1932

Abstract

Infectious disease research spans scales from the molecular to the global—from specific mechanisms of pathogen drug resistance, virulence, and replication to the movement of people, animals, and pathogens around the world. All of these research areas have been impacted by the recent growth of large-scale data sources and data analytics. Some of these advances rely on data or analytic methods that are common to most biomedical data science, while others leverage the unique nature of infectious disease, namely its communicability. This review outlines major research progress in the past few years and highlights some remaining opportunities, focusing on data or methodological approaches particular to infectious disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-121219-025722
2020-07-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-121219-025722.html?itemId=/content/journals/10.1146/annurev-biodatasci-121219-025722&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Worby CJ, O'Neill PD, Kypraios T, Robotham JV, De Angelis D et al. 2016. Reconstructing transmission trees for communicable diseases using densely sampled genetic data. Ann. Appl. Stat. 10:395–417
    [Google Scholar]
  2. 2. 
    Klinkenberg D, Backer JA, Didelot X, Colijn C, Wallinga J 2017. Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLOS Comput. Biol. 13:e1005495
    [Google Scholar]
  3. 3. 
    Mathers AJ, Vegesana K, German Mesner I, Barry KE, Pannone A et al. 2018. Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase–producing organisms. Clin. Infect. Dis. 67:171–78
    [Google Scholar]
  4. 4. 
    Heffernan R, Mostashari F, Das D, Karpati A, Kulldorff M, Weiss D 2004. Syndromic surveillance in public health practice, New York City. Emerg. Infect. Dis. 10:858–64
    [Google Scholar]
  5. 5. 
    McGough SF, Brownstein JS, Hawkins JB, Santillana M 2017. Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLOS Negl. Trop. Dis. 11:e0005295
    [Google Scholar]
  6. 6. 
    Hagenaars TJ, Donnelly CA, Ferguson NM 2004. Spatial heterogeneity and the persistence of infectious diseases. J. Theor. Biol. 229:3349–59
    [Google Scholar]
  7. 7. 
    Parham PE, Ferguson NM. 2006. Space and contact networks: capturing the locality of disease transmission. J. R. Soc. Interface 3:483–93
    [Google Scholar]
  8. 8. 
    Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT 2006. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312:447–51
    [Google Scholar]
  9. 9. 
    Newport MJ, Finan C. 2011. Genome-wide association studies and susceptibility to infectious diseases. Brief. Funct. Genom. 10:98–107
    [Google Scholar]
  10. 10. 
    Guo P, Liu T, Zhang Q, Wang L, Xiao J et al. 2017. Developing a dengue forecast model using machine learning: a case study in China. PLOS Negl. Trop. Dis. 11:e0005973
    [Google Scholar]
  11. 11. 
    Banerjee I, Yamauchi Y, Helenius A, Horvath P 2013. High-content analysis of sequential events during the early phase of influenza A virus infection. PLOS ONE 8:e68450
    [Google Scholar]
  12. 12. 
    Gomes AL, Wee LJ, Khan AM, Gil LH, Marques ET Jr. et al. 2010. Classification of dengue fever patients based on gene expression data using support vector machines. PLOS ONE 5:e11267
    [Google Scholar]
  13. 13. 
    Liang ZH, Powell A, Ersoy I, Poostchi M, Silamut K et al. 2016. CNN-based image analysis for malaria diagnosis. 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) T Tian, Y Wang, Q Jiang, X Hu, Y Liu, et al. 493–96 New York: IEEE
    [Google Scholar]
  14. 14. 
    Macesic N, Polubriaginof F, Tatonetti NP 2017. Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr. Opin. Infect. Dis. 30:511–17
    [Google Scholar]
  15. 15. 
    Bielejec F, Rambaut A, Suchard MA, Lemey P 2011. SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–12
    [Google Scholar]
  16. 16. 
    Holmes EC. 2008. Evolutionary history and phylogeography of human viruses. Annu. Rev. Microbiol. 62:307–28
    [Google Scholar]
  17. 17. 
    Masuda N, Holme P. 2013. Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep 5:6
    [Google Scholar]
  18. 18. 
    Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM 2004. Mapping the antigenic and genetic evolution of influenza virus. Science 305:5682371–76
    [Google Scholar]
  19. 19. 
    Latallo MJ, Cortina GA, Faham S, Nakamoto RK, Kasson PM 2017. Predicting allosteric mutants that increase activity of a major antibiotic resistance enzyme. Chem. Sci. 8:6484–92
    [Google Scholar]
  20. 20. 
    Hart KM, Ho CMW, Dutta S, Gross ML, Bowman GR 2016. Modelling proteins’ hidden conformations to predict antibiotic resistance. Nat. Commun. 7:12965
    [Google Scholar]
  21. 21. 
    Cortina GA, Hays JM, Kasson PM 2018. Conformational intermediate that controls KPC-2 catalysis and beta-lactam drug resistance. ACS Catal 8:2741–47
    [Google Scholar]
  22. 22. 
    Firnberg E, Labonte JW, Gray JJ, Ostermeier M 2014. A comprehensive, high-resolution map of a gene's fitness landscape. Mol. Biol. Evol. 31:1581–92
    [Google Scholar]
  23. 23. 
    Deng Z, Huang W, Bakkalbasi E, Brown NG, Adamski CJ et al. 2012. Deep sequencing of systematic combinatorial libraries reveals beta-lactamase sequence constraints at high resolution. J. Mol. Biol. 424:150–67
    [Google Scholar]
  24. 24. 
    Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E et al. 2013. Capturing the mutational landscape of the beta-lactamase TEM-1. PNAS 110:13067–72
    [Google Scholar]
  25. 25. 
    Romero PA, Tran TM, Abate AR 2015. Dissecting enzyme function with microfluidic-based deep mutational scanning. PNAS 112:7159–64
    [Google Scholar]
  26. 26. 
    Bedford T, Cobey S, Beerli P, Pascual M 2010. Global migration dynamics underlie evolution and persistence of human influenza A (H3N2). PLOS Pathog 6:e1000918
    [Google Scholar]
  27. 27. 
    Grubaugh ND, Ladner JT, Kraemer MUG, Dudas G, Tan AL et al. 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546:401–5
    [Google Scholar]
  28. 28. 
    Kuhnert D, Stadler T, Vaughan TG, Drummond AJ 2016. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33:2102–16
    [Google Scholar]
  29. 29. 
    Luo S, Perelson AS. 2015. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. PNAS 112:11654–59
    [Google Scholar]
  30. 30. 
    Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL et al. 2013. Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. . PLOS Pathog 9:e1003238
    [Google Scholar]
  31. 31. 
    Marceau V, Noel PA, Hebert-Dufresne L, Allard A, Dube LJ 2011. Modeling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84:026105
    [Google Scholar]
  32. 32. 
    Bedford T, Riley S, Barr IG, Broor S, Chadha M et al. 2015. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523:217–20
    [Google Scholar]
  33. 33. 
    Han AX, Maurer-Stroh S, Russell CA 2019. Individual immune selection pressure has limited impact on seasonal influenza virus evolution. Nat. Ecol. Evol. 3:302–11
    [Google Scholar]
  34. 34. 
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2:2006.0008
    [Google Scholar]
  35. 35. 
    Thyagarajan B, Bloom JD. 2014. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. eLife 3:e03300
    [Google Scholar]
  36. 36. 
    Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM et al. 2014. Influenza A virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 16:691–700
    [Google Scholar]
  37. 37. 
    Haddox HK, Dingens AS, Bloom JD 2016. Experimental estimation of the effects of all amino-acid mutations to HIV's envelope protein on viral replication in cell culture. PLOS Pathog 12:e1006114
    [Google Scholar]
  38. 38. 
    Setoh YX, Amarilla AA, Peng NYG, Griffiths RE, Carrera J et al. 2019. Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nat. Microbiol. 4:876–87
    [Google Scholar]
  39. 39. 
    Dingens AS, Arenz D, Weight H, Overbaugh J, Bloom JD 2019. An antigenic atlas of HIV-1 escape from broadly neutralizing antibodies distinguishes functional and structural epitopes. Immunity 50:520–32.e3
    [Google Scholar]
  40. 40. 
    Snijder B, Sacher R, Ramo P, Liberali P, Mench K et al. 2012. Single-cell analysis of population context advances RNAi screening at multiple levels. Mol. Syst. Biol. 8:579
    [Google Scholar]
  41. 41. 
    Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G et al. 2011. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477:340–43
    [Google Scholar]
  42. 42. 
    Carette JE, Guimaraes CP, Varadarajan M, Park AS, Wuethrich I et al. 2009. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326:1231–35
    [Google Scholar]
  43. 43. 
    Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM et al. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:159–63
    [Google Scholar]
  44. 44. 
    Krishnan MN, Ng A, Sukumaran B, Gilfoy FD, Uchil PD et al. 2008. RNA interference screen for human genes associated with West Nile virus infection. Nature 455:242–45
    [Google Scholar]
  45. 45. 
    Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL et al. 2009. Discovery of insect and human dengue virus host factors. Nature 458:1047–50
    [Google Scholar]
  46. 46. 
    Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A et al. 2016. Cell-based screen identifies human interferon-stimulated regulators of Listeria monocytogenes infection. PLOS Pathog 12:e1006102
    [Google Scholar]
  47. 47. 
    McDonough JA, Newton HJ, Klum S, Swiss R, Agaisse H, Roy CR 2013. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 4:e00606–12
    [Google Scholar]
  48. 48. 
    Kuhbacher A, Emmenlauer M, Ramo P, Kafai N, Dehio C et al. 2015. Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. mBio 6:e00598–15
    [Google Scholar]
  49. 49. 
    El Zahed SS, Brown ED 2018. Chemical-chemical combinations map uncharted interactions in Escherichia coli under nutrient stress. iScience 2:168–81
    [Google Scholar]
  50. 50. 
    Nichols RJ, Sen S, Choo YJ, Beltrao P, Zietek M et al. 2011. Phenotypic landscape of a bacterial cell. Cell 144:143–56
    [Google Scholar]
  51. 51. 
    Pegoraro G, Misteli T. 2017. High-throughput imaging for the discovery of cellular mechanisms of disease. Trends Genet 33:604–15
    [Google Scholar]
  52. 52. 
    Roy Chowdhury R, Vallania F, Yang Q, Lopez Angel CJ, Darboe F et al. 2018. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature 560:644–48
    [Google Scholar]
  53. 53. 
    Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C et al. 2016. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22:1456–64
    [Google Scholar]
  54. 54. 
    Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C et al. 2015. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect. Dis. 15:1193–202
    [Google Scholar]
  55. 55. 
    Pankhurst LJ, Del Ojo Elias C, Votintseva AA, Walker TM, Cole K et al. 2016. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir. Med. 4:49–58
    [Google Scholar]
  56. 56. 
    Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A et al. 2016. Implementation of nationwide real-time whole-genome sequencing to enhance Listeriosis outbreak detection and investigation. Clin. Infect. Dis. 63:380–86
    [Google Scholar]
  57. 57. 
    Han A, Parker E, Maurer-Stroh S, Russell C 2018. Inferring putative transmission clusters with Phydelity. bioRxiv477653 https://doi.org/10.1101/477653
    [Crossref] [Google Scholar]
  58. 58. 
    Bielejec F, Lemey P, Baele G, Rambaut A, Suchard MA 2014. Inferring heterogeneous evolutionary processes through time: from sequence substitution to phylogeography. Syst. Biol. 63:493–504
    [Google Scholar]
  59. 59. 
    Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15:e1006650
    [Google Scholar]
  60. 60. 
    Langat P, Raghwani J, Dudas G, Bowden TA, Edwards S et al. 2017. Genome-wide evolutionary dynamics of influenza B viruses on a global scale. PLOS Pathog 13:e1006749
    [Google Scholar]
  61. 61. 
    Poon LL, Song T, Rosenfeld R, Lin X, Rogers MB et al. 2016. Quantifying influenza virus diversity and transmission in humans. Nat. Genet. 48:195–200
    [Google Scholar]
  62. 62. 
    McCrone JT, Woods RJ, Martin ET, Malosh RE, Monto AS, Lauring AS 2018. Stochastic processes constrain the within and between host evolution of influenza virus. eLife 7:e35962
    [Google Scholar]
  63. 63. 
    Poon LLM, Song T, Wentworth DE, Holmes EC, Greenbaum BD et al. 2019. Reply to ‘Reconciling disparate estimates of viral genetic diversity during human influenza infections’. Nat. Genet. 51:1301–3
    [Google Scholar]
  64. 64. 
    Xue KS, Bloom JD. 2019. Reconciling disparate estimates of viral genetic diversity during human influenza infections. Nat. Genet. 51:1298–301
    [Google Scholar]
  65. 65. 
    Wilker PR, Dinis JM, Starrett G, Imai M, Hatta M et al. 2013. Selection on haemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nat. Commun. 4:2636
    [Google Scholar]
  66. 66. 
    Iqbal M, Xiao H, Baillie G, Warry A, Essen SC et al. 2009. Within-host variation of avian influenza viruses. Philos. Trans. R. Soc. Lond. B 364:2739–47
    [Google Scholar]
  67. 67. 
    Golubchik T, Batty EM, Miller RR, Farr H, Young BC et al. 2013. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLOS ONE 8:e61319
    [Google Scholar]
  68. 68. 
    Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ 2016. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14:150–62
    [Google Scholar]
  69. 69. 
    Stokes HW, Gillings MR. 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35:790–819
    [Google Scholar]
  70. 70. 
    Zhang T, Zhang XX, Ye L 2011. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLOS ONE 6:e26041
    [Google Scholar]
  71. 71. 
    Mathers AJ, Cox HL, Kitchel B, Bonatti H, Brassinga AK et al. 2011. Molecular dissection of an outbreak of carbapenem-resistant Enterobacteriaceae reveals intergenus KPC carbapenemase transmission through a promiscuous plasmid. mBio 2:e00204–11
    [Google Scholar]
  72. 72. 
    Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. 2015. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob. Agents Chemother. 59:1656–63
    [Google Scholar]
  73. 73. 
    Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM et al. 2015. A year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLOS Genet 11:e1005413
    [Google Scholar]
  74. 74. 
    Kopke K, Prahm K, Buda S, Haas W 2016. Evaluation einer ICD-10-basierten elektronischen Surveillance akuter respiratorischer Erkrankungen (SEEDARE) in Deutschland [Evaluation of an ICD-10-based electronic surveillance of acute respiratory infections (SEEDARI) in Germany]. Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz 59:1484–91
    [Google Scholar]
  75. 75. 
    Hripcsak G, Soulakis ND, Li L, Morrison FP, Lai AM et al. 2009. Syndromic surveillance using ambulatory electronic health records. J. Am. Med. Inform. Assoc. 16:354–61
    [Google Scholar]
  76. 76. 
    Ye Y, Tsui FR, Wagner M, Espino JU, Li Q 2014. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J. Am. Med. Inform. Assoc. 21:815–23
    [Google Scholar]
  77. 77. 
    Wiens J, Campbell WN, Franklin ES, Guttag JV, Horvitz E 2014. Learning data-driven patient risk stratification models for Clostridium difficile. . Open Forum Infect. Dis 1:ofu045
    [Google Scholar]
  78. 78. 
    Wiens J, Guttag J, Horvitz E 2014. A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J. Am. Med. Inform. Assoc. 21:699–706
    [Google Scholar]
  79. 79. 
    Feller DJ, Zucker J, Yin MT, Gordon P, Elhadad N 2018. Using clinical notes and natural language processing for automated HIV risk assessment. J. Acquir. Immune Defic. Syndr. 77:160–66
    [Google Scholar]
  80. 80. 
    Marcus JL, Hurley LB, Krakower DS, Alexeeff S, Silverberg MJ, Volk JE 2019. Use of electronic health record data and machine learning to identify candidates for HIV pre-exposure prophylaxis: a modelling study. Lancet HIV 6:E688–95
    [Google Scholar]
  81. 81. 
    Zhang Y, Szolovits P. 2008. Patient-specific learning in real time for adaptive monitoring in critical care. J. Biomed. Inform. 41:452–60
    [Google Scholar]
  82. 82. 
    Henry KE, Hager DN, Pronovost PJ, Saria S 2015. A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 7:299ra122
    [Google Scholar]
  83. 83. 
    Futoma J, Hariharan S, Sendak M, Brajer N, Clement M et al. 2017. An improved multi-output Gaussian process RNN with real-time validation for early sepsis detection. arXiv:1708.05894 [stat.ML]
  84. 84. 
    Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R 2017. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir. Res. 4:e000234
    [Google Scholar]
  85. 85. 
    Desautels T, Calvert J, Hoffman J, Jay M, Kerem Y et al. 2016. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med. Inform. 4:e28
    [Google Scholar]
  86. 86. 
    Hornbeck T, Naylor D, Segre AM, Thomas G, Herman T, Polgreen PM 2012. Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J. Infect. Dis. 206:1549–57
    [Google Scholar]
  87. 87. 
    Voirin N, Payet C, Barrat A, Cattuto C, Khanafer N et al. 2015. Combining high-resolution contact data with virological data to investigate influenza transmission in a tertiary care hospital. Infect. Control Hosp. Epidemiol. 36:254–60
    [Google Scholar]
  88. 88. 
    Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L 2009. Detecting influenza epidemics using search engine query data. Nature 457:1012–14
    [Google Scholar]
  89. 89. 
    Lazer D, Kennedy R, King G, Vespignani A 2014. The parable of Google Flu: traps in big data analysis. Science 343:1203–5
    [Google Scholar]
  90. 90. 
    Santillana M, Zhang DW, Althouse BM, Ayers JW 2014. What can digital disease detection learn from (an external revision to) Google Flu Trends. ? Am. J. Prev. Med. 47:341–47
    [Google Scholar]
  91. 91. 
    Klembczyk JJ, Jalalpour M, Levin S, Washington RE, Pines JM et al. 2016. Google Flu Trends spatial variability validated against emergency department influenza-related visits. J. Med. Internet Res. 18:e175
    [Google Scholar]
  92. 92. 
    Dion M, AbdelMalik P, Mawudeku A 2015. Big data and the Global Public Health Intelligence Network (GPHIN). Can. Commun. Dis. Rep. 41:209–14
    [Google Scholar]
  93. 93. 
    Freifeld CC, Mandl KD, Reis BY, Brownstein JS 2008. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J. Am. Med. Inform. Assoc. 15:150–57
    [Google Scholar]
  94. 94. 
    Signorini A, Segre AM, Polgreen PM 2011. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLOS ONE 6:e19467
    [Google Scholar]
  95. 95. 
    Aramaki E, Maskawa S, Morita M 2011. Twitter catches the flu: detecting influenza epidemics using Twitter. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing1568–76 Stroudsburg, PA: Assoc. Comput. Linguist.
    [Google Scholar]
  96. 96. 
    Broniatowski DA, Paul MJ, Dredze M 2013. National and local influenza surveillance through Twitter: an analysis of the 2012–2013 influenza epidemic. PLOS ONE 8:e83672
    [Google Scholar]
  97. 97. 
    Padmanabhan A, Wang SW, Cao GF, Hwang M, Zhang ZH et al. 2014. FluMapper: a cyberGIS application for interactive analysis of massive location-based social media. Concurr. Comput. Pract. Exp. 26:2253–65
    [Google Scholar]
  98. 98. 
    Adam NR, Shafiq B, Staffin R 2012. Spatial computing and social media in the context of disaster management. IEEE Intell. Syst. 27:90–97
    [Google Scholar]
  99. 99. 
    Middleton SE, Middleton L, Modafferi S 2014. Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 29:9–17
    [Google Scholar]
  100. 100. 
    Boehmer TK, Patnaik JL, Burnite SJ, Ghosh TS, Gershman K, Vogt RL 2011. Use of hospital discharge data to evaluate notifiable disease reporting to Colorado's Electronic Disease Reporting System. Public Health Rep 126:100–6
    [Google Scholar]
  101. 101. 
    Keramarou M, Evans MR. 2012. Completeness of infectious disease notification in the United Kingdom: a systematic review. J. Infect. 64:555–64
    [Google Scholar]
  102. 102. 
    Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G et al. 2017. Summary of notifiable infectious diseases and conditions—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 64:1–143
    [Google Scholar]
  103. 103. 
    Purtle J, Field RI, Hipper T, Nash-Arott J, Chernak E, Buehler JW 2018. The impact of law on syndromic disease surveillance implementation. J. Public Health Manag. Pract. 24:9–17
    [Google Scholar]
  104. 104. 
    Lee EC, Asher JM, Goldlust S, Kraemer JD, Lawson AB, Bansal S 2016. Mind the scales: harnessing spatial big data for infectious disease surveillance and inference. J. Infect. Dis. 214:S409–13
    [Google Scholar]
  105. 105. 
    Wesolowski A, Metcalf CJ, Eagle N, Kombich J, Grenfell BT et al. 2015. Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. PNAS 112:11114–19
    [Google Scholar]
  106. 106. 
    Buckee CO, Wesolowski A, Eagle NN, Hansen E, Snow RW 2013. Mobile phones and malaria: modeling human and parasite travel. Travel Med. Infect. Dis. 11:15–22
    [Google Scholar]
  107. 107. 
    Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E et al. 2015. Using mobile phone data to predict the spatial spread of cholera. Sci. Rep. 5:8923
    [Google Scholar]
  108. 108. 
    Paz-Soldan VA, Stoddard ST, Vazquez-Prokopec G, Morrison AC, Elder JP et al. 2010. Assessing and maximizing the acceptability of global positioning system device use for studying the role of human movement in dengue virus transmission in Iquitos, Peru. Am. J. Trop. Med. Hyg. 82:723–30
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-121219-025722
Loading
/content/journals/10.1146/annurev-biodatasci-121219-025722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error