1932

Abstract

As the human eye ages, the crystalline lens stiffens (presbyopia) and opacifies (cataract), requiring its replacement with an artificial lens [intraocular lens (IOL)]. Cataract surgery is the most frequently performed surgical procedure in the world. The increase in IOL designs has not been paralleled in practice by a sophistication in IOL selection methods, which rely on limited anatomical measurements of the eye and the surgeon's interpretation of the patient's needs and expectations. We propose that the future of IOL selection will be guided by 3D quantitative imaging of the crystalline lens to map lens opacities, anticipate IOL position, and develop fully customized eye models for ray-tracing-based IOL selection. Conversely, visual simulators (in which IOL designs are programmed in active elements) allow patients to experience prospective vision before surgery and to make more informed decisions about which IOL to choose. Quantitative imaging and optical and visual simulations of postsurgery outcomes will allow optimal treatments to be selected for a patient undergoing modern cataract surgery.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082420-035827
2021-07-13
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-082420-035827.html?itemId=/content/journals/10.1146/annurev-bioeng-082420-035827&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Glasser A, Campbell MC. 1998. Presbyopia and the optical changes in the human crystalline lens with age. Vis. Res. 38:209–29
    [Google Scholar]
  2. 2. 
    McLellan JS, Marcos S, Burns SA 2001. Age-related changes in monochromatic wave aberrations of the human eye. Investig. Ophthalmol. Vis. Sci. 42:1390–95
    [Google Scholar]
  3. 3. 
    Artal P, Berrio E, Guirao A, Piers P. 2002. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19:137–43
    [Google Scholar]
  4. 4. 
    de Castro A, Siedlecki D, Borja D, Uhlhorn S, Parel JM et al. 2011. Age-dependent variation of the Gradient Index profile in human crystalline lenses. J. Mod. Opt. 58:1781–87
    [Google Scholar]
  5. 5. 
    Birkenfeld J, de Castro A, Marcos S 2014. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses. Investig. Ophthalmol. Vis. Sci. 55:2599–607
    [Google Scholar]
  6. 6. 
    Moreno-Barriuso E, Marcos S, Navarro R, Burns SA 2001. Comparing laser ray tracing, the spatially resolved refractometer, and the Hartmann-Shack sensor to measure the ocular wave aberration. Optom. Vis. Sci. 78:152–56
    [Google Scholar]
  7. 7. 
    Liu Y-C, Wilkins M, Kim T, Malyugin B, Mehta JS 2017. Cataracts. Lancet 390:600–12
    [Google Scholar]
  8. 8. 
    Holden BA, Fricke TR, Ho SM, Wong R, Schlenther G et al. 2008. Global vision impairment due to uncorrected presbyopia. Arch. Ophthalmol. 126:1731–39
    [Google Scholar]
  9. 9. 
    Glasser A. 2008. Restoration of accommodation: surgical options for correction of presbyopia. Clin. Exp. Optom. 91:279–95
    [Google Scholar]
  10. 10. 
    Gil-Cazorla R, Shah S, Naroo SA. 2016. A review of the surgical options for the correction of presbyopia. Br. J. Ophthalmol. 100:62–70
    [Google Scholar]
  11. 11. 
    Wolffsohn JS, Davies LN. 2019. Presbyopia: effectiveness of correction strategies. Prog. Retin. Eye Res. 68:124–43
    [Google Scholar]
  12. 12. 
    Charman WN. 2014. Developments in the correction of presbyopia II: surgical approaches. Ophthalmic Physiol. Opt. 34:397–426
    [Google Scholar]
  13. 13. 
    Rao GN, Khanna R, Payal A. 2011. The global burden of cataract. Curr. Opin. Ophthalmol. 22:4–9
    [Google Scholar]
  14. 14. 
    Norregaard JC, Bernth-Petersen P, Alonso J, Andersen TF, Anderson GF 2003. Visual functional outcomes of cataract surgery in the United States, Canada, Denmark, and Spain: report of the International Cataract Surgery Outcomes Study. J. Cataract Refract. Surg. 29:2135–42
    [Google Scholar]
  15. 15. 
    Ibrahim M, Bhandari A, Sandhu JS, Balakrishnan P. 2006. Making sight affordable (part I): Aurolab Pioneers production of low-cost technology for cataract surgery. Innov. Technol. Gov. Glob. 1:25–41
    [Google Scholar]
  16. 16. 
    Singh K, Misbah A, Saluja P, Singh AK. 2017. Review of manual small-incision cataract surgery. Indian J. Ophthalmol. 65:1281–88
    [Google Scholar]
  17. 17. 
    IMARC Group 2020. Cataract Surgical Devices Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020–2025 Rep., IMARC, Sheridan, WY
  18. 18. 
    Zhang F. 2019. Femtosecond laser-assisted cataract surgery versus conventional cataract surgery comparison. J. Cataract Refract. Surg. 45:889
    [Google Scholar]
  19. 19. 
    Marcos S, Barbero S, Jiménez-Alfaro I. 2005. Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses. J. Refract. Surg. 21:223–35
    [Google Scholar]
  20. 20. 
    de Silva SR, Evans JR, Kirthi V, Ziaei M, Leyland M. 2016. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst. Rev. 12:CD003169
    [Google Scholar]
  21. 21. 
    Alio JL, Plaza-Puche AB, Férnandez-Buenaga R, Pikkel J, Maldonado M. 2017. Multifocal intraocular lenses: an overview. Surv. Ophthalmol. 62:611–34
    [Google Scholar]
  22. 22. 
    Hoffman RS, Fine IH, Packer M. 2003. Refractive lens exchange with a multifocal intraocular lens. Curr. Opin. Ophthalmol. 14:24–30
    [Google Scholar]
  23. 23. 
    Norrby S. 2008. Sources of error in intraocular lens power calculation. J. Cataract Refract. Surg. 34:368–76
    [Google Scholar]
  24. 24. 
    Drexler W, Findl O, Menapace R, Rainer G, Vass C et al. 1998. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am. J. Ophthalmol. 126:524–34
    [Google Scholar]
  25. 25. 
    Raymond S, Favilla I, Santamaria L. 2009. Comparing ultrasound biometry with partial coherence interferometry for intraocular lens power calculations: a randomized study. Investig. Ophthalmol. Vis. Sci. 50:2547–52
    [Google Scholar]
  26. 26. 
    Tang M, Wang L, Koch DD, Li Y, Huang D. 2012. Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 38:589–94
    [Google Scholar]
  27. 27. 
    Behndig A, Montan P, Stenevi U, Kugelberg M, Zetterström C, Lundström M. 2012. Aiming for emmetropia after cataract surgery: Swedish National Cataract Register study. J. Cataract Refract. Surg. 38:1181–86
    [Google Scholar]
  28. 28. 
    Venter JA, Pelouskova M, Collins BM, Schallhorn SC, Hannan SJ. 2013. Visual outcomes and patient satisfaction in 9366 eyes using a refractive segmented multifocal intraocular lens. J. Cataract Refract. Surg. 39:1477–84
    [Google Scholar]
  29. 29. 
    Woodward MA, Randleman JB, Stulting RD. 2009. Dissatisfaction after multifocal intraocular lens implantation. J. Cataract Refract. Surg. 35:992–97
    [Google Scholar]
  30. 30. 
    Jones C. 2020. United States Cataract Atlas. Brochure, Market Scope, St. Louis, MO. https://www.market-scope.com/files/products/brochures/167/2020%20Cataract%20Atlas%20Brochure%20Final.pdf
  31. 31. 
    Zvornicanin J, Zvornicanin E. 2018. Premium intraocular lenses: the past, present and future. J. Curr. Ophthalmol. 30:287–96
    [Google Scholar]
  32. 32. 
    Kanclerz P, Toto F, Grzybowski A, Alio JL. 2020. Extended depth-of-field intraocular lenses: an update. Asia Pac. J. Ophthalmol. 9:194–202
    [Google Scholar]
  33. 33. 
    Bellucci R. 2013. An introduction to intraocular lenses: material, optics, haptics, design and aberration. Cataract 3:38–55
    [Google Scholar]
  34. 34. 
    Werner L. 2008. Biocompatibility of intraocular lens materials. Curr. Opin. Ophthalmol. 19:41–49
    [Google Scholar]
  35. 35. 
    Harman FE, Maling S, Kampougeris G, Langan L, Khan I et al. 2008. Comparing the 1CU accommodative, multifocal, and monofocal intraocular lenses: a randomized trial. Ophthalmology 115:993–1001.e2
    [Google Scholar]
  36. 36. 
    Alió JL, Alió Del Barrio JL, Vega-Estrada A 2017. Accommodative intraocular lenses: Where are we and where we are going?. Eye Vis 4:16
    [Google Scholar]
  37. 37. 
    de la Hoz A, Germann J, Martinez-Enriquez E, Pascual D, Bekesi N et al. 2019. Design and ex situ performance of a shape-changing accommodating intraocular lens. Optica 6:1050–57
    [Google Scholar]
  38. 38. 
    Barbero S, Marcos S, Jimenéz-Alfaro I. 2003. Optical aberrations of intraocular lenses measured in vivo and in vitro. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20:1841–51
    [Google Scholar]
  39. 39. 
    Artal P, Marcos S, Fonolla Navarro R, Miranda I, Ferro M 1995. Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses. Opt. Eng. 34:377279 https://doi.org/10.1117/12.191818
    [Crossref] [Google Scholar]
  40. 40. 
    Vega F, Alba-Bueno F, Millán MS 2011. Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses. Investig. Ophthalmol. Vis. Sci. 52:5695–701
    [Google Scholar]
  41. 41. 
    Terwee T, Weeber H, van der Mooren M, Piers P. 2008. Visualization of the retinal image in an eye model with spherical and aspheric, diffractive, and refractive multifocal intraocular lenses. J. Refract. Surg. 24:223–32
    [Google Scholar]
  42. 42. 
    Kim MJ, Zheleznyak L, MacRae S, Tchah H, Yoon G. 2011. Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system. J. Cataract Refract. Surg. 37:1305–12
    [Google Scholar]
  43. 43. 
    Gatinel D, Houbrechts Y. 2013. Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench. J. Cataract Refract. Surg. 39:1093–99
    [Google Scholar]
  44. 44. 
    Vinas M, Benedi-Garcia C, Aissati S, Pascual D, Akondi V et al. 2019. Visual simulators replicate vision with multifocal lenses. Sci. Rep. 9:1539
    [Google Scholar]
  45. 45. 
    Fritz KJ, Partamian LG, Leveille AS, Kiernan JP. 1981. Intraocular lens power formulas. Ophthalmology 88:432–33
    [Google Scholar]
  46. 46. 
    Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. 1988. A three-part system for refining intraocular lens power calculations. J. Cataract Refract. Surg. 14:17–24
    [Google Scholar]
  47. 47. 
    Retzlaff JA, Sanders DR, Kraff MC. 1990. Development of the SRK/T intraocular lens implant power calculation formula. J. Cataract Refract. Surg. 16:333–40
    [Google Scholar]
  48. 48. 
    Hoffer KJ. 1993. The Hoffer Q formula: a comparison of theoretic and regression formulas. J. Cataract Refract. Surg. 19:700–12
    [Google Scholar]
  49. 49. 
    Haigis W, Lege B, Miller N, Schneider B. 2000. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefe's Arch. Clin. Exp. Ophthalmol. 238:765–73
    [Google Scholar]
  50. 50. 
    Olsen T, Corydon L, Gimbel H. 1995. Intraocular lens power calculation with an improved anterior chamber depth prediction algorithm. J. Cataract Refract. Surg. 21:313–19
    [Google Scholar]
  51. 51. 
    Olsen T. 2006. Prediction of the effective postoperative (intraocular lens) anterior chamber depth. J. Cataract Refract. Surg. 32:419–24
    [Google Scholar]
  52. 52. 
    Lee AC, Qazi MA, Pepose JS. 2008. Biometry and intraocular lens power calculation. Curr. Opin. Ophthalmol. 19:13–17
    [Google Scholar]
  53. 53. 
    Barrett GD. 1993. An improved universal theoretical formula for intraocular lens power prediction. J. Cataract Refract. Surg. 19:713–20
    [Google Scholar]
  54. 54. 
    Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL 2011. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J. Cataract Refract. Surg. 37:63–71
    [Google Scholar]
  55. 55. 
    Aramberri J. 2003. Intraocular lens power calculation after corneal refractive surgery: double-K method. J. Cataract Refract. Surg. 29:2063–68
    [Google Scholar]
  56. 56. 
    Waring GO IV 2013. Diagnosis and treatment of dysfunctional lens syndrome. Cataract Refract. Surg. Today. https://crstoday.com/articles/2013-mar/diagnosis-and-treatment-of-dysfunctional-lens-syndrome/
    [Google Scholar]
  57. 57. 
    Sawides L, de Gracia P, Dorronsoro C, Webster M, Marcos S 2011. Adapting to blur produced by ocular high-order aberrations. J. Vis. 11:721 https://doi.org/10.1167/11.7.21
    [Crossref] [Google Scholar]
  58. 58. 
    Marcos S, Werner JS, Burns SA, Merigan WH, Artal P et al. 2017. Vision science and adaptive optics, the state of the field. Vis. Res. 132:3–33
    [Google Scholar]
  59. 59. 
    Chylack LT Jr., Wolfe JK, Singer DM, Leske MC, Bullimore MA et al. 1993. The Lens Opacities Classification System III. The Longitudinal Study of Cataract study group. Arch. Ophthalmol. 111:831–36
    [Google Scholar]
  60. 60. 
    Santamaría J, Artal P, Bescós J. 1987. Determination of the point-spread function of human eyes using a hybrid optical-digital method. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 4:1109–14
    [Google Scholar]
  61. 61. 
    Artal P, Benito A, Pérez GM, Alcón E, De Casas A et al. 2011. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLOS ONE 6:e16823
    [Google Scholar]
  62. 62. 
    Sahin O, Pennos A, Ginis H, Hervella L, Villegas EA et al. 2016. Optical measurement of straylight in eyes with cataract. J. Refract. Surg. 32:846–50
    [Google Scholar]
  63. 63. 
    de Castro A, Benito A, Manzanera S, Mompeán J, Cañizares B et al. 2018. Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 59:897–903
    [Google Scholar]
  64. 64. 
    Grulkowski I, Manzanera S, Cwiklinski L, Mompeán J, de Castro A et al. 2018. Volumetric macro- and micro-scale assessment of crystalline lens opacities in cataract patients using long-depth-range swept source optical coherence tomography. Biomed. Opt. Express 9:3821–33
    [Google Scholar]
  65. 65. 
    Grulkowski I, Manzanera S, Cwiklinski L, Sobczuk F, Karnowski K, Artal P. 2018. Swept source optical coherence tomography and tunable lens technology for comprehensive imaging and biometry of the whole eye. Optica 5:52–59
    [Google Scholar]
  66. 66. 
    McLeod SD, Vargas LG, Portney V, Ting A. 2007. Synchrony dual-optic accommodating intraocular lens. Part 1: optical and biomechanical principles and design considerations. J. Cataract Refract. Surg. 33:37–46
    [Google Scholar]
  67. 67. 
    Sheppard AL, Bashir A, Wolffsohn JS, Davies LN. 2010. Accommodating intraocular lenses: a review of design concepts, usage and assessment methods. Clin. Exp. Optom. 93:441–52
    [Google Scholar]
  68. 68. 
    Martinez-Enriquez E, Pérez-Merino P, Durán-Poveda S, Jiménez-Alfaro I, Marcos S 2018. Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas. Sci. Rep. 8:9829
    [Google Scholar]
  69. 69. 
    Rosales P, Dubbelman M, Marcos S, van der Heijde R 2006. Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. J. Vis. 6:101057–67
    [Google Scholar]
  70. 70. 
    Cook CA, Koretz JF, Pfahnl A, Hyun J, Kaufman PL 1994. Aging of the human crystalline lens and anterior segment. Vis. Res. 34:2945–54
    [Google Scholar]
  71. 71. 
    Dubbelman M, Van der Heijde GL. 2001. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox. Vis. Res. 41:1867–77
    [Google Scholar]
  72. 72. 
    Dubbelman M, Van der Heijde GL, Weeber HA 2005. Change in shape of the aging human crystalline lens with accommodation. Vis. Res. 45:117–32
    [Google Scholar]
  73. 73. 
    Rosales P, Marcos S 2009. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens. J. Refract. Surg. 25:421–28
    [Google Scholar]
  74. 74. 
    Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. 2011. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. J. Vis. 11:319 https://doi.org/10.1167/11.3.19
    [Crossref] [Google Scholar]
  75. 75. 
    Sheppard AL, Evans CJ, Singh KD, Wolffsohn JS, Dunne MC, Davies LN. 2011. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Investig. Ophthalmol. Vis. Sci. 52:3689–97
    [Google Scholar]
  76. 76. 
    Ramasubramanian V, Glasser A. 2015. Objective measurement of accommodative biometric changes using ultrasound biomicroscopy. J. Cataract Refract. Surg. 41:511–26
    [Google Scholar]
  77. 77. 
    Ortiz S, Siedlecki D, Grulkowski I, Remon L, Pascual D et al. 2010. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. Opt. Express 18:2782–96
    [Google Scholar]
  78. 78. 
    Ortiz S, Pérez-Merino P, Gambra E, de Castro A, Marcos S 2012. In vivo human crystalline lens topography. Biomed. Opt. Express 3:2471–88
    [Google Scholar]
  79. 79. 
    Gambra E, Ortiz S, Pérez-Merino P, Gora M, Wojtkowski M, Marcos S 2013. Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT. Biomed. Opt. Express 4:1595–609
    [Google Scholar]
  80. 80. 
    Pérez-Merino P, Velasco-Ocana M, Martinez-Enriquez E, Marcos S 2015. OCT-based crystalline lens topography in accommodating eyes. Biomed. Opt. Express 6:5039–54
    [Google Scholar]
  81. 81. 
    Martinez-Enriquez E, Sun M, Velasco-Ocana M, Birkenfeld J, Pérez-Merino P, Marcos S 2016. Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position. Investig. Ophthalmol. Vis. Sci. 57:OCT600–10
    [Google Scholar]
  82. 82. 
    Sun M, Pérez-Merino P, Martinez-Enriquez E, Velasco-Ocana M, Marcos S 2016. Full 3-D OCT-based pseudophakic custom computer eye model. Biomed. Opt. Express 7:1074–88
    [Google Scholar]
  83. 83. 
    Martinez-Enriquez E, Pérez-Merino P, Velasco-Ocana M, Marcos S 2017. OCT-based full crystalline lens shape change during accommodation in vivo. Biomed. Opt. Express 8:918–33
    [Google Scholar]
  84. 84. 
    Muralidharan G, Martinez-Enriquez E, Birkenfeld J, Velasco-Ocana M, Pérez-Merino P, Marcos S 2019. Morphological changes of human crystalline lens in myopia. Biomed. Opt. Express 10:6084–95
    [Google Scholar]
  85. 85. 
    Martinez-Enriquez E, De Castro A, Marcos S 2020. Eigenlenses: a new model for full crystalline lens shape representation and its applications. Biomed. Opt. Express 11:105633–49
    [Google Scholar]
  86. 86. 
    Olsen T, Hoffmann P. 2014. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J. Cataract Refract. Surg. 40:764–73
    [Google Scholar]
  87. 87. 
    Olsen T. 2007. Calculation of intraocular lens power: a review. Acta Ophthalmol. Scand. 85:472–85
    [Google Scholar]
  88. 88. 
    Shammas HJ, Shammas MC. 2015. Improving the preoperative prediction of the anterior pseudophakic distance for intraocular lens power calculation. J. Cataract Refract. Surg. 41:2379–86
    [Google Scholar]
  89. 89. 
    Erb-Eigner K, Hirnschall N, Hackl C, Schmidt C, Asbach P, Findl O. 2015. Predicting lens diameter: ocular biometry with high-resolution MRI. Investig. Ophthalmol. Vis. Sci. 56:6847–54
    [Google Scholar]
  90. 90. 
    Yoo YS, Whang WJ, Hwang KY, Lazo M, Hwang JH et al. 2019. Use of the crystalline lens equatorial plane as a new parameter for predicting postoperative intraocular lens position. Am. J. Ophthalmol. 198:17–24
    [Google Scholar]
  91. 91. 
    Melles RB, Holladay JT, Chang WJ. 2018. Accuracy of intraocular lens calculation formulas. Ophthalmology 125:169–78
    [Google Scholar]
  92. 92. 
    Yoo YS, Whang WJ, Kim HS, Joo CK, Yoon G. 2019. Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position. Medicine 98:e18026
    [Google Scholar]
  93. 93. 
    Yoo YS, Whang WJ, Kim HS, Joo CK, Yoon G. 2020. New IOL formula using anterior segment three-dimensional optical coherence tomography. PLOS ONE 15:e0236137
    [Google Scholar]
  94. 94. 
    Tabernero J, Piers P, Benito A, Redondo M, Artal P. 2006. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Investig. Ophthalmol. Vis. Sci. 47:4651–58
    [Google Scholar]
  95. 95. 
    Rosales P, Marcos S 2007. Customized computer models of eyes with intraocular lenses. Opt. Express 15:2204–18
    [Google Scholar]
  96. 96. 
    Pérez-Merino P, Velasco-Ocana M, Martinez-Enriquez E, Revuelta L, McFadden SA, Marcos S 2017. Three-dimensional OCT based guinea pig eye model: relating morphology and optics. Biomed. Opt. Express 8:2173–84
    [Google Scholar]
  97. 97. 
    Llorente L, Barbero S, Merayo J, Marcos S 2004. Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J. Refract. Surg. 20:203–16
    [Google Scholar]
  98. 98. 
    Preussner PR, Wahl J, Weitzel D. 2005. Topography-based intraocular lens power selection. J. Cataract Refract. Surg. 31:525–33
    [Google Scholar]
  99. 99. 
    Canovas C, Artal P. 2011. Customized eye models for determining optimized intraocular lenses power. Biomed. Opt. Express 2:1649–62
    [Google Scholar]
  100. 100. 
    Alarcon A, Canovas C, Rosen R, Weeber H, Tsai L et al. 2016. Preclinical metrics to predict through-focus visual acuity for pseudophakic patients. Biomed. Opt. Express 7:1877–88
    [Google Scholar]
  101. 101. 
    Ortiz S, Siedlecki D, Pérez-Merino P, Chia N, de Castro A et al. 2011. Corneal topography from spectral optical coherence tomography (sOCT). Biomed. Opt. Express 2:3232–47
    [Google Scholar]
  102. 102. 
    Marcos S, Ortiz S, Pérez-Merino P, Birkenfeld J, Durán S, Jiménez-Alfaro I. 2014. Three-dimensional evaluation of accommodating intraocular lens shift and alignment in vivo. Ophthalmology 121:45–55
    [Google Scholar]
  103. 103. 
    Ortiz S, Pérez-Merino P, Durán S, Velasco-Ocana M, Birkenfeld J et al. 2013. Full OCT anterior segment biometry: an application in cataract surgery. Biomed. Opt. Express 4:387–96
    [Google Scholar]
  104. 104. 
    Sun M, de Castro A, Ortiz S, Pérez-Merino P, Birkenfeld J, Marcos S 2014. Intraocular lens alignment from an en face optical coherence tomography image Purkinje-like method. Opt. Eng. 53:061704
    [Google Scholar]
  105. 105. 
    Marcos S, Rosales P, Llorente L, Jiménez-Alfaro I. 2007. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses. J. Cataract Refract. Surg. 33:217–26
    [Google Scholar]
  106. 106. 
    De Castro A, Martinez-Enriquez E, Velasco-Ocana M, Duran S, Jiménez-Alfaro I, Marcos S 2019. Intra-ocular lens power calculation using 3D OCT-based personalized computer eye models. Investig. Ophthalmol. Vis. Sci. 60:6463
    [Google Scholar]
  107. 107. 
    Fernández EJ, Iglesias I, Artal P. 2001. Closed-loop adaptive optics in the human eye. Opt. Lett. 26:746–48
    [Google Scholar]
  108. 108. 
    Fernández EJ, Manzanera S, Piers P, Artal P. 2002. Adaptive optics visual simulator. J. Refract. Surg. 18:S634–38
    [Google Scholar]
  109. 109. 
    Artal P, Chen L, Fernández EJ, Singer B, Manzanera S, Williams DR. 2004. Neural compensation for the eye's optical aberrations. J. Vis. 4:4281–87
    [Google Scholar]
  110. 110. 
    Prieto PM, Fernández EJ, Manzanera S, Artal P. 2004. Adaptive optics with a programmable phase modulator: applications in the human eye. Opt. Express 12:4059–71
    [Google Scholar]
  111. 111. 
    Piers PA, Manzanera S, Prieto PM, Gorceix N, Artal P. 2007. Use of adaptive optics to determine the optimal ocular spherical aberration. J. Cataract Refract. Surg. 33:1721–26
    [Google Scholar]
  112. 112. 
    Fernández EJ, Prieto PM, Artal P. 2009. Binocular adaptive optics visual simulator. Opt. Lett. 34:2628–30
    [Google Scholar]
  113. 113. 
    Schwarz C, Prieto PM, Fernández EJ, Artal P. 2011. Binocular adaptive optics vision analyzer with full control over the complex pupil functions. Opt. Lett. 36:4779–81
    [Google Scholar]
  114. 114. 
    Schwarz C, Cánovas C, Manzanera S, Weeber H, Prieto PM et al. 2014. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light. J. Vis. 14:28 https://doi.org/10.1167/14.2.8
    [Crossref] [Google Scholar]
  115. 115. 
    Artal P. 2014. Optics of the eye and its impact in vision: a tutorial. Adv. Opt. Photon. 6:340–67
    [Google Scholar]
  116. 116. 
    Piers PA, Fernandez EJ, Manzanera S, Norrby S, Artal P. 2004. Adaptive optics simulation of intraocular lenses with modified spherical aberration. Investig. Ophthalmol. Vis. Sci. 45:4601–10
    [Google Scholar]
  117. 117. 
    Leray B, Cassagne M, Soler V, Villegas EA, Triozon C et al. 2015. Relationship between induced spherical aberration and depth of focus after hyperopic LASIK in presbyopic patients. Ophthalmology 122:233–43
    [Google Scholar]
  118. 118. 
    Shetty N, Kochar S, Paritekar P, Artal P, Shetty R et al. 2019. Patient-specific determination of change in ocular spherical aberration to improve near and intermediate visual acuity of presbyopic eyes. J. Biophoton. 12:e201800259
    [Google Scholar]
  119. 119. 
    Hervella L, Villegas EA, Robles C, Artal P. 2020. Spherical aberration customization to extend the depth of focus with a clinical adaptive optics visual simulator. J. Refract. Surg. 36:223–29
    [Google Scholar]
  120. 120. 
    Williams D, Yoon GY, Porter J, Guirao A, Hofer H, Cox I. 2000. Visual benefit of correcting higher order aberrations of the eye. J. Refract. Surg. 16:S554–59
    [Google Scholar]
  121. 121. 
    Sawides L, Gambra E, Pascual D, Dorronsoro C, Marcos S 2010. Visual performance with real-life tasks under adaptive-optics ocular aberration correction. J. Vis. 10:519
    [Google Scholar]
  122. 122. 
    Liang J, Williams DR, Miller DT. 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14:2884–92
    [Google Scholar]
  123. 123. 
    Marcos S, Sawides L, Gambra E, Dorronsoro C. 2008. Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities. J. Vis. 8:131
    [Google Scholar]
  124. 124. 
    de Gracia P, Marcos S, Mathur A, Atchison DA 2011. Contrast sensitivity benefit of adaptive optics correction of ocular aberrations. J. Vis. 11:125 https://doi.org/10.1167/11.12.5
    [Crossref] [Google Scholar]
  125. 125. 
    Sabesan R, Zheleznyak L, Yoon G. 2012. Binocular visual performance and summation after correcting higher order aberrations. Biomed. Opt. Express 3:3176–89
    [Google Scholar]
  126. 126. 
    Zheleznyak L, Sabesan R, Oh J-S, MacRae S, Yoon G. 2013. Modified monovision with spherical aberration to improve presbyopic through-focus visual performance. Investig. Ophthalmol. Vis. Sci. 54:3157–65
    [Google Scholar]
  127. 127. 
    Villa C, Gutiérrez R, Jiménez JR, González-Méijome JM. 2007. Night vision disturbances after successful LASIK surgery. Br. J. Ophthalmol. 91:1031–37
    [Google Scholar]
  128. 128. 
    Zheleznyak L, Jung H, Yoon G. 2014. Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration. Investig. Ophthalmol. Vis. Sci. 55:70–77
    [Google Scholar]
  129. 129. 
    Johannsdottir KR, Stelmach LB. 2001. Monovision: a review of the scientific literature. Optom. Vis. Sci. 78:646–51
    [Google Scholar]
  130. 130. 
    Jiménez JR, Castro JJ, Jiménez R, Hita E. 2008. Interocular differences in higher-order aberrations on binocular visual performance. Optom. Vis. Sci. 85:174–79
    [Google Scholar]
  131. 131. 
    Zheleznyak L, Sabesan R, Oh JS, MacRae S, Yoon G. 2013. Modified monovision with spherical aberration to improve presbyopic through-focus visual performance. Investig. Ophthalmol. Vis. Sci. 54:3157–65
    [Google Scholar]
  132. 132. 
    Vinas M, Dorronsoro C, Cortes D, Pascual D, Marcos S 2015. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomed. Opt. Express 6:948–62
    [Google Scholar]
  133. 133. 
    Vinas M, Dorronsoro C, Radhakrishnan A, Benedi-Garcia C, LaVilla EA et al. 2017. Comparison of vision through surface modulated and spatial light modulated multifocal optics. Biomed. Opt. Express 8:2055–68
    [Google Scholar]
  134. 134. 
    Marcos S, Benedí-García C, Aissati S, Gonzalez-Ramos AM, Lago CM et al. 2020. VioBio lab adaptive optics: technology and applications by women vision scientists. Ophthalmic Physiol. Opt. 40:75–87
    [Google Scholar]
  135. 135. 
    Dorronsoro C, Barcala X, Gambra E, Akondi V, Sawides L et al. 2019. Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications. Opt. Express 27:2085–100
    [Google Scholar]
  136. 136. 
    Dorronsoro C, Radhakrishnan A, Alonso-Sanz JR, Pascual D, Velasco-Ocana M et al. 2016. Portable simultaneous vision device to simulate multifocal corrections. Optica 3:918–24
    [Google Scholar]
  137. 137. 
    Akondi V, Dorronsoro C, Gambra E, Marcos S 2017. Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations. Biomed. Opt. Express 8:3410–25
    [Google Scholar]
  138. 138. 
    de Gracia P, Dorronsoro C, Sánchez-González A, Sawides L, Marcos S 2013. Experimental simulation of simultaneous vision. Investig. Ophthalmol. Vis. Sci. 54:415–22
    [Google Scholar]
  139. 139. 
    Dorronsoro C, Radhakrishnan A, de Gracia P, Sawides L, Marcos S 2016. Perceived image quality with simulated segmented bifocal corrections. Biomed. Opt. Express 7:4388–99
    [Google Scholar]
  140. 140. 
    Radhakrishnan A, Dorronsoro C, Marcos S 2016. Differences in visual quality with orientation of a rotationally asymmetric bifocal intraocular lens design. J. Cataract Refract. Surg. 42:1276–87
    [Google Scholar]
  141. 141. 
    Vinas M, Aissati S, Romero M, Benedi-Garcia C, Garzon N et al. 2019. Pre-operative simulation of post-operative multifocal vision. Biomed. Opt. Express 10:5801–17
    [Google Scholar]
  142. 142. 
    Radhakrishnan A, Pascual D, Marcos S, Dorronsoro C 2019. Vision with different presbyopia corrections simulated with a portable binocular visual simulator. PLOS ONE 14:e0221144
    [Google Scholar]
  143. 143. 
    Vinas M, Aissati S, Gonzalez-Ramos AM, Romero M, Sawides L et al. 2020. Optical and visual quality with physical and visually simulated presbyopic multifocal contact lenses. Transl. Vis. Sci. Technol. 9:1020
    [Google Scholar]
  144. 144. 
    Radhakrishnan A, Dorronsoro C, Sawides L, Marcos S 2014. Short-term neural adaptation to simultaneous bifocal images. PLOS ONE 9:e93089
    [Google Scholar]
  145. 145. 
    Sabesan R, Barbot A, Yoon G. 2017. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics. Vis. Res. 132:78–84
    [Google Scholar]
  146. 146. 
    Studer HP, Riedwyl H, Amstutz CA, Hanson JV, Büchler P. 2013. Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery. J. Biomech. 46:751–58
    [Google Scholar]
  147. 147. 
    Kling S, Marcos S 2013. Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea. Investig. Ophthalmol. Vis. Sci. 54:881–89
    [Google Scholar]
  148. 148. 
    Remón L, Siedlecki D, Cabeza-Gil I, Calvo B 2018. Influence of material and haptic design on the mechanical stability of intraocular lenses by means of finite-element modeling. J. Biomed. Opt. 23:035003
    [Google Scholar]
  149. 149. 
    Barbero S, Marcos S 2007. Analytical tools for customized design of monofocal intraocular lenses. Opt. Express 15:8576–91
    [Google Scholar]
  150. 150. 
    Villegas EA, Alcon E, Rubio E, Marín JM, Artal P. 2014. Refractive accuracy with light-adjustable intraocular lenses. J. Cataract Refract. Surg. 40:1075–84.e2
    [Google Scholar]
  151. 151. 
    Debellemanière G, Flores M, Montard M, Delbosc B, Saleh M. 2016. Three-dimensional printing of optical lenses and ophthalmic surgery: challenges and perspectives. J. Refract. Surg. 32:201–4
    [Google Scholar]
  152. 152. 
    Villegas EA, Manzanera S, Lago CM, Hervella L, Sawides L, Artal P. 2019. Effect of crystalline lens aberrations on adaptive optics simulation of intraocular lenses. J. Refract. Surg. 35:126–31
    [Google Scholar]
  153. 153. 
    Sramka M, Slovak M, Tuckova J, Stodulka P. 2019. Improving clinical refractive results of cataract surgery by machine learning. PeerJ 7:e7202
    [Google Scholar]
  154. 154. 
    Freeman W. 2020. Ophthalmic surgical instruments market report: a global analysis for 2019 to 2025Rep., Market Scope, St. Louis, MO https://www.market-scope.com/pages/reports/228/2020-ophthalmic-surgical-instruments-market-report#reports
/content/journals/10.1146/annurev-bioeng-082420-035827
Loading
/content/journals/10.1146/annurev-bioeng-082420-035827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error