1932

Abstract

Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches that reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052527
2022-06-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-060418-052527.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052527&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chazaud C, Yamanaka Y. 2016. Lineage specification in the mouse preimplantation embryo. Development 143:1063–74
    [Google Scholar]
  2. 2.
    Wu G, Scholer HR. 2016. Lineage segregation in the totipotent embryo. Curr. Top. Dev. Biol. 117:301–17
    [Google Scholar]
  3. 3.
    Snippert HJ, Clevers H. 2011. Tracking adult stem cells. EMBO Rep 12:113–22
    [Google Scholar]
  4. 4.
    Aydin B, Mazzoni EO. 2019. Cell reprogramming: the many roads to success. Annu. Rev. Cell Dev. Biol. 35:433–52
    [Google Scholar]
  5. 5.
    Murry CE, Keller G. 2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–80
    [Google Scholar]
  6. 6.
    Yamanaka S. 2012. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–84
    [Google Scholar]
  7. 7.
    Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J et al. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–90
    [Google Scholar]
  8. 8.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10:55–63
    [Google Scholar]
  9. 9.
    He S, Nakada D, Morrison SJ. 2009. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25:377–406
    [Google Scholar]
  10. 10.
    Venkei ZG, Yamashita YM. 2018. Emerging mechanisms of asymmetric stem cell division. J. Cell Biol. 217:3785–95
    [Google Scholar]
  11. 11.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–95
    [Google Scholar]
  12. 12.
    Perestrelo T, Correia M, Ramalho-Santos J, Wirtz D 2018. Metabolic and mechanical cues regulating pluripotent stem cell fate. Trends Cell Biol 28:1014–29
    [Google Scholar]
  13. 13.
    Chaudhuri O, Mooney DJ. 2012. Stem-cell differentiation: anchoring cell-fate cues. Nat. Mater. 11:568–69
    [Google Scholar]
  14. 14.
    Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  15. 15.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104
    [Google Scholar]
  16. 16.
    Smith LR, Irianto J, Xia Y, Pfeifer CR, Discher DE. 2019. Constricted migration modulates stem cell differentiation. Mol. Biol. Cell 30:1985–99
    [Google Scholar]
  17. 17.
    Rossi G, Manfrin A, Lutolf MP. 2018. Progress and potential in organoid research. Nat. Rev. Genet. 19:671–87
    [Google Scholar]
  18. 18.
    Schutgens F, Clevers H. 2020. Human organoids: tools for understanding biology and treating diseases. Annu. Rev. Pathol. Mech. Dis. 15:211–34
    [Google Scholar]
  19. 19.
    Kim J, Koo BK, Knoblich JA. 2020. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21:571–84
    [Google Scholar]
  20. 20.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  21. 21.
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–32
    [Google Scholar]
  22. 22.
    Hofer M, Lutolf MP. 2021. Engineering organoids. Nat. Rev. Mater. 6:402–20
    [Google Scholar]
  23. 23.
    Clevers H. 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  24. 24.
    Li M, Izpisua Belmonte JC 2019. Organoids—preclinical models of human disease. Reply. N. Engl. J. Med. 380:1982
    [Google Scholar]
  25. 25.
    Renner M, Lancaster MA, Bian S, Choi H, Ku T et al. 2017. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J 36:1316–29
    [Google Scholar]
  26. 26.
    Takebe T, Wells JM. 2019. Organoids by design. Science 364:956–59
    [Google Scholar]
  27. 27.
    Sorrentino G, Rezakhani S, Yildiz E, Nuciforo S, Heim MH et al. 2020. Mechano-modulatory synthetic niches for liver organoid derivation. Nat. Commun. 11:3416
    [Google Scholar]
  28. 28.
    Perez-Gonzalez C, Ceada G, Greco F, Matejcic M, Gomez-Gonzalez M et al. 2021. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23:745–57
    [Google Scholar]
  29. 29.
    Hiiragi T, Solter D. 2004. First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–64
    [Google Scholar]
  30. 30.
    Motosugi N, Dietrich JE, Polanski Z, Solter D, Hiiragi T. 2006. Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte. PLOS Biol 4:e135
    [Google Scholar]
  31. 31.
    Rossant J, Tam PP. 2004. Emerging asymmetry and embryonic patterning in early mouse development. Dev. Cell 7:155–64
    [Google Scholar]
  32. 32.
    Johnson MH, Ziomek CA. 1983. Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol. 95:211–18
    [Google Scholar]
  33. 33.
    Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. 2014. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141:2813–24
    [Google Scholar]
  34. 34.
    Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–48
    [Google Scholar]
  35. 35.
    Samarage CR, White MD, Alvarez YD, Fierro-Gonzalez JC, Henon Y et al. 2015. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34:435–47
    [Google Scholar]
  36. 36.
    Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N et al. 2017. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40:235–47.e7
    [Google Scholar]
  37. 37.
    Totaro A, Panciera T, Piccolo S. 2018. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 20:888–99
    [Google Scholar]
  38. 38.
    Pocaterra A, Romani P, Dupont S. 2020. YAP/TAZ functions and their regulation at a glance. J. Cell Sci. 133:jcs230425
    [Google Scholar]
  39. 39.
    Zhao B, Ye X, Yu J, Li L, Li W et al. 2008. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–71
    [Google Scholar]
  40. 40.
    Halder G, Dupont S, Piccolo S. 2012. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13:591–600
    [Google Scholar]
  41. 41.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  42. 42.
    Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. 2011. Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–14
    [Google Scholar]
  43. 43.
    Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68
    [Google Scholar]
  44. 44.
    Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M et al. 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–410.e14
    [Google Scholar]
  45. 45.
    Panciera T, Azzolin L, Cordenonsi M, Piccolo S. 2017. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18:758–70
    [Google Scholar]
  46. 46.
    Ralston A, Rossant J. 2008. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313:614–29
    [Google Scholar]
  47. 47.
    Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K et al. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–102
    [Google Scholar]
  48. 48.
    Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M et al. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16:398–410
    [Google Scholar]
  49. 49.
    Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K et al. 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917–29
    [Google Scholar]
  50. 50.
    Frum T, Murphy TM, Ralston A 2018. HIPPO signaling resolves embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 7:e42298
    [Google Scholar]
  51. 51.
    Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. 2000. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 62:1866–74
    [Google Scholar]
  52. 52.
    Kaneko KJ, DePamphilis ML. 2013. TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–90
    [Google Scholar]
  53. 53.
    Kumar RP, Ray S, Home P, Saha B, Bhattacharya B et al. 2018. Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription. Development 145:dev162644
    [Google Scholar]
  54. 54.
    Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A et al. 2008. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125:270–83
    [Google Scholar]
  55. 55.
    Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D et al. 2007. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–36
    [Google Scholar]
  56. 56.
    Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:615–24
    [Google Scholar]
  57. 57.
    Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P et al. 2014. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16:27–37
    [Google Scholar]
  58. 58.
    Schrode N, Saiz N, Di Talia S, Hadjantonakis AK. 2014. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29:454–67
    [Google Scholar]
  59. 59.
    Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P et al. 2011. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev. Cell 21:1005–13
    [Google Scholar]
  60. 60.
    Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK. 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–91
    [Google Scholar]
  61. 61.
    Saiz N, Grabarek JB, Sabherwal N, Papalopulu N, Plusa B. 2013. Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst. Development 140:4311–22
    [Google Scholar]
  62. 62.
    Wennekamp S, Mesecke S, Nedelec F, Hiiragi T. 2013. A self-organization framework for symmetry breaking in the mammalian embryo. Nat. Rev. Mol. Cell Biol. 14:452–59
    [Google Scholar]
  63. 63.
    Rossant J, Tam PP. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–13
    [Google Scholar]
  64. 64.
    Ryan AQ, Chan CJ, Graner F, Hiiragi T. 2019. Lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation. Dev. Cell 51:684–97.e4
    [Google Scholar]
  65. 65.
    Wang X, Zhang Z, Tao H, Liu J, Hopyan S, Sun Y. 2018. Characterizing inner pressure and stiffness of trophoblast and inner cell mass of blastocysts. Biophys. J. 115:2443–50
    [Google Scholar]
  66. 66.
    Chan CJ, Costanzo M, Ruiz-Herrero T, Monke G, Petrie RJ et al. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571:112–16
    [Google Scholar]
  67. 67.
    Weberling A, Zernicka-Goetz M. 2021. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep 34:108655
    [Google Scholar]
  68. 68.
    Christodoulou N, Weberling A, Strathdee D, Anderson KI, Timpson P, Zernicka-Goetz M. 2019. Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat. Commun. 10:3557
    [Google Scholar]
  69. 69.
    Varmuza S, Prideaux V, Kothary R, Rossant J. 1988. Polytene chromosomes in mouse trophoblast giant cells. Development 102:127–34
    [Google Scholar]
  70. 70.
    Screen M, Dean W, Cross JC, Hemberger M. 2008. Cathepsin proteases have distinct roles in trophoblast function and vascular remodelling. Development 135:3311–20
    [Google Scholar]
  71. 71.
    Parast MM, Aeder S, Sutherland AE. 2001. Trophoblast giant-cell differentiation involves changes in cytoskeleton and cell motility. Dev. Biol. 230:43–60
    [Google Scholar]
  72. 72.
    Bevilacqua EM, Abrahamsohn PA. 1989. Trophoblast invasion during implantation of the mouse embryo. Arch. Biol. Med. Exp. 22:107–18
    [Google Scholar]
  73. 73.
    Reuss B, Hellmann P, Dahl E, Traub O, Butterweck A et al. 1996. Connexins and E-cadherin are differentially expressed during trophoblast invasion and placenta differentiation in the rat. Dev. Dyn. 205:172–82
    [Google Scholar]
  74. 74.
    Zhang T, Guo S, Zhou H, Wu Z, Liu J et al. 2021. Endometrial extracellular matrix rigidity and IFNτ ensure the establishment of early pregnancy through activation of YAP. Cell Prolif. 54:e12976
    [Google Scholar]
  75. 75.
    Nieto MA. 2011. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27:347–76
    [Google Scholar]
  76. 76.
    Lee K, Nelson CM. 2012. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int. Rev. Cell Mol. Biol 294:171–221
    [Google Scholar]
  77. 77.
    Savagner P. 2015. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr. Top. Dev. Biol 112:273–300
    [Google Scholar]
  78. 78.
    Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–96
    [Google Scholar]
  79. 79.
    Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. 2012. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:781–91
    [Google Scholar]
  80. 80.
    Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM. 2012. Matrix compliance regulates Rac1b localization, NADPH oxidase assembly, and epithelial-mesenchymal transition. Mol. Biol. Cell 23:4097–108
    [Google Scholar]
  81. 81.
    Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH et al. 2015. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17:678–88
    [Google Scholar]
  82. 82.
    Brown AC, Fiore VF, Sulchek TA, Barker TH. 2013. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J. Pathol. 229:25–35
    [Google Scholar]
  83. 83.
    Matsuzaki S, Darcha C, Pouly JL, Canis M. 2017. Effects of matrix stiffness on epithelial to mesenchymal transition-like processes of endometrial epithelial cells: implications for the pathogenesis of endometriosis. Sci. Rep. 7:44616
    [Google Scholar]
  84. 84.
    Chen QK, Lee K, Radisky DC, Nelson CM. 2013. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation 86:126–32
    [Google Scholar]
  85. 85.
    Comaills V, Kabeche L, Morris R, Buisson R, Yu M et al. 2016. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep 17:2632–47
    [Google Scholar]
  86. 86.
    Simi AK, Anlas AA, Stallings-Mann M, Zhang S, Hsia T et al. 2018. A soft microenvironment protects from failure of midbody abscission and multinucleation downstream of the EMT-promoting transcription factor Snail. Cancer Res 78:2277–89
    [Google Scholar]
  87. 87.
    Rabie EM, Zhang SX, Dunn CE, Nelson CM. 2021. Substratum stiffness signals through integrin-linked kinase and β1-integrin to regulate midbody proteins and abscission during EMT. Mol. Biol. Cell 32:1664–76
    [Google Scholar]
  88. 88.
    Copp AJ. 1979. Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J. Embryol. Exp. Morphol. 51:109–20
    [Google Scholar]
  89. 89.
    Cockburn K, Rossant J. 2010. Making the blastocyst: lessons from the mouse. J. Clin. Investig. 120:995–1003
    [Google Scholar]
  90. 90.
    Qin H, Blaschke K, Wei G, Ohi Y, Blouin L et al. 2012. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum. Mol. Genet. 21:2054–67
    [Google Scholar]
  91. 91.
    Grapin-Botton A, Constam D. 2007. Evolution of the mechanisms and molecular control of endoderm formation. Mech. Dev. 124:253–78
    [Google Scholar]
  92. 92.
    Solnica-Krezel L. 2005. Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15:R213–28
    [Google Scholar]
  93. 93.
    Kyprianou C, Christodoulou N, Hamilton RS, Nahaboo W, Boomgaard DS et al. 2020. Basement membrane remodelling regulates mouse embryogenesis. Nature 582:253–58
    [Google Scholar]
  94. 94.
    Srinivas S, Rodriguez T, Clements M, Smith JC, Beddington RS. 2004. Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 131:1157–64
    [Google Scholar]
  95. 95.
    Arnold SJ, Robertson EJ. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:91–103
    [Google Scholar]
  96. 96.
    Shioi G, Hoshino H, Abe T, Kiyonari H, Nakao K et al. 2017. Apical constriction in distal visceral endoderm cells initiates global, collective cell rearrangement in embryonic visceral endoderm to form anterior visceral endoderm. Dev. Biol. 429:20–30
    [Google Scholar]
  97. 97.
    Migeotte I, Omelchenko T, Hall A, Anderson KV. 2010. Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse. PLOS Biol 8:e1000442
    [Google Scholar]
  98. 98.
    Trichas G, Smith AM, White N, Wilkins V, Watanabe T et al. 2012. Multi-cellular rosettes in the mouse visceral endoderm facilitate the ordered migration of anterior visceral endoderm cells. PLOS Biol 10:e1001256
    [Google Scholar]
  99. 99.
    Omelchenko T, Rabadan MA, Hernandez-Martinez R, Grego-Bessa J, KV Anderson, Hall A. 2014. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo. Genes Dev 28:2764–77
    [Google Scholar]
  100. 100.
    Thompson DW. 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  101. 101.
    Park JA, Kim JH, Bi D, Mitchel JA, Qazvini NT et al. 2015. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14:1040–48
    [Google Scholar]
  102. 102.
    Bi D, Yang X, Marchetti MC, Manning ML. 2016. Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6:021011
    [Google Scholar]
  103. 103.
    Schotz EM, Lanio M, Talbot JA, Manning ML. 2013. Glassy dynamics in three-dimensional embryonic tissues. J. R. Soc. Interface 10:20130726
    [Google Scholar]
  104. 104.
    Atia L, Fredberg JJ, Gov NS, Pegoraro AF. 2021. Are cell jamming and unjamming essential in tissue development? Cells Dev. In press. https://doi.org/10.1016/j.cdev.2021.203727
    [Crossref]
  105. 105.
    Atia L, Bi D, Sharma Y, Mitchel JA, Gweon B et al. 2018. Geometric constraints during epithelial jamming. Nat. Phys. 14:613–20
    [Google Scholar]
  106. 106.
    Wang X, Merkel M, Sutter LB, Erdemci-Tandogan G, Manning ML, Kasza KE. 2020. Anisotropy links cell shapes to tissue flow during convergent extension. PNAS 117:13541–51
    [Google Scholar]
  107. 107.
    Iyer KV, Piscitello-Gomez R, Paijmans J, Julicher F, Eaton S. 2019. Epithelial viscoelasticity is regulated by mechanosensitive E-cadherin turnover. Curr. Biol. 29:578–91.e5
    [Google Scholar]
  108. 108.
    Petridou NI, Corominas-Murtra B, Heisenberg CP, Hannezo E. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell 184:1914–28.e19
    [Google Scholar]
  109. 109.
    Petridou NI, Heisenberg CP. 2019. Tissue rheology in embryonic organization. EMBO J 38:e102497
    [Google Scholar]
  110. 110.
    Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA et al. 2018. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561:401–5
    [Google Scholar]
  111. 111.
    Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW et al. 2013. Regulated tissue fluidity steers zebrafish body elongation. Development 140:573–82
    [Google Scholar]
  112. 112.
    Kim S, Pochitaloff M, Stooke-Vaughan GA, Campas O 2021. Embryonic tissues as active foams. Nat. Phys. 17:859–66
    [Google Scholar]
  113. 113.
    David R, Luu O, Damm EW, Wen JW, Nagel M, Winklbauer R. 2014. Tissue cohesion and the mechanics of cell rearrangement. Development 141:3672–82
    [Google Scholar]
  114. 114.
    Saadaoui M, Rocancourt D, Roussel J, Corson F, Gros J. 2020. A tensile ring drives tissue flows to shape the gastrulating amniote embryo. Science 367:453–58
    [Google Scholar]
  115. 115.
    Benazeraf B, Francois P, Baker RE, Denans N, Little CD, Pourquie O. 2010. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466:248–52
    [Google Scholar]
  116. 116.
    Spurlin JW, Siedlik MJ, Nerger BA, Pang MF, Jayaraman S et al. 2019. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 146:dev175257
    [Google Scholar]
  117. 117.
    Chambers I, Smith A. 2004. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–60
    [Google Scholar]
  118. 118.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–42
    [Google Scholar]
  119. 119.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–91
    [Google Scholar]
  120. 120.
    Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76
    [Google Scholar]
  121. 121.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. 2002.. “ Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600
    [Google Scholar]
  122. 122.
    Lian I, Kim J, Okazawa H, Zhao J, Zhao B et al. 2010. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24:1106–18
    [Google Scholar]
  123. 123.
    Serra D, Mayr U, Boni A, Lukonin I, Rempfler M et al. 2019. Self-organization and symmetry breaking in intestinal organoid development. Nature 569:66–72
    [Google Scholar]
  124. 124.
    Nelson CM. 2021. The mechanics of crypt morphogenesis. Nat. Cell Biol. 23:678–79
    [Google Scholar]
  125. 125.
    Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D et al. 2021. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23:733–44
    [Google Scholar]
  126. 126.
    Nelson CM, Gleghorn JP, Pang MF, Jaslove JM, Goodwin K et al. 2017. Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144:4328–35
    [Google Scholar]
  127. 127.
    Li J, Wang Z, Chu Q, Jiang K, Li J, Tang N 2018. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev. Cell 44:297–312.e5
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052527
Loading
/content/journals/10.1146/annurev-bioeng-060418-052527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error