1932

Abstract

In recent years, cryo electron microscopy (cryo-EM) technology has been transformed with the development of better instrumentation, direct electron detectors, improved methods for specimen preparation, and improved software for data analysis. Analyses using single-particle cryo-EM methods have enabled determination of structures of proteins with sizes smaller than 100 kDa and resolutions of ∼2 Å in some cases. The use of electron tomography combined with subvolume averaging is beginning to allow the visualization of macromolecular complexes in their native environment in unprecedented detail. As a result of these advances, solutions to many intractable challenges in structural and cell biology, such as analysis of highly dynamic soluble and membrane-embedded protein complexes or partially ordered protein aggregates, are now within reach. Recent reports of structural studies of G protein–coupled receptors, spliceosomes, and fibrillar specimens illustrate the progress that has been made using cryo-EM methods, and are the main focus of this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052453
2019-06-04
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052453.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052453&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    De Zorzi R, Mi W, Liao M, Walz T 2016. Single-particle electron microscopy in the study of membrane protein structure. Microscopy 65:81–96
    [Google Scholar]
  2. 2.
    Fernandez-Leiro R, Scheres SHW. 2017. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D 73:496–502
    [Google Scholar]
  3. 3.
    Hutchings J, Zanetti G. 2018. Fine details in complex environments: the power of cryo-electron tomography. Biochem. Soc. Trans. 46:807–16
    [Google Scholar]
  4. 4.
    Koning RI, Koster AJ, Sharp TH 2018. Advances in cryo-electron tomography for biology and medicine. Ann. Anat. 217:82–96
    [Google Scholar]
  5. 5.
    Renaud JP, Chari A, Ciferri C, Liu WT, Remigy HW et al. 2018. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat. Rev. Drug Discov. 17:471–92
    [Google Scholar]
  6. 6.
    Cheng Y. 2018. Single-particle cryo-EM—how did it get here and where will it go?. Science 361:876–80
    [Google Scholar]
  7. 7.
    Bai XC, Yan C, Yang G, Lu P, Ma D et al. 2015. An atomic structure of human γ-secretase. Nature 525:212–17
    [Google Scholar]
  8. 8.
    Dashti A, Schwander P, Langlois R, Fung R, Li W et al. 2014. Trajectories of the ribosome as a Brownian nanomachine. PNAS 111:17492–97
    [Google Scholar]
  9. 9.
    Gao Y, Cao E, Julius D, Cheng Y 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–51
    [Google Scholar]
  10. 10.
    Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH 2016. Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol. 41:194–202
    [Google Scholar]
  11. 11.
    Zhou A, Rohou A, Schep DG, Bason JV, Montgomery MG et al. 2015. Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM. eLife 4:e10180
    [Google Scholar]
  12. 12.
    Lee JH, Ozorowski G, Ward AB 2016. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351:1043–48
    [Google Scholar]
  13. 13.
    Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP 2017. Structure of the human multidrug transporter ABCG2. Nature 546:504–9
    [Google Scholar]
  14. 14.
    Bottcher B, Kiselev NA, Stel'Mashchuk VY, Perevozchikova NA, Borisov AV, Crowther RA 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 71:325–30
    [Google Scholar]
  15. 15.
    Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ, Steven AC 1997. Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386:91–94
    [Google Scholar]
  16. 16.
    Brown A, Shao S. 2018. Ribosomes and cryo-EM: a duet. Curr. Opin. Struct. Biol. 52:1–7
    [Google Scholar]
  17. 17.
    Amunts A, Brown A, Bai XC, Llacer JL, Hussain T et al. 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–89
    [Google Scholar]
  18. 18.
    Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA et al. 2018. Atomic resolution cryo-EM structure of β-galactosidase. Structure 26:848–56
    [Google Scholar]
  19. 19.
    Tan YZ, Aiyer S, Mietzsch M, Hull JA, McKenna R et al. 2018. Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat. Commun. 9:3628
    [Google Scholar]
  20. 20.
    Khoshouei M, Radjainia M, Baumeister W, Danev R 2017. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta Phase Plate. Nat. Commun. 8:16099
    [Google Scholar]
  21. 21.
    Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P et al. 2016. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–707
    [Google Scholar]
  22. 22.
    Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL et al. 2016. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–75
    [Google Scholar]
  23. 23.
    Frank J. 2016. Generalized single-particle cryo-EM—a historical perspective. Microscopy 65:3–8
    [Google Scholar]
  24. 24.
    Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A et al. 2018. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. PNAS 115:E8201–10
    [Google Scholar]
  25. 25.
    Hahn A, Vonck J, Mills DJ, Meier T, Kuhlbrandt W 2018. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360:eaat4318
    [Google Scholar]
  26. 26.
    Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE 2018. Cryo-EM structure of the polycystin 2-l1 ion channel. eLife 7:e36931
    [Google Scholar]
  27. 27.
    Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI et al. 2018. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25:333–40
    [Google Scholar]
  28. 28.
    Parmar M, Rawson S, Scarff CA, Goldman A, Dafforn TR et al. 2018. Using a SMALP platform to determine a sub-nm single particle cryo-EM membrane protein structure. Biochim. Biophys. Acta 1860:378–83
    [Google Scholar]
  29. 29.
    Qi X, Schmiege P, Coutavas E, Wang J, Li X 2018. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature 560:128–32
    [Google Scholar]
  30. 30.
    Rheinberger J, Gao X, Schmidpeter PA, Nimigean CM 2018. Ligand discrimination and gating in cyclic nucleotide–gated ion channels from apo and partial agonist-bound cryo-EM structures. eLife 7:e39775
    [Google Scholar]
  31. 31.
    Yoo J, Wu M, Yin Y, Herzik MA Jr., Lander GC, Lee SY 2018. Cryo-EM structure of a mitochondrial calcium uniporter. Science 361:506–11
    [Google Scholar]
  32. 32.
    Earl LA, Falconieri V, Milne JL, Subramaniam S 2017. Cryo-EM: beyond the microscope. Curr. Opin. Struct. Biol. 46:71–88
    [Google Scholar]
  33. 33.
    Fernandez-Leiro R, Scheres SH. 2016. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–46
    [Google Scholar]
  34. 34.
    Elmlund D, Le SN, Elmlund H 2017. High-resolution cryo-EM: the nuts and bolts. Curr. Opin. Struct. Biol. 46:1–6
    [Google Scholar]
  35. 35.
    Scheres SH. 2016. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol 579:125–57
    [Google Scholar]
  36. 36.
    Frank J. 2017. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 200:303–6
    [Google Scholar]
  37. 37.
    Cabra V, Samso M. 2015. Do's and don'ts of cryo-electron microscopy: a primer on sample preparation and high quality data collection for macromolecular 3D reconstruction. J. Vis. Exp. 95:52311
    [Google Scholar]
  38. 38.
    Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E et al. 2015. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat. Methods 12:859–65
    [Google Scholar]
  39. 39.
    Kastner B, Fischer N, Golas MM, Sander B, Dube P et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5:53–55
    [Google Scholar]
  40. 40.
    Thonghin N, Kargas V, Clews J, Ford RC 2018. Cryo-electron microscopy of membrane proteins. Methods 147:176–86
    [Google Scholar]
  41. 41.
    Gewering T, Januliene D, Ries AB, Moeller A 2018. Know your detergents: a case study on detergent background in negative stain electron microscopy. J. Struct. Biol. 203:242–46
    [Google Scholar]
  42. 42.
    Hauer F, Gerle C, Fischer N, Oshima A, Shinzawa-Itoh K et al. 2015. GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23:1769–75
    [Google Scholar]
  43. 43.
    Tribet C, Audebert R, Popot JL 1996. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. PNAS 93:15047–50
    [Google Scholar]
  44. 44.
    Popot JL. 2010. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79:737–75
    [Google Scholar]
  45. 45.
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK et al. 2009. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–31
    [Google Scholar]
  46. 46.
    Carlson ML, Young JW, Zhao Z, Fabre L, Jun D et al. 2018. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. eLife 7:e34085
    [Google Scholar]
  47. 47.
    Tao H, Lee SC, Moeller A, Roy RS, Siu FY et al. 2013. Engineered nanostructured β-sheet peptides protect membrane proteins. Nat. Methods 10:759–61
    [Google Scholar]
  48. 48.
    Postis V, Rawson S, Mitchell JK, Lee SC, Parslow RA et al. 2015. The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim. Biophys. Acta 1848:496–501
    [Google Scholar]
  49. 49.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228
    [Google Scholar]
  50. 50.
    Dobro MJ, Melanson LA, Jensen GJ, McDowall AW 2010. Plunge freezing for electron cryomicroscopy. Methods Enzymol 481:63–82
    [Google Scholar]
  51. 51.
    D'Imprima E, Floris D, Joppe M, Sanchez R, Grininger M, Kuhlbrandt W 2018. The deadly touch: protein denaturation at the water–air interface and how to prevent it. bioRxiv 400432. https://doi.org/10.1101/400432
    [Crossref]
  52. 52.
    Pantelic RS, Suk JW, Magnuson CW, Meyer JC, Wachsmuth P et al. 2011. Graphene: Substrate preparation and introduction. J. Struct. Biol. 174:234–38
    [Google Scholar]
  53. 53.
    Pantelic RS, Fu W, Schoenenberger C, Henning Stahlberg H 2014. Rendering graphene supports hydrophilic with non-covalent aromatic functionalization for transmission electron microscopy. Appl. Phys. Lett. 104:134103
    [Google Scholar]
  54. 54.
    Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F et al. 2016. Membrane insertion of a Tc toxin in near-atomic detail. Nat. Struct. Mol. Biol. 23:884–90
    [Google Scholar]
  55. 55.
    Zhang Z, Chen J. 2016. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167:1586–97
    [Google Scholar]
  56. 56.
    Dandey VP, Wei H, Zhang Z, Tan YZ, Acharya P et al. 2018. Spotiton: new features and applications. J. Struct. Biol. 202:161–69
    [Google Scholar]
  57. 57.
    Glaeser RM, Han BG, Csencsits R, Killilea A, Pulk A, Cate JH 2016. Factors that influence the formation and stability of thin, cryo-EM specimens. Biophys. J. 110:749–55
    [Google Scholar]
  58. 58.
    Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W 2014. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. PNAS 111:15635–40
    [Google Scholar]
  59. 59.
    McMullan G, Faruqi AR, Henderson R 2016. Direct electron detectors. Methods Enzymol 579:1–17
    [Google Scholar]
  60. 60.
    Mastronarde DN. 2005. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36–51
    [Google Scholar]
  61. 61.
    Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F et al. 2005. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151:41–60
    [Google Scholar]
  62. 62.
    Grant T, Rohou A, Grigorieff N 2018. cisTEM, user-friendly software for single-particle image processing. eLife 7:e35383
    [Google Scholar]
  63. 63.
    Ludtke SJ. 2016. Single-particle refinement and variability analysis in EMAN2.1. Methods Enzymol 579:159–89
    [Google Scholar]
  64. 64.
    Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA 2017. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14:290–96
    [Google Scholar]
  65. 65.
    Yu L, Franken E, Voigt A, Grollios F, Tiemeijer P, Reyntjens S 2018. On-the-fly image quality evaluation for single-particle analysis cryo-electron microscopy. Microsc. Microanal. 23:Suppl. 1834
    [Google Scholar]
  66. 66.
    Weis WI, Kobilka BK. 2018. The molecular basis of G protein–coupled receptor activation. Annu. Rev. Biochem. 87:897–919
    [Google Scholar]
  67. 67.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N et al. 2008. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502
    [Google Scholar]
  68. 68.
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55
    [Google Scholar]
  69. 69.
    Chae PS, Rasmussen SG, Rana RR, Gotfryd K, Chandra R et al. 2010. Maltose–neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7:1003–8
    [Google Scholar]
  70. 70.
    Landau EM, Rosenbusch JP. 1996. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93:14532–35
    [Google Scholar]
  71. 71.
    Carpenter B, Nehme R, Warne T, Leslie AG, Tate CG 2016. Structure of the adenosine A2a receptor bound to an engineered G protein. Nature 536:104–7
    [Google Scholar]
  72. 72.
    Carpenter B, Tate CG. 2016. Engineering a minimal G protein to facilitate crystallisation of G protein–coupled receptors in their active conformation. Protein Eng. Des. Sel. 29:583–94
    [Google Scholar]
  73. 73.
    Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A et al. 2017. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature 546:118–23
    [Google Scholar]
  74. 74.
    Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P et al. 2018. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature 555:121–25
    [Google Scholar]
  75. 75.
    Zhang Y, Sun B, Feng D, Hu H, Chu M et al. 2017. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–53
    [Google Scholar]
  76. 76.
    Garcia-Nafria J, Lee Y, Bai X, Carpenter B, Tate CG 2018. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7:e35946
    [Google Scholar]
  77. 77.
    Koehl A, Hu H, Maeda S, Zhang Y, Qu Q et al. 2018. Structure of the micro-opioid receptor–Gi protein complex. Nature 558:547–52
    [Google Scholar]
  78. 78.
    Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN et al. 2018. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature 558:559–63
    [Google Scholar]
  79. 79.
    Kang Y, Kuybeda O, de Waal PW, Mukherjee S, Van Eps N et al. 2018. Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature 558:553–58
    [Google Scholar]
  80. 80.
    Garcia-Nafria J, Nehme R, Edwards PC, Tate CG 2018. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558:620–23
    [Google Scholar]
  81. 81.
    Liang Y-L, Khoshouei M, Deganutti G, Glukhova A, Koole C et al. 2018. Cryo-EM structure of the active, Gs protein complexed, human CGRP receptor. Nature 561:492–97
    [Google Scholar]
  82. 82.
    Brody E, Abelson J. 1985. The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228:963–67
    [Google Scholar]
  83. 83.
    Kondo Y, Oubridge C, van Roon AM, Nagai K 2015. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. eLife 4:e04986
    [Google Scholar]
  84. 84.
    Galej WP, Oubridge C, Newman AJ, Nagai K 2013. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493:638–43
    [Google Scholar]
  85. 85.
    Ramakrishnan V. 2002. Ribosome structure and the mechanism of translation. Cell 108:557–72
    [Google Scholar]
  86. 86.
    Will CL, Lührmann R. 2011. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3:a003707
    [Google Scholar]
  87. 87.
    Galej WP, Nguyen TH, Newman AJ, Nagai K 2014. Structural studies of the spliceosome: zooming into the heart of the machine. Curr. Opin. Struct. Biol. 25:57–66
    [Google Scholar]
  88. 88.
    Yan C, Wan R, Bai R, Huang G, Shi Y 2017. Structure of a yeast step II catalytically activated spliceosome. Science 355:149–55
    [Google Scholar]
  89. 89.
    Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN et al. 2017. Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170:701–13
    [Google Scholar]
  90. 90.
    Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL et al. 2017. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542:318–23
    [Google Scholar]
  91. 91.
    Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B et al. 2010. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16:2384–403
    [Google Scholar]
  92. 92.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M 1997. α-Synuclein in Lewy bodies. Nature 388:839–40
    [Google Scholar]
  93. 93.
    Glenner GG, Wong CW, Quaranta V, Eanes ED 1984. The amyloid deposits in Alzheimer's disease: their nature and pathogenesis. Appl. Pathol. 2:357–69
    [Google Scholar]
  94. 94.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82:4245–49
    [Google Scholar]
  95. 95.
    Auer S. 2015. Nucleation of polymorphic amyloid fibrils. Biophys. J. 108:1176–86
    [Google Scholar]
  96. 96.
    Fandrich M, Nystrom S, Nilsson KPR, Bockmann A, LeVine H 3rd, Hammarstrom P 2018. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J. Intern. Med. 283:218–37
    [Google Scholar]
  97. 97.
    Meier BH, Riek R, Bockmann A 2017. Emerging structural understanding of amyloid fibrils by solid-state NMR. Trends Biochem. Sci. 42:777–87
    [Google Scholar]
  98. 98.
    Close W, Neumann M, Schmidt A, Hora M, Annamalai K et al. 2018. Physical basis of amyloid fibril polymorphism. Nat. Commun. 9:699
    [Google Scholar]
  99. 99.
    Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G et al. 2017. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 547:185–90
    [Google Scholar]
  100. 100.
    Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ et al. 2018. Structures of filaments from Pick's disease reveal a novel tau protein fold. Nature 561:137–40
    [Google Scholar]
  101. 101.
    Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME et al. 2018. Cryo-EM structure of α-synuclein fibrils. eLife 7:e36402
    [Google Scholar]
  102. 102.
    Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S 2008. Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–13
    [Google Scholar]
  103. 103.
    Wan W, Briggs JA. 2016. Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–67
    [Google Scholar]
  104. 104.
    Bartesaghi A, Sprechmann P, Liu J, Randall G, Sapiro G, Subramaniam S 2008. Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol. 162:436–50
    [Google Scholar]
  105. 105.
    Hartnell LM, Earl LA, Bliss D, Moran A, Subramaniam S 2016. Imaging cellular architecture with 3D SEM. Encyclopedia of Cell Biology RA Bradshaw, PD Stahl pp. 44–50 Waltham, MA: Academic
    [Google Scholar]
  106. 106.
    Hayles MF, de Winter DA, Schneijdenberg CT, Meeldijk JD, Luecken U et al. 2010. The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. J. Struct. Biol. 172:180–90
    [Google Scholar]
  107. 107.
    Oikonomou CM, Jensen GJ. 2017. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86:873–96
    [Google Scholar]
  108. 108.
    Bharat TAM, Kureisaite-Ciziene D, Hardy GG, Yu EW, Devant JM et al. 2017. Structure of the hexagonal surface layer on Caulobacter crescentus cells. Nat. Microbiol. 2:17059
    [Google Scholar]
  109. 109.
    Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ et al. 2016. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353:506–8
    [Google Scholar]
  110. 110.
    Wan W, Kolesnikova L, Clarke M, Koehler A, Noda T et al. 2017. Structure and assembly of the Ebola virus nucleocapsid. Nature 551:394–97
    [Google Scholar]
  111. 111.
    Turonova B, Schur FKM, Wan W, Briggs JAG 2017. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å. J. Struct. Biol. 199:187–95
    [Google Scholar]
  112. 112.
    Wagner JM, Zadrozny KK, Chrustowicz J, Purdy MD, Yeager M et al. 2016. Crystal structure of an HIV assembly and maturation switch. eLife 5:e17063
    [Google Scholar]
  113. 113.
    Dodonova SO, Aderhold P, Kopp J, Ganeva I, Rohling S et al. 2017. 9 Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments. eLife 6:e26691
    [Google Scholar]
  114. 114.
    Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O et al. 2018. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 360:215–19
    [Google Scholar]
  115. 115.
    Bykov YS, Schaffer M, Dodonova SO, Albert S, Plitzko JM et al. 2017. The structure of the COPI coat determined within the cell. eLife 6:e32493
    [Google Scholar]
  116. 116.
    Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S et al. 2017. Dissecting the molecular organization of the translocon-associated protein complex. Nat. Commun. 8:14516
    [Google Scholar]
  117. 117.
    Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S et al. 2017. Proteasomes tether to two distinct sites at the nuclear pore complex. PNAS 114:13726–31
    [Google Scholar]
  118. 118.
    Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R et al. 2016. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351:969–72
    [Google Scholar]
  119. 119.
    Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P et al. 2016. Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–707
    [Google Scholar]
  120. 120.
    Scapin G, Potter CS, Carragher B 2018. Cryo-EM for small molecules discovery, design, understanding, and application. Cell Chem. Biol. 25:1318–25
    [Google Scholar]
  121. 121.
    Agafonov DE, Kastner B, Dybkov O, Hofele RV, Liu WT et al. 2016. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science 351:1416–20
    [Google Scholar]
  122. 122.
    Rauhut R, Fabrizio P, Dybkov O, Hartmuth K, Pena V et al. 2016. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353:1399–405
    [Google Scholar]
  123. 123.
    Wan R, Yan C, Bai R, Huang G, Shi Y 2016. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Science 353:895–904
    [Google Scholar]
  124. 124.
    Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y 2017. An atomic structure of the human spliceosome. Cell 169:918–29
    [Google Scholar]
  125. 125.
    Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y 2015. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349:1182–91
    [Google Scholar]
  126. 126.
    Shen H, Li Z, Jiang Y, Pan X, Wu J et al. 2018. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362:eaau2596
    [Google Scholar]
  127. 127.
    Zhang Z, Toth B, Szollosi A, Chen J, Csanady L 2018. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. eLife 7:e36409
    [Google Scholar]
  128. 128.
    Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S et al. 2018. Structure of full-length human TRPM4. PNAS 115:2377–82
    [Google Scholar]
  129. 129.
    Butterwick JA, Del Marmol J, Kim KH, Kahlson MA, Rogow JA et al. 2018. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560:447–52
    [Google Scholar]
  130. 130.
    She J, Guo J, Chen Q, Zeng W, Jiang Y, Bai XC 2018. Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature 556:130–34
    [Google Scholar]
  131. 131.
    Baradaran R, Wang C, Siliciano AF, Long SB 2018. Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters. Nature 559:580–84
    [Google Scholar]
  132. 132.
    Nguyen NX, Armache JP, Lee C, Yang Y, Zeng W et al. 2018. Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature 559:570–74
    [Google Scholar]
  133. 133.
    Fan C, Choi W, Sun W, Du J, Lu W 2018. Structure of the human lipid-gated cation channel TRPC3. eLife 7:e36852
    [Google Scholar]
  134. 134.
    Duan J, Li J, Zeng B, Chen GL, Peng X et al. 2018. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9:3102
    [Google Scholar]
  135. 135.
    Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F et al. 2018. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 7:e36615
    [Google Scholar]
  136. 136.
    Paknejad N, Hite RK. 2018. Structural basis for the regulation of inositol trisphosphate receptors by Ca2+ and IP3. Nat. Struct. Mol. Biol. 25:660–68
    [Google Scholar]
  137. 137.
    Park E, MacKinnon R. 2018. Structure of the CLC-1 chloride channel from Homo sapiens. . eLife 7:e36629
    [Google Scholar]
  138. 138.
    Lee CH, MacKinnon R. 2018. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360:508–13
    [Google Scholar]
  139. 139.
    Deneka D, Sawicka M, Lam AKM, Paulino C, Dutzler R 2018. Structure of a volume-regulated anion channel of the LRRC8 family. Nature 558:254–59
    [Google Scholar]
  140. 140.
    Yoder N, Yoshioka C, Gouaux E 2018. Gating mechanisms of acid-sensing ion channels. Nature 555:397–401
    [Google Scholar]
  141. 141.
    Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN 2018. Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å. Nature 556:203–8
    [Google Scholar]
  142. 142.
    Pan X, Ma J, Su X, Cao P, Chang W et al. 2018. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360:1109–13
    [Google Scholar]
  143. 143.
    Pi X, Tian L, Dai HE, Qin X, Cheng L et al. 2018. Unique organization of photosystem I light-harvesting supercomplex revealed by cryo-EM from a red alga. PNAS 115:4423–28
    [Google Scholar]
  144. 144.
    Roh SH, Stam NJ, Hryc CF, Couoh-Cardel S, Pintilie G et al. 2018. The 3.5-Å cryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase V0 proton channel. Mol. Cell 69:993–1004
    [Google Scholar]
  145. 145.
    Srivastava AP, Luo M, Zhou W, Symersky J, Bai D et al. 2018. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360:eaas9699
    [Google Scholar]
  146. 146.
    Agip AA, Blaza JN, Bridges HR, Viscomi C, Rawson S et al. 2018. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25:548–56
    [Google Scholar]
  147. 147.
    Yu H, Wu CH, Schut GJ, Haja DK, Zhao G et al. 2018. Structure of an ancient respiratory system. Cell 173:1636–49
    [Google Scholar]
  148. 148.
    Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S et al. 2018. Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557:123–26
    [Google Scholar]
  149. 149.
    Kim Y, Chen J. 2018. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359:915–19
    [Google Scholar]
  150. 150.
    Alam A, Kung R, Kowal J, McLeod RA, Tremp N et al. 2018. Structure of a zosuquidar and UIC2-bound human–mouse chimeric ABCB1. PNAS 115:E1973–72
    [Google Scholar]
  151. 151.
    Phulera S, Zhu H, Yu J, Claxton DP, Yoder N et al. 2018. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. eLife 7:e39383
    [Google Scholar]
  152. 152.
    Walsh RM Jr, Roh SH, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE. 2018. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557:261–65
    [Google Scholar]
  153. 153.
    Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, Slotboom DJ 2018. Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat. Struct. Mol. Biol. 25:515–21
    [Google Scholar]
  154. 154.
    Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP 2018. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359:545–50
    [Google Scholar]
  155. 155.
    Gong X, Qian H, Cao P, Zhao X, Zhou Q et al. 2018. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science 361:eaas8935
    [Google Scholar]
  156. 156.
    Ruan J, Xia S, Liu X, Lieberman J, Wu H 2018. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557:62–67
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052453
Loading
/content/journals/10.1146/annurev-bioeng-060418-052453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error