1932

Abstract

Circadian rhythms describe physiological systems that repeat themselves with a cycle of approximately 24 h. Our understanding of the cellular and molecular origins of these oscillations has improved dramatically, allowing us to appreciate the significant role these oscillations play in maintaining physiological homeostasis. Circadian rhythms allow living organisms to predict and efficiently respond to a dynamically changing environment, set by repetitive day/night cycles. Since circadian rhythms underlie almost every aspect of human physiology, it is unsurprising that they also influence the response of a living organism to disease, stress, and therapeutics. Therefore, not only do the mechanisms that maintain health and disrupt homeostasis depend on our internal circadian clock, but also the way drugs are perceived and function depends on these physiological rhythms. We present a holistic view of the therapeutic process, discussing components such as disease state, pharmacokinetics, and pharmacodynamics, as well as adverse reactions that are critically affected by circadian rhythms. We outline challenges and opportunities in moving toward personalized medicine approaches that explore and capitalize on circadian rhythms for the benefit of the patient.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082120-034725
2021-07-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-082120-034725.html?itemId=/content/journals/10.1146/annurev-bioeng-082120-034725&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cannon WB. 1929. Organization for physiological homeostasis. Physiol. Rev. 9:399–431
    [Google Scholar]
  2. 2. 
    Bernard C. 1949. An Introduction to the Study of Experimental Medicine transl. H.C. Greene New York: Henry Schuman (from French)
  3. 3. 
    Barcroft J. 1932. La fixité du milieu intérieur est la condition de la vie libre. Biol. Rev. 7:24–87
    [Google Scholar]
  4. 4. 
    Selye H. 1973. Homeostasis and heterostasis. Perspect. Biol. Med. 16:441–45
    [Google Scholar]
  5. 5. 
    Kotas ME, Medzhitov R. 2015. Homeostasis, inflammation, and disease susceptibility. Cell 160:816–27
    [Google Scholar]
  6. 6. 
    Halberg F. 1960. Temporal coordination of physiologic function. Cold Spring Harb. Symp. Quant. Biol. 25:289–310
    [Google Scholar]
  7. 7. 
    Lee JE, Edery I. 2008. Circadian regulation in the ability of Drosophila to combat pathogenic infections. Curr. Biol. 18:195–99
    [Google Scholar]
  8. 8. 
    Paladino N, Leone MJ, Plano SA, Golombek DA. 2010. Paying the circadian toll: The circadian response to LPS injection is dependent on the Toll-like receptor 4. J. Neuroimmunol. 225:62–67
    [Google Scholar]
  9. 9. 
    Silver AC, Arjona A, Walker WE, Fikrig E. 2012. The circadian clock controls Toll-like receptor 9–mediated innate and adaptive immunity. Immunity 36:251–61
    [Google Scholar]
  10. 10. 
    Feillet CA, Albrecht U, Challet E 2006.. “ Feeding time” for the brain: a matter of clocks. J. Physiol. Paris 100:252–60
    [Google Scholar]
  11. 11. 
    Colwell CS. 2011. Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 12:553–69
    [Google Scholar]
  12. 12. 
    Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. 2017. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb. Perspect. Biol. 9:a027706
    [Google Scholar]
  13. 13. 
    Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:445–62
    [Google Scholar]
  14. 14. 
    Lee H, Chen R, Lee Y, Yoo S, Lee C 2009. Essential roles of CKIδ and CKIε in the mammalian circadian clock. PNAS 106:21359–64
    [Google Scholar]
  15. 15. 
    Dickmeis T. 2009. Glucocorticoids and the circadian clock. J. Endocrinol. 200:3–22
    [Google Scholar]
  16. 16. 
    Mirsky HP, Liu AC, Welsh DK, Kay SA, Doyle FJ 3rd 2009. A model of the cell-autonomous mammalian circadian clock. PNAS 106:11107–12
    [Google Scholar]
  17. 17. 
    Relogio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. 2011. Tuning the mammalian circadian clock: robust synergy of two loops. PLOS Comput. Biol. 7:e1002309
    [Google Scholar]
  18. 18. 
    Duez H, Staels B. 2009. Rev-erb-α: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 107:1972–80
    [Google Scholar]
  19. 19. 
    Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M et al. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–4
    [Google Scholar]
  20. 20. 
    Newman LA, Walker MT, Brown RL, Cronin TW, Robinson PR. 2003. Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42:12734–38
    [Google Scholar]
  21. 21. 
    Cardone L, Hirayama J, Giordano F, Tamaru T, Palvimo JJ, Sassone-Corsi P. 2005. Circadian clock control by SUMOylation of BMAL1. Science 309:1390–94
    [Google Scholar]
  22. 22. 
    Cassone VM. 1990. Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–64
    [Google Scholar]
  23. 23. 
    Kalsbeek A, Palm IF, La Fleur SE, Scheer FAJL, Perreau-Lenz S et al. 2006. SCN outputs and the hypothalamic balance of life. J. Biol. Rhythms 21:458–69
    [Google Scholar]
  24. 24. 
    Mavroudis PD, DuBois DC, Almon RR, Jusko WJ. 2018. Daily variation of gene expression in diverse rat tissues. PLOS ONE 13:e0197258
    [Google Scholar]
  25. 25. 
    Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. PNAS 111:16219–24
    [Google Scholar]
  26. 26. 
    Dibner C, Schibler U, Albrecht U 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72:517–49
    [Google Scholar]
  27. 27. 
    Finger AM, Dibner C, Kramer A. 2020. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 594:2734–69
    [Google Scholar]
  28. 28. 
    Romero LM, Dickens MJ, Cyr NE. 2009. The Reactive Scope Model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55:375–89
    [Google Scholar]
  29. 29. 
    McMahon DM, Burch JB, Wirth MD, Youngstedt SD, Hardin JW et al. 2018. Persistence of social jetlag and sleep disruption in healthy young adults. Chronobiol. Int. 35:312–28
    [Google Scholar]
  30. 30. 
    Moore-Ede MC. 1986. Physiology of the circadian timing system: predictive versus reactive homeostasis. Am. J. Physiol. Renal Physiol. 250:R737–52
    [Google Scholar]
  31. 31. 
    Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F et al. 2014. Circadian clock–dependent and –independent rhythmic proteomes implement distinct diurnal functions in mouse liver. PNAS 111:167–72
    [Google Scholar]
  32. 32. 
    Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA 2012. The human circadian metabolome. PNAS 109:2625–29
    [Google Scholar]
  33. 33. 
    Avior Y, Bomze D, Ramon O, Nahmias Y 2013. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 4:831–44
    [Google Scholar]
  34. 34. 
    Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–70
    [Google Scholar]
  35. 35. 
    Yang X, Downes M, Yu RT, Bookout AL, He W et al. 2006. Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–10
    [Google Scholar]
  36. 36. 
    Mure LS, Le HD, Benegiamo G, Chang MW, Rios L et al. 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359:eaao0318
    [Google Scholar]
  37. 37. 
    Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ et al. 2018. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl. Med. 10:eaat8806
    [Google Scholar]
  38. 38. 
    Anafi RC, Francey LJ, Hogenesch JB, Kim J 2017. CYCLOPS reveals human transcriptional rhythms in health and disease. PNAS 114:5312–17
    [Google Scholar]
  39. 39. 
    Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C et al. 2009. Regulation of clock-controlled genes in mammals. PLOS ONE 4:e4882
    [Google Scholar]
  40. 40. 
    Ripperger JA, Albrecht U 2009. Clock-controlled genes. Encyclopedia of Neuroscience MD Binder, N Hirokawa, U Windhorst 752–57 Berlin/Heidelberg: Springer
    [Google Scholar]
  41. 41. 
    Wang Y, Song L, Liu M, Ge R, Zhou Q et al. 2018. A proteomics landscape of circadian clock in mouse liver. Nat. Commun. 9:1553
    [Google Scholar]
  42. 42. 
    Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA 2012. The human circadian metabolome. PNAS 109:2625–29
    [Google Scholar]
  43. 43. 
    Sukumaran S, Almon RR, DuBois DC, Jusko WJ. 2010. Circadian rhythms in gene expression: relationship to physiology, disease, drug disposition and drug action. Adv. Drug Deliv. Rev. 62:904–17
    [Google Scholar]
  44. 44. 
    Dong D, Yang D, Lin L, Wang S, Wu B 2020. Circadian rhythm in pharmacokinetics and its relevance to chronotherapy. Biochem. Pharmacol. 178:114045
    [Google Scholar]
  45. 45. 
    Bicker J, Alves G, Falcão A, Fortuna A 2020. Timing in drug absorption and disposition: the past, present, and future of chronopharmacokinetics. Br. J. Pharmacol. 177:2215–39
    [Google Scholar]
  46. 46. 
    Levi F, Focan C, Karaboue A, de la Valette V, Focan-Henrard D et al. 2007. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Adv. Drug Deliv. Rev. 59:1015–35
    [Google Scholar]
  47. 47. 
    Levi F, Filipski E, Iurisci I, Li XM, Innominato P. 2007. Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. Cold Spring Harb. Symp. Quant. Biol. 72:465–75
    [Google Scholar]
  48. 48. 
    Dallmann R, Brown SA, Gachon F. 2014. Chronopharmacology: new insights and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 54:339–61
    [Google Scholar]
  49. 49. 
    Matsunaga N, Nakamura N, Yoneda N, Qin T, Terazono H et al. 2004. Influence of feeding schedule on 24-h rhythm of hepatotoxicity induced by acetaminophen in mice. J. Pharmacol. Exp. Ther. 311:594–600
    [Google Scholar]
  50. 50. 
    Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M et al. 2014. circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19:319–30
    [Google Scholar]
  51. 51. 
    Zhuang X, Rambhatla SB, Lai AG, McKeating JA. 2017. Interplay between circadian clock and viral infection. J. Mol. Med. 95:1283–89
    [Google Scholar]
  52. 52. 
    Tognini P, Thaiss CA, Elinav E, Sassone-Corsi P. 2017. Circadian coordination of antimicrobial responses. Cell Host Microbe 22:185–92
    [Google Scholar]
  53. 53. 
    Long JE, Drayson MT, Taylor AE, Toellner KM, Lord JM, Phillips AC. 2016. Morning vaccination enhances antibody response over afternoon vaccination: a cluster-randomised trial. Vaccine 34:2679–85
    [Google Scholar]
  54. 54. 
    Baraldo M. 2008. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin. Drug Metab. Toxicol. 4:175–92
    [Google Scholar]
  55. 55. 
    Ayyar VS, Krzyzanski W, Jusko WJ. 2019. Indirect pharmacodynamic models for responses with circadian removal. J. Pharmacokinet. Pharmacodyn. 46:89–101
    [Google Scholar]
  56. 56. 
    Sharma A, Jusko WJ. 1998. Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br. J. Clin. Pharmacol. 45:229–39
    [Google Scholar]
  57. 57. 
    Dallmann R, Okyar A, Lévi F. 2016. Dosing-time makes the poison: circadian regulation and pharmacotherapy. Trends Mol. Med. 22:430–45
    [Google Scholar]
  58. 58. 
    Adam D. 2019. Core concept: emerging science of chronotherapy offers big opportunities to optimize drug delivery. PNAS 116:21957–59
    [Google Scholar]
  59. 59. 
    Montaigne D, Marechal X, Modine T, Coisne A, Mouton S et al. 2018. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erb-α; antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet 391:59–69
    [Google Scholar]
  60. 60. 
    Bruguerolle B, Labrecque G. 2007. Rhythmic pattern in pain and their chronotherapy. Adv. Drug Deliv. Rev. 59:883–95
    [Google Scholar]
  61. 61. 
    Cutolo M, Masi AT. 2005. Circadian rhythms and arthritis. Rheum. Dis. Clin. N. Am. 31:115–29
    [Google Scholar]
  62. 62. 
    Bellamy N, Sothern RB, Campbell J. 1990. Rhythmic variations in pain perception in osteoarthritis of the knee. J. Rheumatol. 17:364–72
    [Google Scholar]
  63. 63. 
    Labrecque G 2007. Diurnal variations of pain in humans. Encyclopedia of Pain RF Schmidt, WD Willis 639–41 Berlin/Heidelberg: Springer
    [Google Scholar]
  64. 64. 
    Das R, Mehta DK. 2019. Considering circadian pattern of blood pressure in the treatment of hypertension via chronotherapy: a conducive or maladroit approach. Curr. Drug Targets 20:1244–54
    [Google Scholar]
  65. 65. 
    Mathur P, Kadavath S, Marsh JD, Mehta JL. 2020. Chronotherapy for hypertension: improvement in patient outcomes with bedtime administration of antihypertensive drugs. Eur. Heart J. 41:4577–79
    [Google Scholar]
  66. 66. 
    Simko F, Baka T. 2019. Chronotherapy as a potential approach to hypertensive patients with elevated heart rate?. Br. J. Clin. Pharmacol. 85:1861–62
    [Google Scholar]
  67. 67. 
    Hermida RC, Ayala DE, Portaluppi F. 2007. Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv. Drug Deliv. Rev. 59:904–22
    [Google Scholar]
  68. 68. 
    Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. 1997. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am. J. Cardiol. 79:1512–16
    [Google Scholar]
  69. 69. 
    Portaluppi F, Hermida RC. 2007. Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy. Adv. Drug Deliv. Rev. 59:940–51
    [Google Scholar]
  70. 70. 
    Smolensky MH, Lemmer B, Reinberg AE. 2007. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv. Drug Deliv. Rev. 59:852–82
    [Google Scholar]
  71. 71. 
    Haus E, Sackett-Lundeen L, Smolensky MH. 2012. Rheumatoid arthritis: circadian rhythms in disease activity, signs and symptoms, and rationale for chronotherapy with corticosteroids and other medications. Bull. NYU Hosp. Jt. Dis. 70:Suppl. 13–10
    [Google Scholar]
  72. 72. 
    Harter JG, Reddy WJ, Thorn GW. 1963. Studies on an intermittent corticosteroid dosage regimen. N. Engl. J. Med. 269:591–96
    [Google Scholar]
  73. 73. 
    Portaluppi F, Lemmer B. 2007. Chronobiology and chronotherapy of ischemic heart disease. Adv. Drug Deliv. Rev. 59:952–65
    [Google Scholar]
  74. 74. 
    Buurma M, van Diemen JJK, Thijs A, Numans ME, Bonten TN. 2019. Circadian rhythm of cardiovascular disease: the potential of chronotherapy with aspirin. Front. Cardiovasc. Med. 6:84
    [Google Scholar]
  75. 75. 
    Hermida RC, Ayala DE, Calvo C, Portaluppi F, Smolensky MH. 2007. Chronotherapy of hypertension: administration-time-dependent effects of treatment on the circadian pattern of blood pressure. Adv. Drug Deliv. Rev. 59:923–39
    [Google Scholar]
  76. 76. 
    Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. 2010. Circadian timing in cancer treatments. Annu. Rev. Pharmacol. Toxicol. 50:377–421
    [Google Scholar]
  77. 77. 
    Filipski E, Levi F. 2009. Circadian disruption in experimental cancer processes. Integr. Cancer Ther. 8:298–302
    [Google Scholar]
  78. 78. 
    Levi F, Altinok A, Clairambault J, Goldbeter A. 2008. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos. Trans. R. Soc. A 366:3575–98
    [Google Scholar]
  79. 79. 
    Levi F. 2006. Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control 17:611–21
    [Google Scholar]
  80. 80. 
    Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu CJ et al. 2018. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst 6:314–28.e2
    [Google Scholar]
  81. 81. 
    Choi HK, Niu J, Neogi T, Chen CA, Chaisson C et al. 2015. Nocturnal risk of gout attacks. Arthritis Rheumatol 67:555–62
    [Google Scholar]
  82. 82. 
    Mohammad S, Giattino SL, Keenan RT. 2015. Current and emerging therapies for gout. Curr. Treat. Options Rheumatol. 1:143–55
    [Google Scholar]
  83. 83. 
    Inokawa H, Umemura Y, Shimba A, Kawakami E, Koike N et al. 2020. Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice. Sci. Rep. 10:2569
    [Google Scholar]
  84. 84. 
    Kretschmannova K, Svobodova I, Balik A, Mazna P, Zemkova H. 2005. Circadian rhythmicity in AVP secretion and GABAergic synaptic transmission in the rat suprachiasmatic nucleus. Ann. N. Y. Acad. Sci. 1048:103–15
    [Google Scholar]
  85. 85. 
    Neumann AM, Schmidt CX, Brockmann RM, Oster H. 2019. Circadian regulation of endocrine systems. Auton. Neurosci. 216:1–8
    [Google Scholar]
  86. 86. 
    Laje R, Agostino PV, Golombek DA. 2018. The times of our lives: interaction among different biological periodicities. Front. Integr. Neurosci. 12:10
    [Google Scholar]
  87. 87. 
    Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR et al. 2018. Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron 99:555–63.e5
    [Google Scholar]
  88. 88. 
    Escobar C, Salgado-Delgado R, Gonzalez-Guerra E, Tapia Osorio A, Angeles-Castellanos M, Buijs RM 2011. Circadian disruption leads to loss of homeostasis and disease. Sleep Disord 2011:964510
    [Google Scholar]
  89. 89. 
    Chung S, Son GH, Kim K. 2011. Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim. Biophys. Acta Mol. Basis Dis. 1812:581–91
    [Google Scholar]
  90. 90. 
    Son GH, Chung S, Choe HK, Kim H-D, Baik S-M et al. 2008. Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid by causing rhythmic steroid production. PNAS 105:20970–75
    [Google Scholar]
  91. 91. 
    Chowdhury D, Wang C, Lu AP, Zhu HL. 2019. Understanding quantitative circadian regulations are crucial towards advancing chronotherapy. Cells 8:883
    [Google Scholar]
  92. 92. 
    Vetter C. 2020. Circadian disruption: What do we actually mean?. Eur. J. Neurosci. 51:531–50
    [Google Scholar]
  93. 93. 
    Roenneberg T, Merrow M. 2016. The circadian clock and human health. Curr. Biol. 26:R432–43
    [Google Scholar]
  94. 94. 
    Panda S. 2019. The arrival of circadian medicine. Nat. Rev. Endocrinol. 15:67–69
    [Google Scholar]
  95. 95. 
    Rao R, Androulakis IP. 2019. The physiological significance of the circadian dynamics of the HPA axis: interplay between circadian rhythms, allostasis and stress resilience. Horm. Behav. 110:77–89
    [Google Scholar]
  96. 96. 
    Rao R, Androulakis IP. 2019. Allostatic adaptation and personalized physiological trade-offs in the circadian regulation of the HPA axis: a mathematical modeling approach. Sci. Rep. 9:11212
    [Google Scholar]
  97. 97. 
    Bocharov G, Véronneau-Veilleux F, Bélair J, Simakov S, Vassilevski Y, Volpert V. 2017. Modeling circadian fluctuations of pharmacokinetic parameters. Math. Model. Nat. Phenom. 12:146–61
    [Google Scholar]
  98. 98. 
    Gaspar LS, Alvaro AR, Carmo-Silva S, Mendes AF, Relogio A, Cavadas C. 2019. The importance of determining circadian parameters in pharmacological studies. Br. J. Pharmacol. 176:2827–47
    [Google Scholar]
  99. 99. 
    Jobanputra AM, Scharf MT, Androulakis IP, Sunderram J. 2020. Circadian disruption in critical illness. Front. Neurol. 11:820
    [Google Scholar]
  100. 100. 
    Bienert A, Kusza K, Wawrzyniak K, Grzeskowiak E, Kokot ZJ et al. 2010. Assessing circadian rhythms in propofol PK and PD during prolonged infusion in ICU patients. J. Pharmacokinet. Pharmacodyn. 37:289–304
    [Google Scholar]
  101. 101. 
    Belle DJ, Singh H. 2008. Genetic factors in drug metabolism. Am. Fam. Phys. 77:1553–60
    [Google Scholar]
  102. 102. 
    Mangoni AA, Jackson SHD. 2003. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br. J. Clin. Pharmacol. 57:6–14
    [Google Scholar]
  103. 103. 
    Hood S, Amir S. 2017. The aging clock: circadian rhythms and later life. J. Clin. Investig. 127:437–46
    [Google Scholar]
  104. 104. 
    Suzman R, Beard J. 2011. Global health and ageing Publ. 11-7737 World Health Organ./Natl. Inst. Aging Geneva/Washington, DC: https://www.who.int/ageing/publications/global_health.pdf?ua
  105. 105. 
    Fedarko NS. 2011. The biology of aging and frailty. Clin. Geriatr. Med. 27:27–37
    [Google Scholar]
  106. 106. 
    Bailey M, Silver R. 2014. Sex differences in circadian timing systems: implications for disease. Front. Neuroendocrinol. 35:111–39
    [Google Scholar]
  107. 107. 
    Smith MR, Burgess HJ, Fogg LF, Eastman CI. 2009. Racial differences in the human endogenous circadian period. PLOS ONE 4:e6014
    [Google Scholar]
  108. 108. 
    Eastman CI, Tomaka VA, Crowley SJ. 2017. Sex and ancestry determine the free-running circadian period. J. Sleep Res. 26:547–50
    [Google Scholar]
  109. 109. 
    Eastman CI, Tomaka VA, Crowley SJ. 2016. Circadian rhythms of European and African-Americans after a large delay of sleep as in jet lag and night work. Sci. Rep. 6:36716
    [Google Scholar]
  110. 110. 
    Velasco-Mondragon E, Jimenez A, Palladino-Davis AG, Davis D, Escamilla-Cejudo JA. 2016. Hispanic health in the USA: a scoping review of the literature. Public Health Rev 37:31
    [Google Scholar]
  111. 111. 
    Paech GM, Crowley SJ, Fogg LF, Eastman CI. 2017. Advancing the sleep/wake schedule impacts the sleep of African-Americans more than European-Americans. PLOS ONE 12:e0186887
    [Google Scholar]
  112. 112. 
    Paech GM, Crowley SJ, Eastman CI. 2017. Sleep and cognitive performance of African-Americans and European-Americans before and during circadian misalignment produced by an abrupt 9-h delay in the sleep/wake schedule. PLOS ONE 12:e0186843
    [Google Scholar]
  113. 113. 
    Sansone-Parsons A, Krishna G, Simon J, Soni P, Kantesaria B et al. 2007. Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob. Agents Chemother. 51:495–502
    [Google Scholar]
  114. 114. 
    He YL, Sabo R, Campestrini J, Wang Y, Riviere GJ et al. 2008. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. Br. J. Clin. Pharmacol. 65:338–46
    [Google Scholar]
  115. 115. 
    Kubitza D, Becka M, Roth A, Mueck W 2013. The influence of age and gender on the pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct Factor Xa inhibitor. J. Clin. Pharmacol. 53:249–55
    [Google Scholar]
  116. 116. 
    Scherholz ML, Androulakis IP. 2019. Exploration of sexual dimorphism and inter-individual variability in multivariate parameter spaces for a pharmacokinetic compartment model. Math. Biosci. 308:70–80
    [Google Scholar]
  117. 117. 
    Okyar A, Kumar SA, Filipski E, Piccolo E, Ozturk N et al. 2019. Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity—implications for mechanistic pharmacokinetics modeling. Sci. Rep. 9:10505
    [Google Scholar]
  118. 118. 
    Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. 2017. Interaction between circadian rhythms and stress. Neurobiol. Stress 6:57–67
    [Google Scholar]
  119. 119. 
    Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. 2019. Multilevel interactions of stress and circadian system: implications for traumatic stress. Front. Psychiatry 10:1003
    [Google Scholar]
  120. 120. 
    Antonia K, Anastasia A, Tesseromatis C 2012. Stress can affect drug pharmacokinetics via serum/tissues protein binding and blood flow rate alterations. Eur. J. Drug Metab. Pharmacokinet. 37:1–7
    [Google Scholar]
  121. 121. 
    Konstandi M. 2013. Psychophysiological stress: a significant parameter in drug pharmacokinetics. Expert Opin. Drug Metab. Toxicol. 9:1317–34
    [Google Scholar]
  122. 122. 
    Haus E. 2007. Chronobiology in the endocrine system. Adv. Drug Deliv. Rev. 59:985–1014
    [Google Scholar]
  123. 123. 
    Timmermans S, Souffriau J, Libert C. 2019. A general introduction to glucocorticoid biology. Front. Immunol. 10:1545
    [Google Scholar]
  124. 124. 
    Chan S, Debono M. 2010. Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther. Adv. Endocrinol. Metab. 1:129–38
    [Google Scholar]
  125. 125. 
    Venneri MA, Hasenmajer V, Fiore D, Sbardella E, Pofi R et al. 2018. Circadian rhythm of glucocorticoid administration entrains clock genes in immune cells: a DREAM Trial ancillary study. J. Clin. Endocrinol. Metab. 103:2998–3009
    [Google Scholar]
  126. 126. 
    ThyroidPatientsCA 2020. Q&A: Dosing T3 in light of circadian rhythm. Thyroid Therapy Blog July 31. https://thyroidpatients.ca/2020/07/31/dosing-t3-circadian-rhythm/
    [Google Scholar]
  127. 127. 
    Rao RT, Scherholz ML, Androulakis IP. 2018. Modeling the influence of chronopharmacological administration of synthetic glucocorticoids on the hypothalamic–pituitary–adrenal axis. Chronobiol. Int. 35:1619–36
    [Google Scholar]
  128. 128. 
    Scherholz ML, Schlesinger N, Androulakis IP. 2019. Chronopharmacology of glucocorticoids. Adv. Drug Deliv. Rev. 151–152:245–61
    [Google Scholar]
  129. 129. 
    Cyr KJ, Avaldi OM, Wikswo JP. 2017. Circadian hormone control in a human-on-a-chip: in vitro biology's ignored component?. Exp. Biol. Med. 242:1714–31
    [Google Scholar]
  130. 130. 
    Bavli D, Prill S, Ezra E, Levy G, Cohen M et al. 2016. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. PNAS 113:E2231–40
    [Google Scholar]
  131. 131. 
    Bae S-A, Fang MZ, Rustgi V, Zarbl H, Androulakis IP. 2019. At the interface of lifestyle, behavior, and circadian rhythms: metabolic implications. Front. Nutr. 6:132
    [Google Scholar]
  132. 132. 
    Sulli G, Manoogian ENC, Taub PR, Panda S. 2018. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol. Sci. 39:812–27
    [Google Scholar]
  133. 133. 
    Wallach T, Kramer A. 2015. Chemical chronobiology: toward drugs manipulating time. FEBS Lett 589:1530–38
    [Google Scholar]
  134. 134. 
    He B, Nohara K, Park N, Park Y-S, Guillory B et al. 2016. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23:610–21
    [Google Scholar]
  135. 135. 
    He B, Chen Z. 2016. Molecular targets for small-molecule modulators of circadian clocks. Curr. Drug Metab. 17:503–12
    [Google Scholar]
  136. 136. 
    Gloston GF, Yoo SH, Chen ZJ. 2017. Clock-enhancing small molecules and potential applications in chronic diseases and aging. Front. Neurol. 8:100
    [Google Scholar]
  137. 137. 
    Chen Z, Yoo S-H, Takahashi JS. 2018. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu. Rev. Pharmacol. Toxicol. 58:231–52
    [Google Scholar]
  138. 138. 
    Chen Z, Yoo S-H, Takahashi JS. 2013. Small molecule modifiers of circadian clocks. Cell. Mol. Life Sci. 70:2985–98
    [Google Scholar]
  139. 139. 
    Fang M, Guo WR, Park Y, Kang HG, Zarbl H. 2015. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells. Oncotarget 6:42879–91
    [Google Scholar]
  140. 140. 
    Ballesta A, Innominato PF, Dallmann R, Rand DA, Levi FA. 2017. Systems chronotherapeutics. Pharmacol. Rev. 69:161–99
    [Google Scholar]
  141. 141. 
    Yang C, Tavassolian N, Haddad WM, Bailey JM, Gholami B. 2019. A fast parameter identification framework for personalized pharmacokinetics. Sci. Rep. 9:14143
    [Google Scholar]
  142. 142. 
    Hartmanshenn C, Scherholz M, Androulakis IP. 2016. Physiologically-based pharmacokinetic models: approaches for enabling personalized medicine. J. Pharmacokinet. Pharmacodyn. 43:481–504
    [Google Scholar]
  143. 143. 
    Asami S, Kiga D, Konagaya A. 2017. Constraint-based perturbation analysis with cluster Newton method: a case study of personalized parameter estimations with irinotecan whole-body physiologically based pharmacokinetic model. BMC Syst. Biol. 11:129
    [Google Scholar]
  144. 144. 
    Smolensky MH, Peppas NA. 2007. Chronobiology, drug delivery, and chronotherapeutics. Adv. Drug Deliv. Rev. 59:828–51
    [Google Scholar]
  145. 145. 
    Khan Z, Pillay V, Choonara YE, du Toit LC. 2009. Drug delivery technologies for chronotherapeutic applications. Pharm. Dev. Technol. 14:602–12
    [Google Scholar]
  146. 146. 
    Levi F, Okyar A. 2011. Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin. Drug Deliv. 8:1535–41
    [Google Scholar]
  147. 147. 
    Peppas NA, Leobandung W. 2004. Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy. J. Biomater. Sci. Polym. Ed. 15:125–44
    [Google Scholar]
  148. 148. 
    Sunil SA, Srikanth MV, Rao NS, Uhumwangho MU, Latha K, Murthy KV. 2011. Chronotherapeutic drug delivery systems: an approach to circadian rhythms diseases. Curr. Drug Deliv. 8:622–33
    [Google Scholar]
  149. 149. 
    Tsimakouridze EV, Alibhai FJ, Martino TA. 2015. Therapeutic applications of circadian rhythms for the cardiovascular system. Front. Pharmacol. 6:77
    [Google Scholar]
  150. 150. 
    Saini C, Brown SA, Dibner C. 2015. Human peripheral clocks: applications for studying circadian phenotypes in physiology and pathophysiology. Front. Neurol. 6:95
    [Google Scholar]
  151. 151. 
    Laing EE, Möller-Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. 2017. Blood transcriptome based biomarkers for human circadian phase. eLife 6:e20214
    [Google Scholar]
  152. 152. 
    Wittenbrink N, Ananthasubramaniam B, Münch M, Koller B, Maier B et al. 2018. High-accuracy determination of internal circadian time from a single blood sample. J. Clin. Investig. 128:3826–39
    [Google Scholar]
  153. 153. 
    Van Dycke KC, Pennings JL, van Oostrom CT, van Kerkhof LW, van Steeg H et al. 2015. Biomarkers for circadian rhythm disruption independent of time of day. PLOS ONE 10:e0127075
    [Google Scholar]
  154. 154. 
    Wu G, Ruben MD, Schmidt RE, Francey LJ, Smith DF et al. 2018. Population-level rhythms in human skin with implications for circadian medicine. PNAS 115:12313–18
    [Google Scholar]
  155. 155. 
    Zehring WA, Wheeler DA, Reddy P, Konopka RJ, Kyriacou CP et al. 1984. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39:369–76
    [Google Scholar]
  156. 156. 
    Bargiello TA, Jackson FR, Young MW. 1984. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312:752–54
    [Google Scholar]
  157. 157. 
    Hastings M, O'Neill JS, Maywood ES 2007. Circadian clocks: regulators of endocrine and metabolic rhythms. J. Endocrinol. 195:187–98
    [Google Scholar]
  158. 158. 
    Gamble KL, Berry R, Frank SJ, Young ME. 2014. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10:466–75
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082120-034725
Loading
/content/journals/10.1146/annurev-bioeng-082120-034725
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error