1932

Abstract

Large-scale CRISPR-Cas pooled screens have shown great promise to investigate functional links between genotype and phenotype at the genome-wide scale. In addition to technological advancement, there is a need to develop computational methods to analyze the large datasets obtained from high-throughput CRISPR screens. Many computational methods have been developed to identify reliable gene hits from various screens. In this review, we provide an overview of the technology development of CRISPR screening platforms, with a focus on recent advances in computational methods to identify and model gene effects using CRISPR screen datasets. We also discuss existing challenges and opportunities for future computational methods development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-020520-113523
2020-07-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-020520-113523.html?itemId=/content/journals/10.1146/annurev-biodatasci-020520-113523&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    NHGRI (Natl. Human Genome Res. Inst.) 2013. The Human Genome Project: frequently asked questions Fact sheet, NHGRI Bethesda, MD: https://www.genome.gov/sites/default/files/genome-old/pages/Education/Smithsonian_Exhibition/Human_Genome_Project_FAQ.pdf
  2. 2. 
    1000 Genomes Proj. Consort 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  3. 3. 
    Bartha I, di Iulio J, Venter JC, Telenti A 2018. Human gene essentiality. Nat. Rev. Genet. 19:151–62
    [Google Scholar]
  4. 4. 
    Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:2757–61
    [Google Scholar]
  5. 5. 
    Beerli RR, Barbas CF 3rd 2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:2135–41
    [Google Scholar]
  6. 6. 
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  7. 7. 
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:6121819–23
    [Google Scholar]
  8. 8. 
    Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:6121823–26
    [Google Scholar]
  9. 9. 
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:7603420–24
    [Google Scholar]
  10. 10. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:7785149–57
    [Google Scholar]
  11. 11. 
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:51173–83
    [Google Scholar]
  12. 12. 
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:157429–37
    [Google Scholar]
  13. 13. 
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X et al. 2016. Editing DNA methylation in the mammalian genome. Cell 167:1233–47.e17
    [Google Scholar]
  14. 14. 
    Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J et al. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7:12284
    [Google Scholar]
  15. 15. 
    Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:5510–17
    [Google Scholar]
  16. 16. 
    Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M et al. 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34:101060–65
    [Google Scholar]
  17. 17. 
    Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D et al. 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:1219–32.e14
    [Google Scholar]
  18. 18. 
    Wang T, Wei JJ, Sabatini DM, Lander ES 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:616680–84
    [Google Scholar]
  19. 19. 
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:616684–87
    [Google Scholar]
  20. 20. 
    Zhou Y, Zhu S, Cai C, Yuan P, Li C et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:7501487–91
    [Google Scholar]
  21. 21. 
    Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:3267–73
    [Google Scholar]
  22. 22. 
    Liu SJ, Horlbeck MA, Cho SW, Birk HS, Malatesta M et al. 2017. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355:6320eaah7111
    [Google Scholar]
  23. 23. 
    Liu Y, Yu C, Daley TP, Wang F, Cao WS et al. 2018. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23:5758–71.e8
    [Google Scholar]
  24. 24. 
    Bester AC, Lee JD, Chavez A, Lee Y-R, Nachmani D et al. 2018. An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173:3649–64.e20
    [Google Scholar]
  25. 25. 
    Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC 2017. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35:5463–74
    [Google Scholar]
  26. 26. 
    Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM et al. 2019. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568:7753511–16
    [Google Scholar]
  27. 27. 
    Sharma S, Petsalaki E. 2018. Application of CRISPR-Cas9 based genome-wide screening approaches to study cellular signalling mechanisms. Int. J. Mol. Sci. 19:4933
    [Google Scholar]
  28. 28. 
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:7360346–50
    [Google Scholar]
  29. 29. 
    Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY et al. 2013. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 152:4909–22
    [Google Scholar]
  30. 30. 
    Dompe N, Rivers CS, Li L, Cordes S, Schwickart M et al. 2011. A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis. PNAS 108:43E943–51
    [Google Scholar]
  31. 31. 
    van de Weijer ML, Bassik MC, Luteijn RD, Voorburg CM, Lohuis MAM et al. 2014. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat. Commun. 5:3832
    [Google Scholar]
  32. 32. 
    Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA et al. 2014. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 1:140035
    [Google Scholar]
  33. 33. 
    Hu Y, Comjean A, Roesel C, Vinayagam A, Flockhart I et al. 2017. FlyRNAi.org—the database of the Drosophila RNAi screening center and transgenic RNAi project: 2017 update. Nucleic Acids Res 45:D1D672–78
    [Google Scholar]
  34. 34. 
    Schmidt EE, Pelz O, Buhlmann S, Kerr G, Horn T, Boutros M 2013. GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update. Nucleic Acids Res 41:D1D1021–26
    [Google Scholar]
  35. 35. 
    Smith I, Greenside PG, Natoli T, Lahr DL, Wadden D et al. 2017. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map. PLOS Biol 15:11e2003213
    [Google Scholar]
  36. 36. 
    Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB et al. 2016. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34:7695–97
    [Google Scholar]
  37. 37. 
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:58191709–12
    [Google Scholar]
  38. 38. 
    Mitsunobu H, Teramoto J, Nishida K, Kondo A 2017. Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol 35:10983–96
    [Google Scholar]
  39. 39. 
    Lindeboom RGH, Vermeulen M, Lehner B, Supek F 2019. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat. Genet. 51:111645–51
    [Google Scholar]
  40. 40. 
    Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:7577192–97
    [Google Scholar]
  41. 41. 
    Zhu S, Li W, Liu J, Chen C-H, Liao Q et al. 2016. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol. 34:121279–86
    [Google Scholar]
  42. 42. 
    Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR et al. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163:61515–26
    [Google Scholar]
  43. 43. 
    Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM et al. 2016. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6:8900–913
    [Google Scholar]
  44. 44. 
    Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32:121262–67
    [Google Scholar]
  45. 45. 
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:7677–83
    [Google Scholar]
  46. 46. 
    Tycko J, Myer VE, Hsu PD 2016. Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol. Cell 63:3355–70
    [Google Scholar]
  47. 47. 
    Klann TS, Black JB, Chellappan M, Safi A, Song L et al. 2017. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35:6561–68
    [Google Scholar]
  48. 48. 
    Radzisheuskaya A, Shlyueva D, Müller I, Helin K 2016. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 44:18e141
    [Google Scholar]
  49. 49. 
    Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S et al. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:7564230–33
    [Google Scholar]
  50. 50. 
    Rosenbluh J, Xu H, Harrington W, Gill S, Wang X et al. 2017. Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8:15403
    [Google Scholar]
  51. 51. 
    Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5:e13450
    [Google Scholar]
  52. 52. 
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:2442–51
    [Google Scholar]
  53. 53. 
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:3647–61
    [Google Scholar]
  54. 54. 
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:3635–46
    [Google Scholar]
  55. 55. 
    Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:4326–28
    [Google Scholar]
  56. 56. 
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:7536583–88
    [Google Scholar]
  57. 57. 
    Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R et al. 2016. Comparison of Cas9 activators in multiple species. Nat. Methods 13:7563–67
    [Google Scholar]
  58. 58. 
    Sack LM, Davoli T, Li MZ, Li Y, Xu Q et al. 2018. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell 173:2499–514.e23
    [Google Scholar]
  59. 59. 
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:7681464–71
    [Google Scholar]
  60. 60. 
    Jin S, Zong Y, Gao Q, Zhu Z, Wang Y et al. 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:6437292–95
    [Google Scholar]
  61. 61. 
    Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X 2016. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13:121029–35
    [Google Scholar]
  62. 62. 
    Hess GT, Frésard L, Han K, Lee CH, Li A et al. 2016. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13:121036–42
    [Google Scholar]
  63. 63. 
    Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K et al. 2017. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14:7710–712
    [Google Scholar]
  64. 64. 
    Doench JG. 2018. Am I ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19:267–80
    [Google Scholar]
  65. 65. 
    Wang G, Chow RD, Ye L, Guzman CD, Dai X et al. 2018. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci. Adv. 4:2 eaao5508
    [Google Scholar]
  66. 66. 
    Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW et al. 2017. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20:101329–41
    [Google Scholar]
  67. 67. 
    Chen S, Sanjana NE, Zheng K, Shalem O, Lee K et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:61246–60
    [Google Scholar]
  68. 68. 
    Hart T, Tong AHY, Chan K, Van Leeuwen J, Seetharaman A et al. 2017. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7:82719–27
    [Google Scholar]
  69. 69. 
    Daley TP, Lin Z, Lin X, Liu Y, Wong WH, Qi LS 2018. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. Genome Biol 19:1159
    [Google Scholar]
  70. 70. 
    Shen JP, Zhao D, Sasik R, Luebeck J, Birmingham A et al. 2017. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14:6573–76
    [Google Scholar]
  71. 71. 
    Wong ASL, Choi GCG, Cui CH, Pregernig G, Milani P et al. 2016. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. PNAS 113:92544–49
    [Google Scholar]
  72. 72. 
    Du D, Roguev A, Gordon DE, Chen M, Chen S-H et al. 2017. Genetic interaction mapping in mammalian cells using CRISPR interference. Nat. Methods 14:6577–80
    [Google Scholar]
  73. 73. 
    Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR et al. 2018. Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36:2179–89
    [Google Scholar]
  74. 74. 
    Horlbeck MA, Xu A, Wang M, Bennett NK, Park CY et al. 2018. Mapping the genetic landscape of human cells. Cell 174:4953–67.e22
    [Google Scholar]
  75. 75. 
    Boettcher M, Tian R, Blau JA, Markegard E, Wagner RT et al. 2018. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat. Biotechnol. 36:2170–78
    [Google Scholar]
  76. 76. 
    Diao Y, Fang R, Li B, Meng Z, Yu J et al. 2017. A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nat. Methods 14:629–35
    [Google Scholar]
  77. 77. 
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354:6313769–73
    [Google Scholar]
  78. 78. 
    Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R et al. 2016. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34:2192–98
    [Google Scholar]
  79. 79. 
    Hsu JY, Fulco CP, Cole MA, Canver MC, Pellin D et al. 2018. CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data. Nat. Methods 15:12992–93
    [Google Scholar]
  80. 80. 
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  81. 81. 
    Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 167:71853–66.e17
    [Google Scholar]
  82. 82. 
    Heaton BE, Kennedy EM, Dumm RE, Harding AT, Sacco MT et al. 2017. A CRISPR activation screen identifies a pan-avian influenza virus inhibitory host factor. Cell Rep 20:71503–12
    [Google Scholar]
  83. 83. 
    König R, Chiang C-Y, Tu BP, Yan SF, DeJesus PD et al. 2007. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4:10847–49
    [Google Scholar]
  84. 84. 
    Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M et al. 2008. Highly parallel identification of essential genes in cancer cells. PNAS 105:5120380–85
    [Google Scholar]
  85. 85. 
    Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ et al. 2017. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12:4828–63
    [Google Scholar]
  86. 86. 
    Morgens DW, Deans RM, Li A, Bassik MC 2016. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34:6634–36
    [Google Scholar]
  87. 87. 
    Ihry RJ, Salick MR, Ho DJ, Sondey M, Kommineni S et al. 2019. Genome-scale CRISPR screens identify human pluripotency-specific genes. Cell Rep 27:2616–30.e6
    [Google Scholar]
  88. 88. 
    Bell CC, Fennell KA, Chan Y-C, Rambow F, Yeung MM et al. 2019. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat. Commun. 10:12723
    [Google Scholar]
  89. 89. 
    Diaz AA, Qin H, Ramalho-Santos M, Song JS 2015. HiTSelect: a comprehensive tool for high-complexity-pooled screen analysis. Nucleic Acids Res 43:3e16
    [Google Scholar]
  90. 90. 
    Li W, Xu H, Xiao T, Cong L, Love MI et al. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15:12554
    [Google Scholar]
  91. 91. 
    Yu J, Silva J, Califano A 2016. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling. Bioinformatics 32:2260–67
    [Google Scholar]
  92. 92. 
    Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G et al. 2017. Defining a cancer dependency map. Cell 170:3564–76.e16
    [Google Scholar]
  93. 93. 
    Li W, Köster J, Xu H, Chen C-H, Xiao T et al. 2015. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol 16:281
    [Google Scholar]
  94. 94. 
    Hart T, Moffat J. 2016. BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinform 17:164
    [Google Scholar]
  95. 95. 
    Jia G, Wang X, Xiao G 2017. A permutation-based non-parametric analysis of CRISPR screen data. BMC Genom 18:1545
    [Google Scholar]
  96. 96. 
    Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE et al. 2017. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49:121779–84
    [Google Scholar]
  97. 97. 
    Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang C-Z et al. 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6:8914–29
    [Google Scholar]
  98. 98. 
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34:2184–91
    [Google Scholar]
  99. 99. 
    Wu A, Xiao T, Fei T, Liu XS, Li W 2018. Reducing false positives in CRISPR/Cas9 screens from copy number variations. bioRxiv 247031. https://doi.org/10.1101/247031
    [Crossref]
  100. 100. 
    Jeong H-H, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z 2017. CRISPRcloud: a secure cloud-based pipeline for CRISPR pooled screen deconvolution. Bioinformatics 33:182963–65
    [Google Scholar]
  101. 101. 
    Jeong H-H, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z 2018. CRISPRCloud2: A cloud-based platform for deconvolving CRISPR screen data. bioRxiv 309302. https://doi.org/10.1101/309302
    [Crossref]
  102. 102. 
    Winter J, Schwering M, Pelz O, Rauscher B, Zhan T et al. 2017. CRISPRAnalyzeR: Interactive analysis, annotation and documentation of pooled CRISPR screens. bioRxiv 109967. https://doi.org/10.1101/109967
    [Crossref]
  103. 103. 
    Langmead B, Trapnell C, Pop M, Salzberg SL 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:3R25
    [Google Scholar]
  104. 104. 
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:110–12
    [Google Scholar]
  105. 105. 
    Jeong H-H, Kim SY, Rousseaux MWC, Zoghbi HY, Liu Z 2019. Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives. Genome Res 29:6999–1008
    [Google Scholar]
  106. 106. 
    Wang B, Wang M, Zhang W, Xiao T, Chen C-H et al. 2019. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14:3756–80
    [Google Scholar]
  107. 107. 
    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D1D607–13
    [Google Scholar]
  108. 108. 
    Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM et al. 2019. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 47:D1D941–47
    [Google Scholar]
  109. 109. 
    Norman TM, Horlbeck MA, Replogle JM, Ge AY, Xu A et al. 2019. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365:6455786–93
    [Google Scholar]
  110. 110. 
    Zamanighomi M, Jain SS, Ito T, Pal D, Daley TP, Sellers WR 2019. GEMINI: a variational Bayesian approach to identify genetic interactions from combinatorial CRISPR screens. Genome Biol 20:1137
    [Google Scholar]
  111. 111. 
    Collins SR, Schuldiner M, Krogan NJ, Weissman JS 2006. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7:7R63
    [Google Scholar]
  112. 112. 
    Zhao D, Badur MG, Luebeck J, Magaña JH, Birmingham A et al. 2018. Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis. Mol. Cell 69:4699–708.e7
    [Google Scholar]
  113. 113. 
    Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK et al. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:71867–82.e21
    [Google Scholar]
  114. 114. 
    Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–96.e15
    [Google Scholar]
  115. 115. 
    Xie S, Duan J, Li B, Zhou P, Hon GC 2017. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66:2285–99.e5
    [Google Scholar]
  116. 116. 
    Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:3297–301
    [Google Scholar]
  117. 117. 
    Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM et al. 2018. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175:71958–71.e15
    [Google Scholar]
  118. 118. 
    Yang L, Zhu Y, Yu H, Cheng X, Chen S et al. 2020. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol 21:119
    [Google Scholar]
  119. 119. 
    Feldman D, Singh A, Garrity AJ, Blainey PC 2018. Lentiviral co-packaging mitigates the effects of intermolecular recombination and multiple integrations in pooled genetic screens. bioRxiv 262121. https://doi.org/10.1101/262121
    [Crossref]
  120. 120. 
    Xie S, Cooley A, Armendariz D, Zhou P, Hon GC 2018. Frequent sgRNA-barcode recombination in single-cell perturbation assays. PLOS ONE 13:6e0198635
    [Google Scholar]
  121. 121. 
    Adamson B, Norman TM, Jost M, Weissman JS 2018. Approaches to maximize sgRNA-barcode coupling in Perturb-seq screens. bioRxiv 298349. https://doi.org/10.1101/298349
    [Crossref]
  122. 122. 
    Hill AJ, McFaline-Figueroa JL, Starita LM, Gasperini MJ, Matreyek KA et al. 2018. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15:4271–74
    [Google Scholar]
  123. 123. 
    Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K et al. 2017. New CRISPR-Cas systems from uncultivated microbes. Nature 542:7640237–41
    [Google Scholar]
  124. 124. 
    Allen F, Behan F, Khodak A, Iorio F, Yusa K et al. 2019. JACKS: joint analysis of CRISPR/Cas9 knockout screens. Genome Res 29:3464–71
    [Google Scholar]
  125. 125. 
    Iorio F, Behan FM, Gonçalves E, Bhosle SG, Chen E et al. 2018. Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting. BMC Genom 19:1604
    [Google Scholar]
  126. 126. 
    Bodapati S, Daley TP, Lin X, Zou J, Qi LS 2020. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol 21:162
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-020520-113523
Loading
/content/journals/10.1146/annurev-biodatasci-020520-113523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error