1932

Abstract

The treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052547
2019-06-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052547.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052547&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Petersen W, Tillmann B. 1995. Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop. Scand. 66:308–12
    [Google Scholar]
  2. 2.
    Makris EA, Hadidi P, Athanasiou KA 2011. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–31
    [Google Scholar]
  3. 3.
    Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P 2014. Biomaterials in search of a meniscus substitute. Biomaterials 35:3527–40
    [Google Scholar]
  4. 4.
    Danzig L, Resnick D, Gonsalves M, Akeson WH 1983. Blood supply to the normal and abnormal menisci of the human knee. Clin. Orthop. Relat. Res. 172:271–76
    [Google Scholar]
  5. 5.
    Arnoczky SP, Warren RF. 1982. Microvasculature of the human meniscus. Am. J. Sports Med. 10:90–95
    [Google Scholar]
  6. 6.
    Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A et al. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthr. Cartil. 19:1132–41
    [Google Scholar]
  7. 7.
    Cengiz IF, Pereira H, Silva-Correia J, Ripoll PL, Espregueira-Mendes J et al. 2017. Meniscal lesions: from basic science to clinical management in footballers. Injuries and Health Problems in Football: What Everyone Should Know J Espregueira-Mendes 145–63 Berlin: Springer
    [Google Scholar]
  8. 8.
    Pereira H, Cengis IF, Silva-Correia J, Cucciarini M, Gelber PE et al. 2016. Histology-ultrastructure-biology. Surgery of the Meniscus C Hulet, H Pereira, G Peretti, M Denti 23–33 Berlin: Springer
    [Google Scholar]
  9. 9.
    Voloshin AS, Wosk J. 1983. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J. Biomed. Eng. 5:157–61
    [Google Scholar]
  10. 10.
    Krause WR, Pope MH, Johnson RJ, Wilder DG 1976. Mechanical changes in the knee after meniscectomy. J. Bone Jt. Surg. Am. 58:599–604
    [Google Scholar]
  11. 11.
    Shrive NG, O'Connor JJ, Goodfellow JW 1978. Load-bearing in the knee joint. Clin. Orthop. Relat. Res. 131:279–87
    [Google Scholar]
  12. 12.
    Herwig J, Egner E, Buddecke E 1984. Chemical changes of human knee joint menisci in various stages of degeneration. Ann. Rheum. Dis. 43:635–40
    [Google Scholar]
  13. 13.
    McDermott ID, Masouros SD, Amis AA 2008. Biomechanics of the menisci of the knee. Curr. Orthop. 22:193–201
    [Google Scholar]
  14. 14.
    Ghosh P, Ingman AM, Taylor TK 1975. Variations in collagen, non-collagenous proteins, and hexosamine in menisci derived from osteoarthritic and rheumatoid arthritic knee joints. J. Rheumatol. 2:100–7
    [Google Scholar]
  15. 15.
    Wu JJ, Eyre DR, Slayter HS 1987. Type VI collagen of the intervertebral disc. Biochemical and electron-microscopic characterization of the native protein. Biochem. J. 248:373–81
    [Google Scholar]
  16. 16.
    Eyre DR, Wu JJ. 1983. Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett 158:265–70
    [Google Scholar]
  17. 17.
    McDevitt C, Webber R. 1990. The ultrastructure and biochemistry of meniscal cartilage. Clin. Orthop. Relat. Res. 252:8–18
    [Google Scholar]
  18. 18.
    Beaupre A, Choukroun R, Guidouin R, Garneau R, Gerardin H, Cardou A 1986. Knee menisci: correlation between microstructure and biomechanics. Clin. Orthop. Relat. Res. 208:72–75
    [Google Scholar]
  19. 19.
    Petersen W, Tillmann B. 1998. Collagenous fibril texture of the human knee joint menisci. Anat. Embryol. 197:317–24
    [Google Scholar]
  20. 20.
    Bullough PG, Munuera L, Murphy J, Weinstein AM 1970. The strength of the menisci of the knee as it relates to their fine structure. Bone Jt. J. 52:564–70
    [Google Scholar]
  21. 21.
    Andrews SHJ, Rattner JB, Abusara Z, Adesida A, Shrive NG, Ronsky JL 2014. Tie-fibre structure and organization in the knee menisci. J. Anat. 224:531–37
    [Google Scholar]
  22. 22.
    Skaggs DL, Warden WH, Mow VC 1994. Radial tie fibers influence the tensile properties of the bovine medial meniscus. J. Orthop. Res. 12:176–85
    [Google Scholar]
  23. 23.
    Bansal S, Mandalapu S, Aeppli C, Qu F, Szczesny SE et al. 2017. Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: insight into meniscus structure and function. Acta Biomater 56:102–9
    [Google Scholar]
  24. 24.
    Ghosh P, Taylor TK. 1987. The knee joint meniscus: a fibrocartilage of some distinction. Clin. Orthop. Relat. Res. 224:52–63
    [Google Scholar]
  25. 25.
    Habuchi H, Yamagata T, Iwata H, Suzuki S 1973. The occurrence of a wide variety of dermatan sulfate chondroitin sulfate copolymers in fibrous cartilage. J. Biol. Chem. 248:6019–28
    [Google Scholar]
  26. 26.
    Adams ME, Muir H. 1981. The glycosaminoglycans of canine menisci. Biochem. J. 197:385–89
    [Google Scholar]
  27. 27.
    Sanchez-Adams J, Willard VP, Athanasiou KA 2011. Regional variation in the mechanical role of knee meniscus glycosaminoglycans. J. Appl. Physiol. 111:1590–96
    [Google Scholar]
  28. 28.
    Nakano T, Thompson JR, Aherne FX 1986. Distribution of glycosaminoglycans and the nonreducible collagen crosslink, pyridinoline in porcine menisci. Can. J. Vet. Res. 50:532–36
    [Google Scholar]
  29. 29.
    Nakano T, Dodd CM, Scott PG 1997. Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J. Orthop. Res. 15:213–20
    [Google Scholar]
  30. 30.
    Katsuragawa Y, Saitoh K, Tanaka N, Wake M, Ikeda Y et al. 2010. Changes of human menisci in osteoarthritic knee joints. Osteoarthr. Cartil. 18:1133–43
    [Google Scholar]
  31. 31.
    Ghadially FN, Lalonde JM, Wedge JH 1983. Ultrastructure of normal and torn menisci of the human knee joint. J. Anat. 136:773–91
    [Google Scholar]
  32. 32.
    van der Bracht H, Verdonk R, Verbruggen G, Elewaut D, Verdonk P 2007. Cell-based meniscus tissue engineering. Top. Tissue Eng. 3:1–13
    [Google Scholar]
  33. 33.
    Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM 2013. Meniscus repair and regeneration: review on current methods and research potential. Eur. Cell Mater. 26:150–70
    [Google Scholar]
  34. 34.
    Nakata K, Shino K, Hamada M, Mae T, Miyama T et al. 2001. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin. Orthop. Relat. Res. 391:208–18
    [Google Scholar]
  35. 35.
    McDevitt CA, Mukherjee S, Kambic H, Parker R 2002. Emerging concepts of the cell biology of the meniscus. Curr. Opin. Orthop. 13:345–50
    [Google Scholar]
  36. 36.
    McDevitt CA, Li H, Zaramo C, Prajapati R 2001. The isolation of a cell–pericellular matrix complex from meniscus fibrocartilage: the fibrochondron Poster presented at Annu. Meet. Orthop. Res. Soc., 47th San Francisco, Febr:25–28
  37. 37.
    Verdonk PCM, Forsyth RG, Wang J, Almqvist KF, Verdonk R et al. 2005. Characterisation of human knee meniscus cell phenotype. Osteoarthr. Cartil. 13:548–60
    [Google Scholar]
  38. 38.
    Cengiz IF, Pereira H, Pêgo JM, Sousa N, Espregueira-Mendes J et al. 2017. Segmental and regional quantification of 3D cellular density of human meniscus from osteoarthritic knee. J. Tissue Eng. Regen. Med 11:1844–52
    [Google Scholar]
  39. 39.
    Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC 1989. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 7:771–82
    [Google Scholar]
  40. 40.
    Tissakht M, Ahmed AM. 1995. Tensile stress-strain characteristics human meniscal material. J. Biomech. 28:411–22
    [Google Scholar]
  41. 41.
    Goertzen DJ, Budney DR, Cinats JG 1997. Methodology and apparatus to determine material properties of the knee joint meniscus. J. Med. Eng. Phys. 19:412–19
    [Google Scholar]
  42. 42.
    Lakes EH, Kline CL, McFetridge PS, Allen KD 2015. Comparing the mechanical properties of the porcine knee meniscus when hydrated in saline versus synovial fluid. J. Biomech. 48:4333–38
    [Google Scholar]
  43. 43.
    Fithian DC, Kelly MA, Mow VC 1990. Material properties and structure–function relationships in the menisci. J. Clin. Orthop. Relat. Res. 252:19–31
    [Google Scholar]
  44. 44.
    Newton PM, Mow VC. 1992. The effects of strain rate on the tensile properties of bovine meniscus. Trans. Orthop. Res. Soc. 17:626
    [Google Scholar]
  45. 45.
    Favenesi JA, Shaffer JC, Mow VC 1983. Biphasic mechanical properties of knee meniscus. Trans. Orthop. Res. Soc. 8:57
    [Google Scholar]
  46. 46.
    Sweigart MA, Zhu CF, Burt DM, Deholl PD, Agrawal CM et al. 2004. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 32:1569–79
    [Google Scholar]
  47. 47.
    Joshi MD, Suh JK, Marui T, Woo SLY 1995. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823–28
    [Google Scholar]
  48. 48.
    Andrews SHJ, Rattner JB, Shrive NG, Ronsky JL 2015. Swelling significantly affects the material properties of the menisci in compression. J. Biomech. 48:1485–89
    [Google Scholar]
  49. 49.
    Leslie BW, Gardner DL, McGeough JA, Moran RS 2000. Anisotropic response of the human knee joint meniscus to unconfined compression. Proc. Inst. Mech. Eng. H 214:631–35
    [Google Scholar]
  50. 50.
    Chia HN, Hull ML. 2008. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J. Orthop. Res. 26:951–56
    [Google Scholar]
  51. 51.
    Moyer JT, Priest R, Bouman T, Abraham AC, Haut Donahue TL 2013. Indentation properties and glycosaminoglycan content of human menisci in the deep zone. Acta Biomater 9:6624–29
    [Google Scholar]
  52. 52.
    Moyer JT, Abraham AC, Donahue TLH 2012. Nanoindentation of human meniscal surfaces. J. Biomech. 45:2230–35
    [Google Scholar]
  53. 53.
    Baro VJ, Bonnevie ED, Lai X, Price C, Burris DL, Wang L 2013. Functional characterization of normal and degraded bovine meniscus: rate-dependent indentation and friction studies. Bone 51:232–40
    [Google Scholar]
  54. 54.
    Montgomery SR, Zhang A, Ngo SS, Wang JC, Hame SL 2013. Cross-sectional analysis of trends in meniscectomy and meniscus repair. Orthopedics 36:e1007–13
    [Google Scholar]
  55. 55.
    Jones JC, Burks R, Owens BD, Sturdivant RX, Svoboda SJ, Cameron KL 2012. Incidence and risk factors associated with meniscal injuries among active-duty US military service members. J. Athl. Train. 47:67–73
    [Google Scholar]
  56. 56.
    Fillingham YA, Riboh JC, Erickson BJ, Bach BR, Yanke AB 2017. Inside-out versus all-inside repair of isolated meniscal tears: an updated systematic review. Am. J. Sports Med. 45:234–42
    [Google Scholar]
  57. 57.
    Steinbrück K. 1999. [Epidemiology of sports injuries—25-year-analysis of sports orthopedic–traumatologic ambulatory care.]. Sport. Sport. 13:38–52 In German )
    [Google Scholar]
  58. 58.
    Casteleyn PP, Handelberg F, Opdecam P 1988. Traumatic haemarthrosis of the knee. Bone Jt. J. 70:404–6
    [Google Scholar]
  59. 59.
    Drosos GI, Pozo JL. 2004. The causes and mechanisms of meniscal injuries in the sporting and non-sporting environment in an unselected population. Knee 11:143–49
    [Google Scholar]
  60. 60.
    Baker BE, Peckham AC, Pupparo F, Sanborn JC 1985. Review of meniscal injury and associated sports. Am. J. Sports Med. 13:1–4
    [Google Scholar]
  61. 61.
    Fox AJS, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA 2015. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin. Anat. 28:269–87
    [Google Scholar]
  62. 62.
    Pihl K, Englund M, Lohmander LS, Jørgensen U, Nissen N et al. 2017. Signs of knee osteoarthritis common in 620 patients undergoing arthroscopic surgery for meniscal tear. Acta Orthop 88:90–95
    [Google Scholar]
  63. 63.
    Bigoni M, Turati M, Sacerdote P, Gaddi D, Piatti M et al. 2017. Characterization of synovial fluid cytokine profiles in chronic meniscal tear of the knee. J. Orthop. Res. 35:340–46
    [Google Scholar]
  64. 64.
    Englund M, Lohmander LS. 2004. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy. Arthritis Rheum 50:2811–19
    [Google Scholar]
  65. 65.
    Guo W, Liu S, Zhu Y, Yu C, Lu S et al. 2015. Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration. Stem Cells Int 2015:517520
    [Google Scholar]
  66. 66.
    Fukubayashi T, Kurosawa H. 1980. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthritic knee joints. Acta Orthop. Scand. 51:871–79
    [Google Scholar]
  67. 67.
    Vaziri A, Nayeb-Hashemi H, Singh A, Tafti BA 2008. Influence of meniscectomy and meniscus replacement on the stress distribution in human knee joint. Ann. Biomed. Eng. 36:1335–44
    [Google Scholar]
  68. 68.
    Roos H, Laurbn M, Adalberth T, Roos EWAM, Jonsson K et al. 1998. Knee osteoarthritis after meniscectomy prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41:687–93
    [Google Scholar]
  69. 69.
    Chatain F, Adeleine P, Chambat P, Neyret P 2003. A comparative study of medial versus lateral arthroscopic partial meniscectomy on stable knees: 10-year minimum follow-up. Arthroscopy 19:842–49
    [Google Scholar]
  70. 70.
    McDermott I. 2011. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee. Br. J. Sports Med. 45:292–97
    [Google Scholar]
  71. 71.
    Carpanen D, Hillstrom H, Walker R, Reisse F, Cheah K, Mootanah R 2016. Partial meniscectomy: How much can be removed before reconstruction is required. ? Bone Jt 98:Suppl. 954
    [Google Scholar]
  72. 72.
    Northmore-Ball MD, Dandy DJ, Jackson RW 1983. Arthroscopic, open partial, and total meniscectomy: a comparative study. Bone Jt. J. 65:400–4
    [Google Scholar]
  73. 73.
    Jaureguito JW, Elliot JS, Lietner T, Dixon LB, Reider B 1995. The effects of arthroscopic partial lateral meniscectomy in an otherwise normal knee: a retrospective review of functional, clinical, and radiographic results. Arthroscopy 11:29–36
    [Google Scholar]
  74. 74.
    Faunø P, Nielsen AB. 1992. Arthroscopic partial meniscectomy: a long-term follow-up. Arthroscopy 8:345–49
    [Google Scholar]
  75. 75.
    Katz JN, Brophy RH, Chaisson CE, De Chaves L, Cole BJ et al. 2013. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N. Engl. J. Med. 368:1675–84
    [Google Scholar]
  76. 76.
    Katz JN, Wright J, Spindler KP, Mandl LA, Safran-Norton CE et al. 2016. Predictors and outcomes of crossover to surgery from physical therapy for meniscal tear and osteoarthritis: a randomized trial comparing physical therapy and surgery. J. Bone Jt. Surg. Am. 98:1890–96
    [Google Scholar]
  77. 77.
    Rongen JJ, Rovers MM, van Tienen TG, Buma P, Hannink G 2017. Increased risk for knee replacement surgery after arthroscopic surgery for degenerative meniscal tears: a multi-center longitudinal observational study using data from the osteoarthritis initiative. Osteoarthr. Cartil. 25:23–29
    [Google Scholar]
  78. 78.
    Järvinen TL, Guyatt GH. 2016. Arthroscopic surgery for knee pain: a highly questionable practice without supporting evidence of even moderate quality. Br. J. Sports Med. 50:1426–27
    [Google Scholar]
  79. 79.
    Thorlund JB. 2017. Deconstructing a popular myth: why knee arthroscopy is no better than placebo surgery for degenerative meniscal tears. Br. J. Sports Med. 51:1630–31
    [Google Scholar]
  80. 80.
    Thorlund JB, Englund M, Christensen R, Nissen N, Pihl K et al. 2017. Patient reported outcomes in patients undergoing arthroscopic partial meniscectomy for traumatic or degenerative meniscal tears: comparative prospective cohort study. BMJ 2017:j356
    [Google Scholar]
  81. 81.
    Thorlund JB, Juhl CB, Roos EM, Lohmander LS 2015. Arthroscopic surgery for degenerative knee: systematic review and meta-analysis of benefits and harms. BMJ 2015. 350:h2747
    [Google Scholar]
  82. 82.
    Khan M, Evaniew N, Bedi A, Ayeni OR, Bhandari M 2014. Arthroscopic surgery for degenerative tears of the meniscus: a systematic review and meta-analysis. Can. Med. Assoc. J. 186:1057–64
    [Google Scholar]
  83. 83.
    Devji T, Guyatt GH, Lytvyn L, Brignardello-Petersen R, Foroutan F et al. 2017. Application of minimal important differences in degenerative knee disease outcomes: a systematic review and case study to inform BMJ Rapid Recommendations. BMJ Open 7:e015587
    [Google Scholar]
  84. 84.
    Brignardello-Petersen R, Guyatt GH, Buchbinder R, Poolman RW, Schandelmaier S et al. 2017. Knee arthroscopy versus conservative management in patients with degenerative knee disease: a systematic review. BMJ Open 7:e016114
    [Google Scholar]
  85. 85.
    Siemieniuk RAC, Harris IA, Agoritsas T, Poolman RW, Brignardello-Petersen R et al. 2017. Arthroscopic surgery for degenerative knee arthritis and meniscal tears: a clinical practice guideline. BMJ 357:j1982
    [Google Scholar]
  86. 86.
    Taylor SA, Rodeo SA. 2013. Augmentation techniques for isolated meniscal tears. Curr. Rev. Musculoskelet. Med. 6:95–101
    [Google Scholar]
  87. 87.
    Jouve F, Ovadia H, Pujol N, Beaufils P 2010. Meniscal repair: technique. The Meniscus P Beaufils, R Verdonk 119–28 Berlin: Springer
    [Google Scholar]
  88. 88.
    Tuman J, Haro MS, Foley S, Diduch DR 2012. All-inside meniscal repair devices and techniques. Expert Rev. Med. Devices 9:147–57
    [Google Scholar]
  89. 89.
    Turman KA, Diduch DR, Miller MD 2009. All-inside meniscal repair. Sports Health 1:438–44
    [Google Scholar]
  90. 90.
    Smith NA, Parkinson B, Spalding T 2015. Meniscal allograft transplantation and meniscal scaffolds: Where are we up to now. ? Orthop. Trauma 29:31–37
    [Google Scholar]
  91. 91.
    McDermott ID, Lie DTT, Edwards A, Bull AMJ, Amis AA 2008. The effects of lateral meniscal allograft transplantation techniques on tibio-femoral contact pressures. Knee Surg. Sport Traumatol. Arthrosc. 16:553–60
    [Google Scholar]
  92. 92.
    Smith NA, MacKay N, Costa M, Spalding T 2014. Meniscal allograft transplantation in a symptomatic meniscal deficient knee: a systematic review. Knee Surg. Sport Traumatol. Arthrosc. 23:270–79
    [Google Scholar]
  93. 93.
    Samitier G, Alentorn-Geli E, Taylor DC, Rill B, Lock T et al. 2015. Meniscal allograft transplantation. Part 2: Systematic review of transplant timing, outcomes, return to competition, associated procedures, and prevention of osteoarthritis. Knee Surg. Sport Traumatol. Arthrosc. 23:323–33
    [Google Scholar]
  94. 94.
    Verdonk R, Volpi P, Verdonk P, Van Der Bracht H, Van Laer M et al. 2013. Indications and limits of meniscal allografts. Injury 44:Suppl. 121–27
    [Google Scholar]
  95. 95.
    Rongen JJ, Hannink G, Van Tienen TG, Van Luijk J, Hooijmans CR 2015. The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies. Osteoarthr. Cartil. 23:1242–53
    [Google Scholar]
  96. 96.
    Noyes FR, Barber-Westin S. 2015. Meniscal transplantation in symptomatic patients under fifty years of age: survivorship analysis. Bone Jt. Surg. Am. 97:1209–19
    [Google Scholar]
  97. 97.
    Noyes FR, Barber-Westin SD. 2016. Long-term survivorship and function of meniscus transplantation. Am. J. Sports Med. 44:2330–38
    [Google Scholar]
  98. 98.
    Murphy CA, Costa JB, Silva-Correia J, Oliveira JM, Reis RL, Collins MN 2018. Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: state of the art and future trends. Appl. Mater. Today 12:51–71
    [Google Scholar]
  99. 99.
    Stone KR, Rodkey WG, Webber R, McKinney L, Steadman JR 1992. Meniscal regeneration with copolymeric collagen scaffolds in vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am. J. Sports Med. 20:104–11
    [Google Scholar]
  100. 100.
    Stone KR, Steadman JR, Rodkey WG, Li ST 1997. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J. Bone Jt. Surg. Am. 79:1770–77
    [Google Scholar]
  101. 101.
    Spencer SJ, Saithna A, Carmont MR, Dhillon MS, Thompson P, Spalding T 2012. Meniscal scaffolds: early experience and review of the literature. Knee 19:760–65
    [Google Scholar]
  102. 102.
    Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R et al. 2011. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy 27:933–43
    [Google Scholar]
  103. 103.
    Zaffagnini S, Marcheggiani Muccioli GM, Lopomo N, Bruni D, Giordano G et al. 2011. Prospective long-term outcomes of the medial collagen meniscus implant versus partial medial meniscectomy: a minimum 10-year follow-up study. Am. J. Sports Med. 39:977–85
    [Google Scholar]
  104. 104.
    Zaffagnini S, Giordano G, Vascellari A, Bruni D, Neri MP et al. 2007. Arthroscopic collagen meniscus implant results at 6 to 8 years follow up. Knee Surg. Sport Traumatol. Arthrosc. 15:175–83
    [Google Scholar]
  105. 105.
    Genovese E, Angeretti MG, Ronga M, Leonardi A, Novario R et al. 2007. Follow-up of collagen meniscus implants by MRI. Radiol. Med. 112:1036–48
    [Google Scholar]
  106. 106.
    Martinek V, Ueblacker P, Bräun K, Nitschke S, Mannhardt R et al. 2006. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch. Orthop. Trauma Surg. 126:228–34
    [Google Scholar]
  107. 107.
    Gwinner C, Von Roth P, Schmidt S, Ode J, Wulsten D, Hoburg A 2017. Biomechanical performance of a collagen meniscus implant with regard to suture material and irrigation fluid. Knee 24:726–32
    [Google Scholar]
  108. 108.
    de Groot J. 2010. Actifit, polyurethane meniscus implant: basic science. The Meniscus P Beaufils, R Verdonk 383–88 Berlin: Springer
    [Google Scholar]
  109. 109.
    Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs E-L 2011. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am. J. Sports Med. 39:774–82
    [Google Scholar]
  110. 110.
    Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL et al. 2012. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am. J. Sports Med. 40:844–53
    [Google Scholar]
  111. 111.
    Baynat C, Andro C, Vincent JP, Schiele P, Buisson P et al. 2014. Actifit synthetic meniscal substitute: experience with 18 patients in Brest, France. Orthop. Traumatol. Surg. Res. 100:S385–89
    [Google Scholar]
  112. 112.
    Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O et al. 2011. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg. Sport Traumatol. Arthrosc. 19:255–63
    [Google Scholar]
  113. 113.
    De Coninck T, Elsner JJ, Linder-Ganz E, Cromheecke M, Shemesh M et al. 2014. In-vivo evaluation of the kinematic behavior of an artificial medial meniscus implant: a pilot study using open MRI. Clin. Biomech. 29:898–905
    [Google Scholar]
  114. 114.
    Van Der Straeten C, Doyen B, Dutordoir C, Goedertier W, Pirard S, Victor J 2016. Short- and medium-term results of artificial meniscal implants. Bone Jt. J. 98:Suppl. 491
    [Google Scholar]
  115. 115.
    Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR 2003. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J. Biomech. 36:19–34
    [Google Scholar]
  116. 116.
    Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W et al. 2016. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem. Cells Transl. Med. 6:1237–48
    [Google Scholar]
  117. 117.
    Vrancken ACT, Madej W, Hannink G, Verdonschot N, Van Tienen TG 2015. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model. PLOS ONE 10:1–16
    [Google Scholar]
  118. 118.
    Majd SE, Rizqy AI, Kaper HJ, Schmidt TA, Kuijer R, Sharma PK 2017. An in vitro study of cartilage–meniscus tribology to understand the changes caused by a meniscus implant. Colloids Surf. B 155:294–303
    [Google Scholar]
  119. 119.
    Lechner K, Hull ML, Howell SM 2000. Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area?. J. Orthop. Res. 18:945–51
    [Google Scholar]
  120. 120.
    Muratsu H, Ishimoto K, Kurosaka M, Yoshima S, Mizuno K 2000. The mechanical mapping of the meniscus Poster presented at Annu. Meet. Orthop. Res. Soc., 46th Orlando, FL: March 12–15
  121. 121.
    Sweigart MA, Athanasiou KA. 2005. Tensile and compressive properties of the medial rabbit meniscus. Proc. Inst. Mech. Eng. H 219:337–47
    [Google Scholar]
  122. 122.
    Abdelgaied A, Stanley M, Galfe M, Berry H, Ingham E et al. 2015. Comparison of the biomechanical tensile and compressive properties of decellularised and natural porcine meniscus. J. Biomech. 48:1389–96
    [Google Scholar]
  123. 123.
    Creechley JJ, Krentz ME, Lujan TJ 2017. Fatigue life of bovine meniscus under longitudinal and transverse tensile loading. J. Mech. Behav. Biomed. Mater. 69:185–92
    [Google Scholar]
  124. 124.
    Hacker SA, Woo SLY, Wayne JS, Kwan MK 1992. Compressive properties of the human meniscus. Trans. Orthop. Res. Soc. 1992:627
    [Google Scholar]
  125. 125.
    Seitz MA, Galbusera F, Krais C, Ignatius A, Dürselen L 2013. Stress–relaxation response of human menisci under confined compression conditions. J. Mech. Behav. Biomed Mater. 26:68–80
    [Google Scholar]
  126. 126.
    Gabrion A, Aimedieu P, Laya Z, Havet E, Mertl P et al. 2005. Relationship between ultrastructure and biomechanical properties of the knee meniscus. Surg. Radiol. Anat. 27:507–10
    [Google Scholar]
  127. 127.
    Fischenich KM, Lewis J, Kindsfater KA, Bailey TS, Haut Donahue TL 2015. Effects of degeneration on the compressive and tensile properties of human meniscus. J. Biomech. 48:1407–11
    [Google Scholar]
  128. 128.
    Levillain A, Magoariec H, Boulocher C, Decambron A, Viateau V et al. 2017. Viscoelastic properties of rabbit osteoarthritic menisci: a correlation with matrix alterations. J. Mech. Behav. Biomed. Mater. 65:1–10
    [Google Scholar]
  129. 129.
    van Dijk CN. 2008. ISAKOS/ESSKA standard terminology, definitions, classification and scoring systems for arthroscopy Report, ISAKOS/ESKA Amsterdam:
  130. 130.
    Mordecai SC, Al-Hadithy N, Ware HE, Gupte CM 2014. Treatment of meniscal tears: an evidence based approach. World J. Orthop. 5:233–41
    [Google Scholar]
  131. 131.
    Nguyen JC, De Smet A, Graf BK, Rosas HG 2014. MR imaging–based diagnosis and classification of meniscal tears. Radiographics 34:981–99
    [Google Scholar]
  132. 132.
    Maffulli N, Longo UG, Campi S, Denaro V 2010. Meniscal tears. Open Access J. Sports Med. 1:45–54
    [Google Scholar]
  133. 133.
    Lecas LK, Helms CA, Kosarek FJ, Garret WE 2000. Inferiorly displaced flap tears of the medial meniscus: MR appearance. Am. J. Roentgenol. 174:161–64
    [Google Scholar]
  134. 134.
    Harper KW, Helms CA, Lambert HS, Higgins LD 2005. Radial meniscal tears: significance, incidence, and MR appearance. Am. J. Roentgenol. 185:1429–34
    [Google Scholar]
  135. 135.
    Jarraya M, Roemer FW, Englund M, Crema MD, Gale HI et al. 2017. Meniscus morphology: Does tear type matter? A narrative review with focus on relevance for osteoarthritis research. Semin. Arthritis Rheum. 46:552–61
    [Google Scholar]
  136. 136.
    Englund M, Haugen IK, Guermazi A, Roemer FW, Niu J et al. 2016. Evidence that meniscus damage may be a component of osteoarthritis: the Framingham study. Osteoarthr. Cartil. 24:270–73
    [Google Scholar]
  137. 137.
    Forkel P, Reuter S, Sprenker F, Achtnich A, Herbst E et al. 2014. Different patterns of lateral meniscus root tears in ACL injuries: application of a differentiated classification system. Knee Surg. Sport Traumatol. Arthrosc. 23:112–18
    [Google Scholar]
  138. 138.
    Allaire R. 2008. Biomechanical consequences of a tear of the posterior root of the medial meniscus. J. Bone Jt. Surg. 90:1922–31
    [Google Scholar]
  139. 139.
    LaPrade CM, James EW, Cram TR, Feagin JA, Engebretsen L et al. 2015. Meniscal root tears: a classification system based on tear morphology. Am. J. Sports Med. 43:363–69
    [Google Scholar]
  140. 140.
    Watanabe M, Takada S, Ikeuchi H 1979. Atlas of Arthroscopy Tokyo: Igaku-Shoin
  141. 141.
    Wang J, Xiong J, Xu Z, Shi H, Dai J et al. 2015. Short-term effects of discoid lateral meniscectomy on the axial alignment of the lower limb in adolescents. J. Bone Jt. Surg. Am. 97:201–7
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052547
Loading
/content/journals/10.1146/annurev-bioeng-060418-052547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error