1932

Abstract

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-090220-112253
2021-06-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-090220-112253.html?itemId=/content/journals/10.1146/annurev-biochem-090220-112253&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Maston GA, Evans SK, Green MR. 2006. Transcriptional regulatory elements in the human genome. Annu. Rev. Genom. Hum. Genet. 7:29–59
    [Google Scholar]
  2. 2. 
    Banerji J, Rusconi S, Schaffner W. 1981. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308Enhancer identification.
    [Google Scholar]
  3. 3. 
    Moreau P, Hen R, Wasylyk B, Everett R, Gaub MP, Chambon P. 1981. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res 9:6047–68
    [Google Scholar]
  4. 4. 
    Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:934–47
    [Google Scholar]
  5. 5. 
    Ghirlando R, Felsenfeld G. 2016. CTCF: making the right connections. Genes Dev 30:881–91
    [Google Scholar]
  6. 6. 
    Kornberg RD. 2005. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30:235–39
    [Google Scholar]
  7. 7. 
    Li W, Notani D, Rosenfeld MG. 2016. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet. 17:207–23
    [Google Scholar]
  8. 8. 
    Vo Ngoc L, Wang YL, Kassavetis GA, Kadonaga JT. 2017. The punctilious RNA polymerase II core promoter. Genes Dev 31:1289–301
    [Google Scholar]
  9. 9. 
    Wasylyk B, Derbyshire R, Guy A, Molko D, Roget A et al. 1980. Specific in vitro transcription of conalbumin gene is drastically decreased by single-point mutation in T-A-T-A box homology sequence. PNAS 77:7024–8
    [Google Scholar]
  10. 10. 
    Goldberg ML. 1979. Sequence analysis of Drosophila histone genes Stanford UniversityTATA box identification.
  11. 11. 
    Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K et al. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38:626–35
    [Google Scholar]
  12. 12. 
    Buratowski S, Hahn S, Sharp PA, Guarente L. 1988. Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334:37–4212–13. Identification of TBP.
    [Google Scholar]
  13. 13. 
    Cavallini B, Huet J, Plassat JL, Sentenac A, Egly JM, Chambon P. 1988. A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334:77–8012–13. Identification of TBP.
    [Google Scholar]
  14. 14. 
    Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright R. 1998. New core promoter element in RNA polymerase-II dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44
    [Google Scholar]
  15. 15. 
    Deng W, Roberts SG. 2005. A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev 19:2418–23
    [Google Scholar]
  16. 16. 
    Deng W, Roberts SG. 2006. Core promoter elements recognized by transcription factor IIB. Biochem. Soc. Trans. 34:1051–3
    [Google Scholar]
  17. 17. 
    Smale ST, Baltimore D. 1989. The “initiator” as a transcription control element. Cell 57:103–13
    [Google Scholar]
  18. 18. 
    Seto E, Shi Y, Shenk T. 1991. YY1 is an initiator-binding protein that directs and activates transcription in vitro. Nature 354:241–45
    [Google Scholar]
  19. 19. 
    Parry TJ, Theisen JW, Hsu JY, Wang YL, Corcoran DL et al. 2010. The TCT motif, a key component of an RNA polymerase II transcription system for the translational machinery. Genes Dev 24:2013–8
    [Google Scholar]
  20. 20. 
    Lim CY, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga JT. 2004. The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev 18:1606–17
    [Google Scholar]
  21. 21. 
    Rach EA, Yuan HY, Majoros WH, Tomancak P, Ohler U. 2009. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biol 10:R73
    [Google Scholar]
  22. 22. 
    Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. 1985. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40:91–9
    [Google Scholar]
  23. 23. 
    Landolin JM, Johnson DS, Trinklein ND, Aldred SF, Medina C et al. 2010. Sequence features that drive human promoter function and tissue specificity. Genome Res 20:890–8
    [Google Scholar]
  24. 24. 
    Fenouil R, Cauchy P, Koch F, Descostes N, Cabeza JZ et al. 2012. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res 22:2399–408
    [Google Scholar]
  25. 25. 
    Jin C, Zang C, Wei G, Cui K, Peng W et al. 2009. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat. Genet. 41:941–5
    [Google Scholar]
  26. 26. 
    Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL et al. 2005. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123:233–48
    [Google Scholar]
  27. 27. 
    Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL. 2013. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340:195–9
    [Google Scholar]
  28. 28. 
    Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V et al. 2009. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136:3131–41
    [Google Scholar]
  29. 29. 
    Ng HH, Robert F, Young RA, Struhl K. 2003. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11:709–19
    [Google Scholar]
  30. 30. 
    Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. 2012. Dynamics and memory of heterochromatin in living cells. Cell 149:1447–60
    [Google Scholar]
  31. 31. 
    Roeder RG, Rutter WJ. 1969. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–7
    [Google Scholar]
  32. 32. 
    Kedinger C, Chambon P. 1972. Animal DNA-dependent RNA polymerases. 3. Purification of calf-thymus BI and BII enzymes. Eur. J. Biochem. 28:28390Identification of RNAPII.
    [Google Scholar]
  33. 33. 
    Weil P, Luse D, Segall J, Roeder R. 1979. Selective and acurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18:469–84Identification of a soluble cellular extract active for transcription.
    [Google Scholar]
  34. 34. 
    Matsui T, Segall J, Weil P, Roeder R. 1980. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255:11992–96
    [Google Scholar]
  35. 35. 
    Samuels M, Fire A, Sharp PA. 1982. Separation and characterization of factors mediating accurate transcription by RNA polymerase II. J. Biol. Chem. 257:14419–27
    [Google Scholar]
  36. 36. 
    Dynan WS, Tjian R. 1983. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35:79–87Identification of Sp1.
    [Google Scholar]
  37. 37. 
    McKenna NJ, O'Malley BW. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–74
    [Google Scholar]
  38. 38. 
    Watson PJ, Fairall L, Schwabe JW. 2012. Nuclear hormone receptor co-repressors: structure and function. Mol. Cell. Endocrinol. 348:440–9
    [Google Scholar]
  39. 39. 
    Kelleher R, Flanagan P, Kornberg R. 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61:1209–15Identification of the Mediator.
    [Google Scholar]
  40. 40. 
    Evans RM. 2005. The nuclear receptor superfamily: a Rosetta stone for physiology. Mol. Endocrinol. 19:1429–38
    [Google Scholar]
  41. 41. 
    Gronemeyer H, Gustafsson JA, Laudet V. 2004. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3:950–64
    [Google Scholar]
  42. 42. 
    Perissi V, Rosenfeld MG. 2005. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat. Rev. Mol. Cell. Biol. 6:542–54
    [Google Scholar]
  43. 43. 
    Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW et al. 2006. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312:1798–802
    [Google Scholar]
  44. 44. 
    Joshi RS, Pina B, Roca J. 2012. Topoisomerase II is required for the production of long Pol II gene transcripts in yeast. Nucleic Acids Res 40:7907–15
    [Google Scholar]
  45. 45. 
    Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A et al. 2015. Transcriptional elongation requires DNA break-induced signalling. Nat. Commun. 6:10191
    [Google Scholar]
  46. 46. 
    Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B et al. 2004. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14:685–91
    [Google Scholar]
  47. 47. 
    Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD. 1999. Conserved structures of Mediator and RNA polymerase II holoenzyme. Science 283:985–87
    [Google Scholar]
  48. 48. 
    Conaway RC, Conaway JW. 2011. Function and regulation of the Mediator complex. Curr. Opin. Genet. Dev. 21:225–30
    [Google Scholar]
  49. 49. 
    Allen BL, Taatjes DJ. 2015. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell. Biol. 16:155–66
    [Google Scholar]
  50. 50. 
    Davis JA, Takagi Y, Kornberg RD, Asturias FA. 2002. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10:409–15
    [Google Scholar]
  51. 51. 
    Soutourina J, Wydau S, Ambroise Y, Boschiero C, Werner M. 2011. Direct interaction of RNA polymerase II and Mediator required for transcription in vivo. Science 331:1451–4
    [Google Scholar]
  52. 52. 
    Plaschka C, Lariviere L, Wenzeck L, Seizl M, Hemann M et al. 2015. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518:376–80
    [Google Scholar]
  53. 53. 
    Tsai KL, Yu X, Gopalan S, Chao TC, Zhang Y et al. 2017. Mediator structure and rearrangements required for holoenzyme formation. Nature 544:196–201
    [Google Scholar]
  54. 54. 
    Johnson KM, Wang J, Smallwood A, Arayata C, Carey M. 2002. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 16:1852–63
    [Google Scholar]
  55. 55. 
    Fant CB, Taatjes DJ. 2019. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 10:76–90
    [Google Scholar]
  56. 56. 
    Coulombe B, Li J, Greenblatt J. 1994. Topological localization of the human transcripition factors IIA, IIB, TATA box-binding protein, and RNA polymerase II-associated protein 30 on a class II promoter. J. Biol. Chem. 269:19962–67
    [Google Scholar]
  57. 57. 
    Orphanides G, Lagrange T, Reinberg D. 1996. The general transcription factors of RNA polymerase II. Genes Dev 10:2657–83
    [Google Scholar]
  58. 58. 
    Davison BL, Egly J-M, Mulvihill HR, Chambon P. 1983. Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature 301:680–86
    [Google Scholar]
  59. 59. 
    Parker C, Topol J. 1984. A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell 36:357–69
    [Google Scholar]
  60. 60. 
    Nikolov DB, Chen H, Halay ED, Hoffmann A, Roeder RG, Burley SK 1996. Crystal structure of a human TATA box-binding protein/TATA element complex. PNAS 93:4862–67
    [Google Scholar]
  61. 61. 
    Rhee HS, Pugh BF. 2012. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301
    [Google Scholar]
  62. 62. 
    Patel AB, Louder RK, Greber BJ, Grunberg S, Luo J et al. 2018. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362:eaau8872
    [Google Scholar]
  63. 63. 
    Zhou Q, Lieberman PM, Boyer TG, Berk AJ. 1992. Holo TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev 6:1964–74
    [Google Scholar]
  64. 64. 
    Pugh BF, Tjian R. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev 5:1935–45
    [Google Scholar]
  65. 65. 
    Helmlinger D, Tora L 2017. Sharing the SAGA. Trends Biochem. Sci. 42:850–61
    [Google Scholar]
  66. 66. 
    Lariviere L, Geiger S, Hoeppner S, Rother S, Strasser K, Cramer P. 2006. Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat. Struct. Mol. Biol. 13:895–901
    [Google Scholar]
  67. 67. 
    Papai G, Frechard A, Kolesnikova O, Crucifix C, Schultz P, Ben-Shem A. 2020. Structure of SAGA and mechanism of TBP deposition on gene promoters. Nature 577:711–16
    [Google Scholar]
  68. 68. 
    Reinberg D, Horikoshi M, Roeder RG. 1987. Factors involved in specific transcription in mammalian RNA polymerase II. Functional analysis of initiation factors IIA and IID and identification of a new factor operating at sequences downstream of the initiation site. J. Biol. Chem. 262:3322–30
    [Google Scholar]
  69. 69. 
    Ranish JA, Lane WS, Hahn S. 1992. Isolation of two genes that encode subunits of the yeast transcription factor IIA. Science 255:1127–29
    [Google Scholar]
  70. 70. 
    Van Dyke MW, Roeder RG, Sawadogo M. 1988. Physical analysis of transcription preinitiation complex assembly on class II gene promoter. Science 241:1335–38
    [Google Scholar]
  71. 71. 
    Gadbois EL, Chao DM, Reese JC, Green MR, Young RA 1997. Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. PNAS 94:3145–50
    [Google Scholar]
  72. 72. 
    Ozer J, Mitsouras K, Zerby D, Carey M, Lieberman PM 1998. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273:14293–300
    [Google Scholar]
  73. 73. 
    Langelier MF, Forget D, Rojas A, Porlier Y, Burton ZF, Coulombe B. 2001. Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J. Biol. Chem. 276:38652–7
    [Google Scholar]
  74. 74. 
    Conaway JW, Bond MW, Conaway RC. 1987. An RNA polymerase-II transcription system from rat-liver - purification of an essential component. J. Biol. Chem. 262:8293–97
    [Google Scholar]
  75. 75. 
    Ha I, Lane WS, Reinberg D. 1991. Cloning of a human gene encoding the general transcription initation factor IIB. Nature 352:689–95Identification of TFIIB.
    [Google Scholar]
  76. 76. 
    Malik S, Hisatake K, Sumimoto H, Horikoshi M, Roeder RG 1991. Sequence of general transcription factor TFIIB and relationships to other initiation factors. PNAS 88:9553–7
    [Google Scholar]
  77. 77. 
    Zhao X, Herr W. 2002. A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell 108:615–27
    [Google Scholar]
  78. 78. 
    Bushnell DA, Westover KD, Davis RE, Kornberg RD. 2004. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303:983–8
    [Google Scholar]
  79. 79. 
    Kostrewa D, Zeller ME, Armache KJ, Seizl M, Leike K et al. 2009. RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462:323–30
    [Google Scholar]
  80. 80. 
    Burton ZF, Killeen M, Sopta M, Ortolan LG, Greenblatt J. 1988. RAP30/74: a general initiation factor that binds to RNA polymerase II. Mol. Cell. Biol. 8:1602–13Identification of TFIIF.
    [Google Scholar]
  81. 81. 
    Price DH, Sluder AE, Greenleaf AL. 1989. Dynamic interaction between a Drosophila transcription factor and RNA polymerase II. Mol. Cell. Biol. 9:1465–75
    [Google Scholar]
  82. 82. 
    Conaway JW, Conaway RC. 1989. A multisubunit transcription factor essential for accurate initiation by RNA polymerase II. J. Biol. Chem. 264:2357–62
    [Google Scholar]
  83. 83. 
    Tan S, Aso T, Conaway RC, Conaway JW. 1994. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 269:25684–91
    [Google Scholar]
  84. 84. 
    Tyree CM, Georges CP, Lira-De Vito M, Wampler SL, Dahmus ME et al. 1993. Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev 7:1254–65
    [Google Scholar]
  85. 85. 
    Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. 2011. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLOS Biol 9:e1000603
    [Google Scholar]
  86. 86. 
    Robert F, Douziech M, Forget D, Egly JM, Greenblatt J et al. 1998. Wrapping of promoter DNA around the RNA polymerase II initiation complex induced by TFIIF. Mol. Cell 2:341–51
    [Google Scholar]
  87. 87. 
    Ohkuma Y, Sumimoto M, Horikoshi M, Roeder RG 1990. Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. PNAS 87:9163–67
    [Google Scholar]
  88. 88. 
    Conaway JW, Hanley JP, Garrett KP, Conaway RC. 1991. Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors ε and τ. J. Biol. Chem. 266:7804–11
    [Google Scholar]
  89. 89. 
    Inostroza JA, Flores O, Reinberg D. 1991. Factors involved in specific transcription by mammalian RNA polymerase II: purification and functional analysis of transcription factor IIE. J. Biol. Chem. 266:9304–8
    [Google Scholar]
  90. 90. 
    Maxon ME, Goodrich JA, Tjian R. 1994. Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 8:515–24
    [Google Scholar]
  91. 91. 
    Conaway RC, Conaway JW 1989. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. PNAS 86:7356–60Identification and purification of TFIIH from rat liver.
    [Google Scholar]
  92. 92. 
    Gerard M, Fischer L, Moncollin V, Chipoulet JM, Chambon P, Egly JM. 1991. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J. Biol. Chem. 266:20940–45Identification and purification of TFIIH from human cells.
    [Google Scholar]
  93. 93. 
    Feaver WJ, Gileadi O, Kornberg R. 1991. Purification and characterization of yeast RNA polymerase II transcription factor b. J. Biol. Chem. 266:19000–5Identification and purification of TFIIH from yeast.
    [Google Scholar]
  94. 94. 
    Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM. 2000. Molecular structure of human TFIIH. Cell 102:599–607
    [Google Scholar]
  95. 95. 
    Chang WH, Kornberg RD. 2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102:609–13
    [Google Scholar]
  96. 96. 
    Compe E, Genes CM, Braun C, Coin F, Egly JM. 2019. TFIIE orchestrates the recruitment of the TFIIH kinase module at promoter before release during transcription. Nat. Commun. 10:2084
    [Google Scholar]
  97. 97. 
    He Y, Yan C, Fang J, Inouye C, Tjian R et al. 2016. Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–65
    [Google Scholar]
  98. 98. 
    Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N et al. 2008. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31:337–46
    [Google Scholar]
  99. 99. 
    Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W et al. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63Identification of TFIIH as a transcription and DNA repair factor.
    [Google Scholar]
  100. 100. 
    Roy R, Adamczewski JP, Seroz T, Vermeulen W, Tassan JP et al. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–101
    [Google Scholar]
  101. 101. 
    Tirode F, Busso D, Coin F, Egly JM. 1999. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 3:87–95
    [Google Scholar]
  102. 102. 
    Schwartz BE, Larochelle S, Suter B, Lis JT. 2003. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol. Cell. Biol. 23:6876–86
    [Google Scholar]
  103. 103. 
    Coin F, Proietti De Santis L, Nardo T, Zlobinskaya O, Stefanini M, Egly JM 2006. p8/TTD-A as a repair-specific TFIIH subunit. Mol. Cell 21:215–26
    [Google Scholar]
  104. 104. 
    Serizawa H, Conaway JW, Conaway RC. 1993. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363:371–74
    [Google Scholar]
  105. 105. 
    Makela TP, Parvin JD, Kim J, Huber LJ, Sharp PA, Weinberg RA 1995. A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription. PNAS 92:5174–78
    [Google Scholar]
  106. 106. 
    Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P. 1997. Stimulation of RARα activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90:97–107
    [Google Scholar]
  107. 107. 
    Lu H, Zawel L, Fisher L, Egly JM, Reinberg D. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–45
    [Google Scholar]
  108. 108. 
    Feaver WJ, Gileadi O, Li Y, Kornberg RD. 1991. CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell 67:1223–30
    [Google Scholar]
  109. 109. 
    Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 15:3319–29
    [Google Scholar]
  110. 110. 
    Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–9
    [Google Scholar]
  111. 111. 
    Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD et al. 2009. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34:387–93
    [Google Scholar]
  112. 112. 
    Akoulitchev S, Chuikov S, Reinberg D. 2000. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407:102–6
    [Google Scholar]
  113. 113. 
    Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei PJ et al. 2016. Structure of a complete Mediator-RNA polymerase II pre-initiation complex. Cell 166:1411–22.e16
    [Google Scholar]
  114. 114. 
    Dvir A, Conaway RC, Conaway JW 1997. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. PNAS 94:9006–10
    [Google Scholar]
  115. 115. 
    Jeronimo C, Robert F. 2014. Kin28 regulates the transient association of Mediator with core promoters. Nat. Struct. Mol. Biol. 21:449–55
    [Google Scholar]
  116. 116. 
    Wong KH, Jin Y, Struhl K 2014. TFIIH phosphorylation of the Pol II CTD stimulates Mediator dissociation from the preinitiation complex and promoter escape. Mol. Cell 54:601–12
    [Google Scholar]
  117. 117. 
    Lin YC, Choi WS, Gralla JD. 2005. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat. Struct. Mol. Biol. 12:603–7
    [Google Scholar]
  118. 118. 
    Holstege FC, van der Vliet PC, Timmers HT. 1996. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J 15:1666–77
    [Google Scholar]
  119. 119. 
    Guzder SN, Sung P, Bailly V, Prakash L, Prakash S. 1994. RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369:578–81
    [Google Scholar]
  120. 120. 
    Fishburn J, Tomko E, Galburt E, Hahn S 2015. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. PNAS 112:3961–66
    [Google Scholar]
  121. 121. 
    Kim TK, Ebright RH, Reinberg D. 2000. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418–22
    [Google Scholar]
  122. 122. 
    Okuda M, Watanabe Y, Okamura H, Hanaoka F, Ohkuma Y, Nishimura Y. 2000. Structure of the central core domain of TFIIEβ with a novel double-stranded DNA-binding surface. EMBO J 19:1346–56
    [Google Scholar]
  123. 123. 
    Forget D, Langelier MF, Therien C, Trinh V, Coulombe B. 2004. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol. Cell. Biol. 24:1122–31
    [Google Scholar]
  124. 124. 
    Kwak H, Lis JT. 2013. Control of transcriptional elongation. Annu. Rev. Genet. 47:483–508
    [Google Scholar]
  125. 125. 
    Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK et al. 2007. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–75
    [Google Scholar]
  126. 126. 
    Le May N, Mota-Fernandes D, Velez-Cruz R, Iltis I, Biard D, Egly JM 2010. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 38:54–66
    [Google Scholar]
  127. 127. 
    Le May N, Fradin D, Iltis I, Bougneres P, Egly JM 2012. XPG and XPF endonucleases trigger chromatin looping and DNA demethylation for accurate expression of activated genes. Mol. Cell 47:622–32
    [Google Scholar]
  128. 128. 
    Ito S, Kuraoka I, Chymkowitch P, Compe E, Takedachi A et al. 2007. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 26:231–43
    [Google Scholar]
  129. 129. 
    Fong YW, Inouye C, Yamaguchi T, Cattoglio C, Grubisic I, Tjian R. 2011. A DNA repair complex functions as an oct4/sox2 coactivator in embryonic stem cells. Cell 147:120–31
    [Google Scholar]
  130. 130. 
    Bidon B, Iltis I, Semer M, Nagy Z, Larnicol A et al. 2018. XPC is an RNA polymerase II cofactor recruiting ATAC to promoters by interacting with E2F1. Nat. Commun. 9:2610
    [Google Scholar]
  131. 131. 
    Lee SK, Yu SL, Prakash L, Prakash S. 2002. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. Implications for Cockayne syndrome. Cell 109:823–34
    [Google Scholar]
  132. 132. 
    Kristensen U, Epanchintsev A, Rauschendorf MA, Laugel V, Stevnsner T et al. 2013. Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress. PNAS 110:E2261–70
    [Google Scholar]
  133. 133. 
    Lake RJ, Boetefuer EL, Tsai PF, Jeong J, Choi I et al. 2014. The sequence-specific transcription factor c-Jun targets Cockayne syndrome protein B to regulate transcription and chromatin structure. PLOS Genet 10:e1004284
    [Google Scholar]
  134. 134. 
    Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS et al. 1995. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82:555–64
    [Google Scholar]
  135. 135. 
    Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T et al. 2006. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 20:1429–34
    [Google Scholar]
  136. 136. 
    Epanchintsev A, Costanzo F, Rauschendorf MA, Caputo M, Ye T et al. 2017. Cockayne's syndrome A and B proteins regulate transcription arrest after genotoxic stress by promoting ATF3 degradation. Mol. Cell 68:1054–66.e6
    [Google Scholar]
  137. 137. 
    Achermann JC, Schwabe J, Fairall L, Chatterjee K. 2017. Genetic disorders of nuclear receptors. J. Clin. Invest. 127:1181–92
    [Google Scholar]
  138. 138. 
    Haijes HA, Koster MJE, Rehmann H, Li D, Hakonarson H et al. 2019. De novo heterozygous POLR2A variants cause a neurodevelopmental syndrome with profound infantile-onset hypotonia. Am. J. Hum. Genet. 105:283–301
    [Google Scholar]
  139. 139. 
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST et al. 2007. Polyglutamine domain modulates the TBP–TFIIB interaction: implications for its normal function and neurodegeneration. Nat. Neurosci. 10:1519–28
    [Google Scholar]
  140. 140. 
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M et al. 1999. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease?. Hum. Mol. Genet. 8:2047–53
    [Google Scholar]
  141. 141. 
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K et al. 2001. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10:1441–48
    [Google Scholar]
  142. 142. 
    Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K et al. 2007. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am. J. Hum. Genet. 80:393–406
    [Google Scholar]
  143. 143. 
    O'Rawe JA, Wu Y, Dorfel MJ, Rope AF, Au PY et al. 2015. TAF1 variants are associated with dysmorphic features, intellectual disability, and neurological manifestations. Am. J. Hum. Genet. 97:922–32
    [Google Scholar]
  144. 144. 
    Gegonne A, Weissman JD, Singer DS 2001. TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. PNAS 98:12432–37
    [Google Scholar]
  145. 145. 
    El-Saafin F, Curry C, Ye T, Garnier JM, Kolb-Cheynel I et al. 2018. Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Hum. Mol. Genet. 27:2171–86
    [Google Scholar]
  146. 146. 
    Hellman-Aharony S, Smirin-Yosef P, Halevy A, Pasmanik-Chor M, Yeheskel A et al. 2013. Microcephaly thin corpus callosum intellectual disability syndrome caused by mutated TAF2. Pediatr. Neurol. 49:411–16.e1
    [Google Scholar]
  147. 147. 
    Yuan B, Pehlivan D, Karaca E, Patel N, Charng WL et al. 2015. Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. J. Clin. Invest. 125:636–51
    [Google Scholar]
  148. 148. 
    Tawamie H, Martianov I, Wohlfahrt N, Buchert R, Mengus G et al. 2017. Hypomorphic pathogenic variants in TAF13 are associated with autosomal-recessive intellectual disability and microcephaly. Am. J. Hum. Genet. 100:555–61
    [Google Scholar]
  149. 149. 
    Le May N, Dubaele S, Proietti De Santis L, Billecocq A, Bouloy M, Egly JM 2004. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116:541–50
    [Google Scholar]
  150. 150. 
    Lehmann AR, McGibbon D, Stefanini M. 2011. Xeroderma pigmentosum. Orphanet J. Rare Dis. 6:70
    [Google Scholar]
  151. 151. 
    Faghri S, Tamura D, Kraemer KH, Digiovanna JJ. 2008. Trichothiodystrophy: A systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J. Med. Genet. 45:609–21
    [Google Scholar]
  152. 152. 
    Cleaver JE, Lam ET, Revet I. 2009. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat. Rev. Genet. 10:756–68
    [Google Scholar]
  153. 153. 
    Coin F, Oksenych V, Egly JM. 2007. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol. Cell 26:245–56
    [Google Scholar]
  154. 154. 
    Fregoso M, Laine JP, Aguilar-Fuentes J, Mocquet V, Reynaud E et al. 2007. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol. Cell. Biol. 27:3640–50
    [Google Scholar]
  155. 155. 
    Dubaele S, Proietti De Santis L, Bienstock RJ, Keriel A, Stefanini M et al. 2003. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell 11:1635–46
    [Google Scholar]
  156. 156. 
    Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM 2002. XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARα. Cell 109:125–35
    [Google Scholar]
  157. 157. 
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE et al. 2002. Phosphorylation of human estrogen receptor α at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21:4921–31
    [Google Scholar]
  158. 158. 
    Drane P, Compe E, Catez P, Chymkowitch P, Egly JM. 2004. Selective regulation of vitamin D receptor–responsive genes by TFIIH. Mol. Cell 16:187–97
    [Google Scholar]
  159. 159. 
    Compe E, Drane P, Laurent C, Diderich K, Braun C et al. 2005. Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol. Cell. Biol. 25:6065–76
    [Google Scholar]
  160. 160. 
    Compe E, Malerba M, Soler L, Marescaux J, Borrelli E, Egly JM. 2007. Neurological defects in trichothiodystrophy reveal a coactivator function of TFIIH. Nat. Neurosci. 10:1414–22
    [Google Scholar]
  161. 161. 
    Ueda T, Compe E, Catez P, Kraemer KH, Egly JM. 2009. Both XPD alleles contribute to the phenotype of compound heterozygote xeroderma pigmentosum patients. J. Exp. Med. 206:3031–46
    [Google Scholar]
  162. 162. 
    Kuschal C, Botta E, Orioli D, Digiovanna JJ, Seneca S et al. 2016. GTF2E2 mutations destabilize the general transcription factor complex TFIIE in individuals with DNA repair-proficient trichothiodystrophy. Am. J. Hum. Genet. 98:627–42
    [Google Scholar]
  163. 163. 
    Wang Y, Chakravarty P, Ranes M, Kelly G, Brooks PJ et al. 2014. Dysregulation of gene expression as a cause of Cockayne syndrome neurological disease. PNAS 111:14454–59
    [Google Scholar]
  164. 164. 
    Berk AJ. 2012. Yin and yang of mediator function revealed by human mutants. PNAS 109:19519–20
    [Google Scholar]
  165. 165. 
    Ding N, Zhou H, Esteve PO, Chin HG, Kim S et al. 2008. Mediator links epigenetic silencing of neuronal gene expression with X-linked mental retardation. Mol. Cell 31:347–59
    [Google Scholar]
  166. 166. 
    Spaeth JM, Kim NH, Boyer TG. 2011. Mediator and human disease. Semin. Cell Dev. Biol. 22:776–87
    [Google Scholar]
  167. 167. 
    Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. 2014. Involvement of Mediator complex in malignancy. Biochim. Biophys. Acta Rev. Cancer 1845:66–83
    [Google Scholar]
  168. 168. 
    Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ. 1999. Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399:276–79
    [Google Scholar]
  169. 169. 
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A et al. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–26
    [Google Scholar]
  170. 170. 
    Graham JM Jr., Schwartz CE. 2013. MED12 related disorders. Am. J. Med. Genet. A 161A:2734–40
    [Google Scholar]
  171. 171. 
    Donnio LM, Bidon B, Hashimoto S, May M, Epanchintsev A et al. 2017. MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Hum. Mol. Genet. 26:2062–75
    [Google Scholar]
  172. 172. 
    Hashimoto S, Boissel S, Zarhrate M, Rio M, Munnich A et al. 2011. MED23 mutation links intellectual disability to dysregulation of immediate early gene expression. Science 333:1161–63
    [Google Scholar]
  173. 173. 
    Amiel J, Rio M, de Pontual L, Redon R, Malan V et al. 2007. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 80:988–93
    [Google Scholar]
  174. 174. 
    Mitchell DC, Stafford LJ, Li D, Bar-Eli M, Liu M. 2007. Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene 26:1739–47
    [Google Scholar]
  175. 175. 
    Yang X, Zhao M, Xia M, Liu Y, Yan J et al. 2012. Selective requirement for Mediator MED23 in Ras-active lung cancer. PNAS 109:E2813–22
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-090220-112253
Loading
/content/journals/10.1146/annurev-biochem-090220-112253
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error