilworth DJ, Davey MJ, O'Donnell M, Aitchison JD et al. 2005. Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 169:135–47
    [Google Scholar]
  159. 159. 
    Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F et al. 2017. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. PNAS 114:164141–46
    [Google Scholar]
  160. 160. 
    Dua R, Levy DL, Campbell JL. 1999. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274:3222283–88
    [Google Scholar]
  161. 161. 
    Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C. 1999. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3:5679–85
    [Google Scholar]
  162. 162. 
    Isoz I, Persson U, Volkov K, Johansson E. 2012. The C-terminus of Dpb2 is required for interaction with Pol2 and for cell viability. Nucleic Acids Res 40:2211545–53
    [Google Scholar]
  163. 163. 
    Goswami P, Abid Ali F, Douglas ME, Locke J, Purkiss A et al. 2018. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat. Commun. 9:15061
    [Google Scholar]
  164. 164. 
    Yuan Z, Georgescu R, Schauer GD, O'Donnell ME, Li H. 2020. Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Nat. Commun. 11:13156
    [Google Scholar]
  165. 165. 
    Bermudez VP, Farina A, Raghavan V, Tappin I, Hurwitz J. 2011. Studies on human DNA polymerase ε and GINS complex and their role in DNA replication. J. Biol. Chem. 286:3328963–77
    [Google Scholar]
  166. 166. 
    Dua R, Levy DL, Li CM, Snow PM, Campbell JL. 2002. In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase ε in insect cells: purification and characterization. J. Biol. Chem. 277:107889–96
    [Google Scholar]
  167. 167. 
    Mailand N, Gibbs-Seymour I, Bekker-Jensen S. 2013. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell Biol. 14:5269–82
    [Google Scholar]
  168. 168. 
    De Biasio A, Blanco FJ. 2013. Proliferating cell nuclear antigen structure and interactions: too many partners for one dancer?. Adv. Protein Chem. Struct. Biol. 91:1–36
    [Google Scholar]
  169. 169. 
    Gambus A, Van Deursen F, Polychronopoulos D, Foltman M, Jones RC et al. 2009. A key role for Ctf4 in coupling the MCM2–7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO J 28:192992–3004
    [Google Scholar]
  170. 170. 
    Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T et al. 2009. Ctf4 coordinates the progression of helicase and DNA polymerase α. Genes Cells 14:7807–20
    [Google Scholar]
  171. 171. 
    Yuan Z, Georgescu R, de Luna Almeida Santos R, Zhang D, Bai L et al. 2019. Ctf4 organizes sister replisomes and Pol α into a replication factory. eLife 8:e47405
    [Google Scholar]
  172. 172. 
    Tanaka H, Kubota Y, Tsujimura T, Kumano M, Masai H, Takisawa H. 2009. Replisome progression complex links DNA replication to sister chromatid cohesion in Xenopus egg extracts. Genes Cells 14:8949–63
    [Google Scholar]
  173. 173. 
    Maga G, Hübscher U. 1995. DNA polymerase epsilon interacts with proliferating cell nuclear antigen in primer recognition and elongation. Biochemistry 34:3891–901
    [Google Scholar]
  174. 174. 
    Langston LD, O'Donnell M 2008. DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J. Biol. Chem. 283:4329522–31
    [Google Scholar]
  175. 175. 
    Krishna TSR, Kong XP, Gary S, Burgers PM, Kuriyan J. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:71233–43
    [Google Scholar]
  176. 176. 
    Bruning JB, Shamoo Y. 2004. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-δ p66 subunit and flap endonuclease-1. Structure 12:122209–19
    [Google Scholar]
  177. 177. 
    Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J 1996. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87:2297–306
    [Google Scholar]
  178. 178. 
    Moldovan GL, Pfander B, Jentsch S. 2007. PCNA, the maestro of the replication fork. Cell 129:4665–79
    [Google Scholar]
  179. 179. 
    Fridman Y, Palgi N, Dovrat D, Ben-Aroya S, Hieter P, Aharoni A. 2010. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLOS Biol 8:10e1000507
    [Google Scholar]
  180. 180. 
    Zheleva DI, Zhelev NZ, Fischer PM, Duff SV, Warbrick E et al. 2000. A quantitative study of the in vitro binding of the C-terminal domain of p21 to PCNA: affinity, stoichiometry, and thermodynamics. Biochemistry 39:257388–97
    [Google Scholar]
  181. 181. 
    Stodola JL, Burgers PM. 2016. Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat. Struct. Mol. Biol. 23:5402–8
    [Google Scholar]
  182. 182. 
    Tsurimoto T, Stillman B. 1989. Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol. Cell. Biol. 9:2609–19
    [Google Scholar]
  183. 183. 
    Tsurimoto T, Stillman B 1990. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. PNAS 87:31023–27
    [Google Scholar]
  184. 184. 
    Lee SH, Kwong AD, Pan ZQ, Hurwitz J. 1991. Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase δ. J. Biol. Chem. 266:1594–602
    [Google Scholar]
  185. 185. 
    Bowman GD, O'Donnell M, Kuriyan J 2004. Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex. Nature 429:6993724–30
    [Google Scholar]
  186. 186. 
    Maki S, Kornberg A. 1988. DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem. 57:1519–50
    [Google Scholar]
  187. 187. 
    Latham GJ, Bachelier DJ, Pietroni P, Von Hippel PH 1997. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme: III. The gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. J. Biol. Chem. 272:5031685–92
    [Google Scholar]
  188. 188. 
    Hingorani MM, O'Donnell M 1998. ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 273:3824550–63
    [Google Scholar]
  189. 189. 
    Turner J, Hingorani MM, Kelman Z, O'Donnell M. 1999. The internal workings of a DNA polymerase clamp-loading machine. EMBO J 18:3771–83
    [Google Scholar]
  190. 190. 
    Jarvis TC, Paul LS, Hockensmith JW, Von Hippel PH 1989. Structural and enzymatic studies of the T4 DNA replication system. II. ATPase properties of the polymerase accessory protein complex. J. Biol. Chem. 264:2112717–29
    [Google Scholar]
  191. 191. 
    Berdis AJ, Benkovic SJ. 1996. Role of adenosine 5′-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex. Biochemistry 35:289253–65
    [Google Scholar]
  192. 192. 
    Gomes XV, Gary Schmidt SL, Burgers PMJ 2001. ATP utilization by yeast replication factor C: II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J. Biol. Chem. 276:3734776–83
    [Google Scholar]
  193. 193. 
    Ason B, Handayani R, Williams CR, Bertram JG, Hingorani MM et al. 2003. Mechanism of loading the Escherichia coli DNA polymerase III β sliding clamp on DNA. Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J. Biol. Chem. 278:1210033–40
    [Google Scholar]
  194. 194. 
    Kelch BA. 2016. Review: The lord of the rings: structure and mechanism of the sliding clamp loader. Biopolymers 105:8532–46
    [Google Scholar]
  195. 195. 
    Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J 2004. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. PNAS 101:4816750–55
    [Google Scholar]
  196. 196. 
    Kelch BA. 2011. How a DNA polymerase clamp loader opens a sliding clamp. Science 334:60631675–81
    [Google Scholar]
  197. 197. 
    Gaubitz C, Liu X, Magrino J, Stone NP, Landeck J et al. 2020. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. PNAS 117:3823571–80
    [Google Scholar]
  198. 198. 
    Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K 2005. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. PNAS 102:3913795–800
    [Google Scholar]
  199. 199. 
    Chen S, Levin MK, Sakato M, Zhou Y, Hingorani MM. 2009. Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. J. Mol. Biol. 388:3431–42
    [Google Scholar]
  200. 200. 
    Sakato M, O'Donnell M, Hingorani MM 2012. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. J. Mol. Biol. 416:2163–75
    [Google Scholar]
  201. 201. 
    Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA et al. 2009. The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:4659–71
    [Google Scholar]
  202. 202. 
    Zhang X, Wigley DB. 2008. The “glutamate switch” provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat. Struct. Mol. Biol. 15:111223–27
    [Google Scholar]
  203. 203. 
    Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J et al. 2014. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. PNAS 111:4315390–95
    [Google Scholar]
  204. 204. 
    Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D et al. 2016. Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol. Cell 63:3385–96
    [Google Scholar]
  205. 205. 
    Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR et al. 2016. Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol. Cell 63:3371–84
    [Google Scholar]
  206. 206. 
    Köhler A, Schmidt-Zachmann MS, Franke WW. 1997. AND-1, a natural chimeric DNA-binding protein, combines an HMG-box with regulatory WD-repeats. J. Cell Sci. 110:91051–62
    [Google Scholar]
  207. 207. 
    Simon AC, Zhou JC, Perera RL, Van Deursen F, Evrin C et al. 2014. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510:7504293–97
    [Google Scholar]
  208. 208. 
    Guan C, Li J, Sun D, Liu Y, Liang H. 2017. The structure and polymerase-recognition mechanism of the crucial adaptor protein AND-1 in the human replisome. J. Biol. Chem. 292:239627–36
    [Google Scholar]
  209. 209. 
    Kilkenny ML, Simon AC, Mainwaring J, Wirthensohn D, Holzer S, Pellegrini L. 2017. The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box. Open Biol. 7:11170217
    [Google Scholar]
  210. 210. 
    Rzechorzek NJ, Hardwick SW, Jatikusumo VA, Chirgadze DY, Pellegrini L. 2020. CryoEM structures of human CMG-ATPγS-DNA and CMG-AND-1 complexes. Nucleic Acids Res 48:126980–95
    [Google Scholar]
  211. 211. 
    Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC et al. 2010. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol. Cell 40:5834–40
    [Google Scholar]
  212. 212. 
    Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. 2015. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol. Cell 58:3483–94
    [Google Scholar]
  213. 213. 
    Conti C, Saccà B, Herrick J, Lalou C, Pommier Y, Bensimon A. 2007. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18:83059–67
    [Google Scholar]
  214. 214. 
    Ligasová A, Raška I, Koberna K. 2009. Organization of human replicon: singles or zipping couples?. J. Struct. Biol. 165:3204–13
    [Google Scholar]
  215. 215. 
    Saner N, Karschau J, Natsume T, Gierliński M, Retkute R et al. 2013. Stochastic association of neighboring replicons creates replication factories in budding yeast. J. Cell Biol. 202:71001–12
    [Google Scholar]
  216. 216. 
    Chagin VO, Casas-Delucchi CS, Reinhart M, Schermelleh L, Markaki Y et al. 2016. 4D visualization of replication foci in mammalian cells corresponding to individual replicons. Nat. Commun. 7:11231
    [Google Scholar]
  217. 217. 
    Paul VD, Lill R. 2015. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochim. Biophys. Acta Mol. Cell Res. 1853:61528–39
    [Google Scholar]
  218. 218. 
    Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. 2017. The elemental role of iron in DNA synthesis and repair. Metallomics 9:111483–500
    [Google Scholar]
  219. 219. 
    Barton JK, Silva RMB, O'Brien E. 2019. Redox chemistry in the genome: emergence of the [4Fe4S] cofactor in repair and replication. Annu. Rev. Biochem. 88:163–90
    [Google Scholar]
  220. 220. 
    Bartels PL, Stodola JL, Burgers PMJ, Barton JK. 2017. A redox role for the [4Fe4S] cluster of yeast DNA polymerase δ. J. Am. Chem. Soc. 139:5018339–48
    [Google Scholar]
  221. 221. 
    Weiner BE, Huang H, Dattilo BM, Nilges MJ, Fanning E, Chazin WJ. 2007. An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase. J. Biol. Chem. 282:4633444–51
    [Google Scholar]
  222. 222. 
    O'Brien E, Holt ME, Thompson MK, Salay LE, Ehlinger AC et al. 2017. The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. Science 355:6327eaag1789
    [Google Scholar]
  223. 223. 
    Baranovskiy AG, Babayeva ND, Zhang Y, Blanco L, Pavlov YI, Tahirov TH. 2017. Comment on “The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. .” Science 357:6348eaan2396
    [Google Scholar]
  224. 224. 
    Pellegrini L. 2017. Comment on “The [4Fe4S] cluster of human DNA primase functions as a redox switch using DNA charge transport. .” Science 357:6348eaan2954
    [Google Scholar]
  225. 225. 
    Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. 2020. Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol. Cell 78:5926–40.e13
    [Google Scholar]
  226. 226. 
    Lou H, Komata M, Katou Y, Guan Z, Reis CC et al. 2008. Mrc1 and DNA polymerase ε function together in linking DNA replication and the S phase checkpoint. Mol. Cell 32:1106–17
    [Google Scholar]
  227. 227. 
    Bando M, Katou Y, Komata M, Tanaka H, Itoh T et al. 2009. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J. Biol. Chem. 284:4934355–65
    [Google Scholar]
  228. 228. 
    Komata M, Bando M, Araki H, Shirahige K. 2009. The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol. Cell. Biol. 29:185008–19
    [Google Scholar]
  229. 229. 
    Lewis JS, Spenkelink LM, Schauer GD, Hill FR, Georgescu RE et al. 2017. Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome. PNAS 114:4010630–35
    [Google Scholar]
  230. 230. 
    Yeeles JTP, Janska A, Early A, Diffley JFX. 2017. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65:1105–16
    [Google Scholar]
  231. 231. 
    Maric M, Maculins T, De Piccoli G, Labib K. 2014. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346:62081253596
    [Google Scholar]
  232. 232. 
    Dewar JM, Low E, Mann M, Räschle M, Walter JC. 2017. CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31:3275–90
    [Google Scholar]
  233. 233. 
    Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ et al. 2017. CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat. Cell Biol. 19:5468–79
    [Google Scholar]
  234. 234. 
    Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G. 2000. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:102181–92
    [Google Scholar]
  235. 235. 
    Deegan TD, Mukherjee PP, Fujisawa R, Rivera CP, Labib K. 2020. CMG helicase disassembly is controlled by replication fork DNA, replisome components and a ubiquitin threshold. eLife 9:e60371
    [Google Scholar]
  236. 236. 
    Low E, Chistol G, Zaher MS, Kochenova OV, Walter JC. 2020. The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes Dev 34:21–221534–45
    [Google Scholar]
  237. 237. 
    Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL et al. 2016. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:6275871–75
    [Google Scholar]
  238. 238. 
    Bodnar NO, Kim KH, Ji Z, Wales TE, Svetlov V et al. 2018. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat. Struct. Mol. Biol. 25:7616–22
    [Google Scholar]
  239. 239. 
    Twomey EC, Ji Z, Wales TE, Bodnar NO, Ficarro SB et al. 2019. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science 365:6452eaax1033
    [Google Scholar]
  240. 240. 
    Mukherjee PP, Labib KPM. 2019. In vitro reconstitution defines the minimal requirements for Cdc48-dependent disassembly of the CMG helicase in budding yeast. Cell Rep 28:112777–83.e4
    [Google Scholar]
  241. 241. 
    Petryk N, Dalby M, Wenger A, Stromme CB, Strandsby A et al. 2018. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361:64091389–92
    [Google Scholar]
  242. 242. 
    Yu C, Gan H, Serra-Cardona A, Zhang L, Gan S et al. 2018. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361:64091386–89
    [Google Scholar]
  243. 243. 
    Gan H, Serra-Cardona A, Hua X, Zhou H, Labib K et al. 2018. The Mcm2-Ctf4-Polα axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72:1140–51.e3
    [Google Scholar]
  244. 244. 
    Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD et al. 2013. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3:3892–904
    [Google Scholar]
  245. 245. 
    Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A et al. 2015. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22:8618–26
    [Google Scholar]
  246. 246. 
    Evrin C, Maman JD, Diamante A, Pellegrini L, Labib K. 2018. Histone H2A-H2B binding by Pol α in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 37:19e99021
    [Google Scholar]
  247. 247. 
    Richet N, Liu D, Legrand P, Velours C, Corpet A et al. 2015. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res 43:31905–17
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-090120-125407
Loading
/content/journals/10.1146/annurev-biochem-090120-125407
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error