1932

Abstract

Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include () cytotoxicity, phagocytosis, or complement lysis; () modulation of inflammation; () antigen presentation; () antibody-mediated receptor clustering; and () cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082721-024500
2022-06-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-082721-024500.html?itemId=/content/journals/10.1146/annurev-bioeng-082721-024500&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kaplon H, Reichert JM. 2021. Antibodies to watch in 2021. MAbs 13:11860476
    [Google Scholar]
  2. 2.
    Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. 2019. Antibody structure and function: the basis for engineering therapeutics. Antibodies 8:455
    [Google Scholar]
  3. 3.
    Wang X, Mathieu M, Brezski RJ. 2018. IgG Fc engineering to modulate antibody effector functions. Protein Cell 9:63–73
    [Google Scholar]
  4. 4.
    Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30:459–89
    [Google Scholar]
  5. 5.
    Mero P, Zhang CY, Huang ZY, Kim MK, Schreiber AD et al. 2006. Phosphorylation-independent ubiquitylation and endocytosis of FcγRIIA. J. Biol. Chem. 281:4433242–49
    [Google Scholar]
  6. 6.
    Velmurugan R, Challa DK, Ram S, Ober RJ, Ward ES. 2016. Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells. Mol. Cancer Ther. 15:81879–89
    [Google Scholar]
  7. 7.
    Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW et al. 2018. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep 23:133946–59.e6
    [Google Scholar]
  8. 8.
    Vogelpoel LTC, Baeten DLP, de Jong EC, den Dunnen J. 2015. Control of cytokine production by human Fc gamma receptors: implications for pathogen defense and autoimmunity. Front. Immunol. 6:79
    [Google Scholar]
  9. 9.
    Mayes PA, Hance KW, Hoos A. 2018. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17:7509–27
    [Google Scholar]
  10. 10.
    Bournazos S, Ravetch JV. 2017. Fcγ receptor function and the design of vaccination strategies. Immunity 47:2224–33
    [Google Scholar]
  11. 11.
    Morris AB, Farley CR, Pinelli DF, Adams LE, Cragg MS et al. 2020. Signaling through the inhibitory Fc receptor FcγRIIB induces CD8+ T cell apoptosis to limit T cell immunity. Immunity 52:1136–50.e6
    [Google Scholar]
  12. 12.
    Charab W, Rosenberger MG, Shivram H, Mirazee JM, Donkor M et al. 2021. IgG immune complexes inhibit naïve T cell proliferation and suppress effector function in cytotoxic T cells. Front. Immunol. 12:713704
    [Google Scholar]
  13. 13.
    Akula S, Mohammadamin S, Hellman L. 2014. Fc receptors for immunoglobulins and their appearance during vertebrate evolution. PLOS ONE 9:596903
    [Google Scholar]
  14. 14.
    Li X, Wu J, Ptacek T, Redden DT, Brown EE et al. 2013. Allelic-dependent expression of an activating Fc receptor on B cells enhances humoral immune responses. Sci. Transl. Med. 5:216216ra175
    [Google Scholar]
  15. 15.
    Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. 2014. Contribution of human FcγRs to disease with evidence from human polymorphisms and transgenic animal studies. Front. Immunol. 5:254
    [Google Scholar]
  16. 16.
    Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. 2019. Genetic variation in low-to-medium-affinity Fcγ receptors: functional consequences, disease associations, and opportunities for personalized medicine. Front. Immunol. 10:2237
    [Google Scholar]
  17. 17.
    Nimmerjahn F, Ravetch JV. 2008. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8:134–47
    [Google Scholar]
  18. 18.
    Patel KR, Roberts JT, Barb AW. 2019. Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Front. Immunol. 10:223
    [Google Scholar]
  19. 19.
    Anania JC, Chenoweth AM, Wines BD, Hogarth PM. 2019. The human FcγRII (CD32) family of leukocyte FcR in health and disease. Front. Immunol. 10:464
    [Google Scholar]
  20. 20.
    Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N et al. 2009. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113:163716–25
    [Google Scholar]
  21. 21.
    Subedi GP, Barb AW. 2019. CD16a with oligomannose-type N-glycans is the only “low-affinity” Fc γ receptor that binds the IgG crystallizable fragment with high affinity in vitro. J. Biol. Chem. 293:4316842–50
    [Google Scholar]
  22. 22.
    Patel KR, Roberts JT, Subedi GP, Barb AW. 2018. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function. J. Biol. Chem. 293:3477–89
    [Google Scholar]
  23. 23.
    Roberts JT, Patel KR, Barb AW. 2020. Site-specific N-glycan analysis of antibody-binding Fc γ receptors from primary human monocytes. Mol. Cell. Proteom. 19:2362–74
    [Google Scholar]
  24. 24.
    Gavin PG, Song N, Rim Kim S, Lipchik C, Johnson NL et al. 2017. Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2-positive breast cancer: analysis of the NSABP B-31 trial. JAMA Oncol 3:3335–41
    [Google Scholar]
  25. 25.
    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P et al. 2002. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99:3754–58
    [Google Scholar]
  26. 26.
    Brezski RJ, Georgiou G. 2016. Immunoglobulin isotype knowledge and application to Fc engineering. Curr. Opin. Immunol. 40:62–69
    [Google Scholar]
  27. 27.
    Lux A, Yu X, Scanlan CN, Nimmerjahn F. 2013. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J. Immunol. 190:84315–23
    [Google Scholar]
  28. 28.
    Horns F, Vollmers C, Croote D, Mackey SF, Swan GE et al. 2016. Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching. eLife 5:e16578
    [Google Scholar]
  29. 29.
    Beers SA, Glennie MJ, White AL. 2016. Influence of immunoglobulin isotype on therapeutic antibody function. Blood 127:91097–101
    [Google Scholar]
  30. 30.
    Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5:520
    [Google Scholar]
  31. 31.
    Kerntke C, Nimmerjahn F, Biburger M. 2020. There is (scientific) strength in numbers: a comprehensive quantitation of Fc gamma receptor numbers on human and murine peripheral blood leukocytes. Front. Immunol. 11:118
    [Google Scholar]
  32. 32.
    Meknache N, Jönsson F, Laurent J, Guinnepain M-T, Daëron M. 2009. Human basophils express the glycosylphosphatidylinositol-anchored low-affinity IgG receptor FcγRIIIB (CD16B). J. Immunol. 182:42542–50
    [Google Scholar]
  33. 33.
    Wang Y, Jönsson F. 2019. Expression, role, and regulation of neutrophil Fcγ receptors. Front. Immunol. 10:1958
    [Google Scholar]
  34. 34.
    Ganesan LP, Kim J, Wu Y, Mohanty S, Phillips GS et al. 2012. FcγRIIb on liver sinusoidal endothelium clears small immune complexes. J. Immunol. 189:104981–88
    [Google Scholar]
  35. 35.
    Herter S, Birk MC, Klein C, Gerdes C, Umana P, Bacac M. 2014. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity. J. Immunol. 192:52252–60
    [Google Scholar]
  36. 36.
    Yeap WH, Wong KL, Shimasaki N, Teo ECY, Quek JKS et al. 2016. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep. 6:34310
    [Google Scholar]
  37. 37.
    Biburger M, Aschermann S, Schwab I, Lux A, Albert H et al. 2011. Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo. Immunity 35:6932–44
    [Google Scholar]
  38. 38.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91
    [Google Scholar]
  39. 39.
    Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR. 2008. Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 7:82517–27
    [Google Scholar]
  40. 40.
    Kang TH, Lee CH, Delidakis G, Jung J, Richard-Le Goff O et al. 2019. An engineered human Fc variant with exquisite selectivity for FcγRIIIaV158 reveals that ligation of FcγRIIIa mediates potent antibody dependent cellular phagocytosis with GM-CSF-differentiated macrophages. Front. Immunol. 10:562
    [Google Scholar]
  41. 41.
    Nagelkerke SQ, Bruggeman CW, Den Haan JMM, Mul EPJ, Van Den Berg TK et al. 2018. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors. Blood Adv 2:8941–63
    [Google Scholar]
  42. 42.
    Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M et al. 2009. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than M1 cells in vitro. J. Immunol. 182:74415–22
    [Google Scholar]
  43. 43.
    Bruggeman CW, Houtzager J, Dierdorp B, Kers J, Pals ST et al. 2019. Tissue-specific expression of IgG receptors by human macrophages ex vivo. PLOS ONE 14:10e0223264
    [Google Scholar]
  44. 44.
    Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. 2017. Distribution of FcRn across species and tissues. J. Histochem. Cytochem. 65:6321–33
    [Google Scholar]
  45. 45.
    Ghetie V, Ward ES. 2000. Multiple roles for the major histocompatibility complex class I–related receptor FcRn. Annu. Rev. Immunol. 18:739–66
    [Google Scholar]
  46. 46.
    Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. 2019. The neonatal Fc receptor (FcRn): a misnomer?. Front. Immunol. 10:1540
    [Google Scholar]
  47. 47.
    Hubbard JJ, Pyzik M, Rath T, Kozicky LK, Sand KMK et al. 2020. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J. Exp. Med. 217:10e20200359
    [Google Scholar]
  48. 48.
    Heineke MH, van Egmond M. 2017. Immunoglobulin A: magic bullet or Trojan horse?. Eur. J. Clin. Investig. 47:2184–92
    [Google Scholar]
  49. 49.
    van Spriel AB, Leusen JHW, Vilé H, van de Winkel JGJ. 2002. Mac-1 (CD11b/CD18) as accessory molecule for FcαR (CD89) binding of IgA. J. Immunol. 169:73831–36
    [Google Scholar]
  50. 50.
    Wu J, Ji C, Xie F, Langefeld CD, Qian K et al. 2007. FcαRI (CD89) alleles determine the proinflammatory potential of serum IgA. J. Immunol. 178:63973–82
    [Google Scholar]
  51. 51.
    Otten MA, Groenveld I, van de Winkel JGJ, van Egmond M. 2006. Inefficient antigen presentation via the IgA Fc receptor (FcαRI) on dendritic cells. Immunobiology 211:6–8503–10
    [Google Scholar]
  52. 52.
    Stockmeyer B, Dechant M, van Egmond M, Tutt AL, Sundarapandiyan K et al. 2000. Triggering Fcα-receptor I (CD89) recruits neutrophils as effector cells for CD20-directed antibody therapy. J. Immunol. 165:105954–61
    [Google Scholar]
  53. 53.
    Dunkelberger JR, Song WC. 2010. Complement and its role in innate and adaptive immune responses. Cell Res 20:134–50
    [Google Scholar]
  54. 54.
    Saeland E, Vidarsson G, Leusen JHW, van Garderen E, Nahm MH et al. 2003. Central role of complement in passive protection by human IgG1 and IgG2 anti-pneumococcal antibodies in mice. J. Immunol. 170:126158–64
    [Google Scholar]
  55. 55.
    Lee CH, Romain G, Yan W, Watanabe M, Charab W et al. 2017. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions. Nat. Immunol. 18:8889–98
    [Google Scholar]
  56. 56.
    Getahun A, Cambier JC. 2015. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol. Rev. 268:166–73
    [Google Scholar]
  57. 57.
    García-García E, Rosales C. 2002. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72:61092–108
    [Google Scholar]
  58. 58.
    Mansfield PJ, Shayman JA, Boxer LA. 2000. Regulation of polymorphonuclear leukocyte phagocytosis by myosin light chain kinase after activation of mitogen-activated protein kinase. Blood 95:72407–12
    [Google Scholar]
  59. 59.
    Zhang Y, Hoppe AD, Swanson JA. 2010. Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. PNAS 107:4519332–37
    [Google Scholar]
  60. 60.
    Bruhns P, Vély F, Malbec O, Fridman WH, Vivier E, Daëron M. 2000. Molecular basis of the recruitment of the SH2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 by FcγRIIB. J. Biol. Chem. 275:4837357–64
    [Google Scholar]
  61. 61.
    Floto RA, Clatworthy MR, Heilbronn KR, Rosner DR, MacAry PA et al. 2005. Loss of function of a lupus- associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11:101056–58
    [Google Scholar]
  62. 62.
    Ben Mkaddem S, Hayem G, Jönsson F, Rossato E, Boedec E et al. 2014. Shifting FcγRIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. J. Clin. Investig. 124:93945–59
    [Google Scholar]
  63. 63.
    Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S et al. 2005. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22:131–42
    [Google Scholar]
  64. 64.
    Da Silva FP, Aloulou M, Skurnik D, Benhamou M, Andremont A et al. 2007. CD16 promotes Escherichia coli sepsis through an FcRγ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat. Med. 13:111368–74
    [Google Scholar]
  65. 65.
    Ben Mkaddem S, Benhamou M, Monteiro RC. 2019. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10:811
    [Google Scholar]
  66. 66.
    Kara S, Amon L, Lühr JJ, Nimmerjahn F, Dudziak D, Lux A. 2020. Impact of plasma membrane domains on IgG Fc receptor function. Front. Immunol. 11:1320
    [Google Scholar]
  67. 67.
    Zhu JW, Brdicka T, Katsumoto TR, Lin J, Weiss A. 2008. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28:2183–96
    [Google Scholar]
  68. 68.
    Bakalar MH, Joffe AM, Schmid EM, Son S, Podolski M et al. 2018. Size-dependent segregation controls macrophage phagocytosis of antibody-opsonized targets. Cell 174:1131–42.e13
    [Google Scholar]
  69. 69.
    Brandsma AM, Jacobino SR, Meyer S, ten Broeke T, Leusen JHW et al. 2015. Fc receptor inside-out signaling and possible impact on antibody therapy. Immunol. Rev. 268:174–87
    [Google Scholar]
  70. 70.
    Hirsch I, Janovec V, Stranska R, Bendriss-Vermare N. 2017. Cross talk between inhibitory immunoreceptor tyrosine-based activation motif-signaling and toll-like receptor pathways in macrophages and dendritic cells. Front. Immunol. 8:394
    [Google Scholar]
  71. 71.
    Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. 2017. Signaling by antibodies: recent progress. Annu. Rev. Immunol. 35:285–311
    [Google Scholar]
  72. 72.
    van de Winkel JGJ, Tax WJM, Jacobs CWM, Huizinga TWJ, Willems PHGM. 1990. Cross-linking of both types of IgG Fc receptors, FcγRl and FcγRII, enhances intracellular free Ca2+ in the monocyte cell line U937. Scand J. Immunol. 31:315–25
    [Google Scholar]
  73. 73.
    Chenoweth AM, Trist HM, Tan PS, Wines BD, Hogarth PM. 2015. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates. Immunol. Rev. 268:1175–91
    [Google Scholar]
  74. 74.
    Harrison PT, Davis W, Norman JC, Hockaday AR, Allen JM. 1994. Binding of monomeric immunoglobulin G triggers FcγRI-mediated endocytosis. J. Biol. Chem. 269:3924396–402
    [Google Scholar]
  75. 75.
    Sips M, Krykbaeva M, Diefenbach TJ, Ghebremichael M, Bowman BA et al. 2016. Fc receptor-mediated phagocytosis in tissues as a potent mechanism for preventive and therapeutic HIV vaccine strategies. Mucosal Immunol 9:61584–95
    [Google Scholar]
  76. 76.
    Feng G, Wines BD, Kurtovic L, Chan JA, Boeuf P et al. 2021. Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites. Nat. Commun. 12:11742
    [Google Scholar]
  77. 77.
    Valerius T, Repp R, de Wit T, Berthold S, Platzer E et al. 1993. Involvement of the high-affinity receptor for IgG (FCγRI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood 82:3931–39
    [Google Scholar]
  78. 78.
    Mancardi DA, Albanesi M, Jönsson F, Iannascoli B, Van Rooijen N et al. 2013. The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy. Blood 121:91563–73
    [Google Scholar]
  79. 79.
    Brandsma AM, Schwartz SL, Wester MJ, Valley CC, Blezer GLA et al. 2018. Mechanisms of inside-out signaling of the high-affinity IgG receptor FcγRI. Sci. Signal. 11:540eaaq0891
    [Google Scholar]
  80. 80.
    Norris PAA, Segel GB, Burack WR, Sachs UJ, Lissenberg-Thunnissen SN et al. 2021. FcγRI and FcγRIII on splenic macrophages mediate phagocytosis of anti-glycoprotein IIb/IIIa autoantibody-opsonized platelets in immune thrombocytopenia. Haematologica 106:1250–54
    [Google Scholar]
  81. 81.
    Overdijk MB, Verploegen S, Bögels M, Van Egmond M, Lammerts Van Bueren JJ et al. 2015. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7:2311–20
    [Google Scholar]
  82. 82.
    Hepburn AL, Mason JC, Wang S, Shepherd CJ, Florey O et al. 2006. Both Fcγ and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitro. Clin. Exp. Immunol. 146:1133–45
    [Google Scholar]
  83. 83.
    Beekman JM, van der Linden JA, van de Winkel JGJ, Leusen JHW. 2008. FcγRI (CD64) resides constitutively in lipid rafts. Immunol. Lett. 116:2149–55
    [Google Scholar]
  84. 84.
    Lopes FB, Bálint Š, Valvo S, Felce JH, Hessel EM et al. 2017. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J. Cell Biol. 216:41123–41
    [Google Scholar]
  85. 85.
    Vogelpoel LTC, Hansen IS, Visser MW, Nagelkerke SQ, Kuijpers TW et al. 2015. FcRIIa cross-talk with TLRs, IL-1R, and IFNR selectively modulates cytokine production in human myeloid cells. Immunobiology 220:193–99
    [Google Scholar]
  86. 86.
    Swisher JFA, Haddad DA, McGrath AG, Boekhoudt GH, Feldman GM. 2014. IgG4 can induce an M2-like phenotype in human monocyte-derived macrophages through FcγRI. MAbs 6:61377–84
    [Google Scholar]
  87. 87.
    Swisher JFA, Feldman GM. 2015. The many faces of FccRI: implications for therapeutic antibody function. Immunol. Rev. 268:1160–74
    [Google Scholar]
  88. 88.
    Dai X, Jayapal M, Tay HK, Reghunathan R, Lin G et al. 2009. Differential signal transduction, membrane trafficking, and immune effector functions mediated by FcγRI versus FcγRIIa. Blood 114:2318–27
    [Google Scholar]
  89. 89.
    Melendez A, Floto RA, Gillooly DJ, Harnett MM, Allen JM. 1998. FcγRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J. Biol. Chem. 273:169393–402
    [Google Scholar]
  90. 90.
    Melendez A, Floto RA, Cameron AJ, Gillooly DJ, Harnett MM, Allen JM. 1998. A molecular switch changes the signalling pathway used by the FcγRI antibody receptor to mobilise calcium. Curr. Biol. 8:4210–22
    [Google Scholar]
  91. 91.
    Liu Y, Gao X, Masuda E, Redecha PB, Blank MC, Pricop L. 2006. Regulated expression of FcγR in human dendritic cells controls cross-presentation of antigen-antibody complexes. J. Immunol. 177:128440–47
    [Google Scholar]
  92. 92.
    van der Heijden J, Nagelkerke S, Zhao X, Geissler J, Rispens T et al. 2014. Haplotypes of FcγRIIa and FcγRIIIb polymorphic variants influence IgG-mediated responses in neutrophils. J. Immunol. 192:62715–21
    [Google Scholar]
  93. 93.
    Treffers LW, Van Houdt M, Bruggeman CW, Heineke MH, Zhao XW et al. 2019. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front. Immunol. 9:3124
    [Google Scholar]
  94. 94.
    Yang H, Jiang H, Song Y, Chen DJ, Shen XJ, Chen JH. 2018. Neutrophil CD16b crosslinking induces lipid raft-mediated activation of SHP-2 and affects cytokine expression and retarded neutrophil apoptosis. Exp. Cell Res. 362:1121–31
    [Google Scholar]
  95. 95.
    Chen K, Nishi H, Travers R, Tsuboi N, Martinod K et al. 2012. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood 120:224421–31
    [Google Scholar]
  96. 96.
    Marois L, Paré G, Vaillancourt M, Rollet-Labelle E, Naccache PH. 2011. FcγRIIIb triggers raft-dependent calcium influx in IgG-mediated responses in human neutrophils. J. Biol. Chem. 286:53509–19
    [Google Scholar]
  97. 97.
    Fossati G, Moots RJ, Bucknall RC, Edwards SW. 2002. Differential role of neutrophil Fcγ receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. Arthritis Rheum 46:51351–61
    [Google Scholar]
  98. 98.
    Brandsma AM, Bondza S, Evers M, Koutstaal R, Nederend M et al. 2019. Potent Fc receptor signaling by IgA leads to superior killing of cancer cells by neutrophils compared to IgG. Front. Immunol. 10:704
    [Google Scholar]
  99. 99.
    Bakema JE, Bakker A, de Haij S, Honing H, Bracke M et al. 2008. Inside-out regulation of FcαRI (CD89) depends on PP2A. J. Immunol. 181:64080–88
    [Google Scholar]
  100. 100.
    Lohse S, Brunke C, Derer S, Peipp M, Boross P et al. 2012. Characterization of a mutated IgA2 antibody of the m(1) allotype against the epidermal growth factor receptor for the recruitment of monocytes and macrophages. J. Biol. Chem. 287:3025139–50
    [Google Scholar]
  101. 101.
    Yamaguchi Y, Barb AW. 2020. A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 30:4214–25
    [Google Scholar]
  102. 102.
    Caaveiro JMM, Kiyoshi M, Tsumoto K. 2015. Structural analysis of Fc/FcγR complexes: a blueprint for antibody design. Immunol. Rev. 268:1201–21
    [Google Scholar]
  103. 103.
    Lu J, Chu J, Zou Z, Hamacher NB, Rixon MW, Sun PD. 2015. Structure of FcγRI in complex with Fc reveals the importance of glycan recognition for high-affinity IgG binding. PNAS 112:3833–38
    [Google Scholar]
  104. 104.
    Sondermann P, Huber R, Oosthulzen V, Jacob U 2000. The 3.2-Å crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 406:6793267–73
    [Google Scholar]
  105. 105.
    Kiyoshi M, Caaveiro JMM, Kawai T, Tashiro S, Ide T et al. 2015. Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI. Nat. Commun. 6:6866
    [Google Scholar]
  106. 106.
    Ugurlar D, Howes SC, De Kreuk B-J, Koning RI, de Jong RN et al. 2018. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359:6377794–97
    [Google Scholar]
  107. 107.
    Shields RL, Lai J, Keck R, O'Connell LY, Hong K et al. 2002. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277:3026733–40
    [Google Scholar]
  108. 108.
    Falconer DJ, Subedi GP, Marcella AM, Barb AW. 2018. Antibody fucosylation lowers the FcγRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chem. Biol. 13:82179–89
    [Google Scholar]
  109. 109.
    Hristodorov D, Fischer R, Joerissen H, Müller-Tiemann B, Apeler H, Linden L. 2012. Generation and comparative characterization of glycosylated and aglycosylated human IgG1 antibodies. Mol. Biotechnol. 53:3326–35
    [Google Scholar]
  110. 110.
    Borrok MJ, Jung ST, Kang TH, Monzingo AF, Georgiou G. 2012. Revisiting the role of glycosylation in the structure of human IgG Fc. ACS Chem. Biol. 7:91596–602
    [Google Scholar]
  111. 111.
    Subedi GP, Barb AW. 2015. The structural role of antibody N-glycosylation in receptor interactions. Structure 23:1573–83
    [Google Scholar]
  112. 112.
    Sprague ER, Reinhard H, Cheung EJ, Farley AH, Trujillo RD et al. 2008. The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J. Virol. 82:73490–99
    [Google Scholar]
  113. 113.
    Herr AB, Ballister ER, Bjorkman PJ. 2003. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 423:6940614–20
    [Google Scholar]
  114. 114.
    Oganesyan V, Damschroder MM, Cook KE, Li Q, Gao C et al. 2014. Structural insights into neonatal Fc receptor-based recycling mechanisms. J. Biol. Chem. 289:117812–24
    [Google Scholar]
  115. 115.
    Walters BT, Jensen PF, Larraillet V, Lin K, Patapoff T et al. 2016. Conformational destabilization of immunoglobulin G increases the low pH binding affinity with the neonatal Fc receptor. J. Biol. Chem. 291:41817–25
    [Google Scholar]
  116. 116.
    Frank M, Walker RC, Lanzilotta WN, Prestegard JH, Barb AW. 2014. Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J. Mol. Biol. 426:81799–811
    [Google Scholar]
  117. 117.
    Shields RL, Namenuk AK, Hong K, Meng YG, Rae J et al. 2000. High resolution mapping of the binding site on human IgG1 for FcRI, FcRII, FcRIII, and FcRn and design of IgG1 variants with improved binding to the FcR. J. Biol. Chem. 276:96591–604
    [Google Scholar]
  118. 118.
    Grevys A, Bern M, Foss S, Bratlie DB, Moen A et al. 2015. Fc engineering of human IgG1 for altered binding to the neonatal Fc receptor affects Fc effector functions. J. Immunol. 194:115497–508
    [Google Scholar]
  119. 119.
    Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I et al. 2010. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. PNAS 107:2604–9
    [Google Scholar]
  120. 120.
    Orlandi C, Deredge D, Ray K, Gohain N, Tolbert W et al. 2020. Antigen-induced allosteric changes in a human IgG1 Fc increase low-affinity Fcγ receptor binding. Structure 28:5516–27.e5
    [Google Scholar]
  121. 121.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K et al. 2014. Complement is activated by IgG hexamers assembled at the cell surface. Science 343:61761260–63
    [Google Scholar]
  122. 122.
    Strasser J, de Jong RN, Beurskens FJ, Wang G, Heck AJR et al. 2019. Unraveling the macromolecular pathways of IgG oligomerization and complement activation on antigenic surfaces. Nano Lett. 19:74787–96
    [Google Scholar]
  123. 123.
    Dimitrov JD. 2020. Harnessing the therapeutic potential of ‘rogue’ antibodies. Trends Pharmacol. Sci. 41:6409–17
    [Google Scholar]
  124. 124.
    Rougé L, Chiang N, Steffek M, Kugel C, Croll TI et al. 2020. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science 367:64831224–30
    [Google Scholar]
  125. 125.
    Lazar GA, Dang W, Karki S, Vafa O, Peng JS et al. 2006. Engineered antibody Fc variants with enhanced effector function. PNAS 103:114005–10
    [Google Scholar]
  126. 126.
    Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H et al. 2007. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcγ receptors. Cancer Res 67:188882–90
    [Google Scholar]
  127. 127.
    Smith P, DiLillo DJ, Bournazos S, Li F, Ravetch JV. 2012. Mouse model recapitulating human Fcγ receptor structural and functional diversity. PNAS 109:166181–86
    [Google Scholar]
  128. 128.
    Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G et al. 2019. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 10:15031
    [Google Scholar]
  129. 129.
    Bournazos S, Corti D, Virgin HW, Ravetch JV. 2020. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588:7838485–90
    [Google Scholar]
  130. 130.
    DiLillo DJ, Ravetch JV. 2015. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell 161:51035–45
    [Google Scholar]
  131. 131.
    Schneider-Merck T, Lammerts van Bueren JJ, Berger S, Rossen K, van Berkel PHC et al. 2010. Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J. Immunol. 184:1512–20
    [Google Scholar]
  132. 132.
    Kinder M, Greenplate AR, Strohl WR, Jordan RE, Brezski RJ. 2015. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs 7:3494–504
    [Google Scholar]
  133. 133.
    Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N et al. 2009. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113:163716–25
    [Google Scholar]
  134. 134.
    Tao MH, Morrison SL. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143:82595–601
    [Google Scholar]
  135. 135.
    Xu D, Alegre ML, Varga SS, Rothermel AL, Collins AM et al. 2000. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cell. Immunol. 200:116–26
    [Google Scholar]
  136. 136.
    Oganesyan V, Gao C, Shirinian L, Wu H, Dall'acqua WF 2008. Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr. D Biol. Crystallogr. 64:6700–4
    [Google Scholar]
  137. 137.
    Wilson NS, Yang B, Yang A, Loeser S, Marsters S et al. 2011. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19:1101–13
    [Google Scholar]
  138. 138.
    Li F, Ravetch JV. 2012. Apoptotic and antitumor activity of death receptor antibodies require inhibitory Fcγ receptor engagement. PNAS 109:2710966–71
    [Google Scholar]
  139. 139.
    Chu SY, Vostiar I, Karki S, Moore GL, Lazar GA et al. 2008. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcRIIb with Fc-engineered antibodies. Mol. Immunol. 45:3926–33
    [Google Scholar]
  140. 140.
    Mimoto F, Katada H, Kadono S, Igawa T, Kuramochi T et al. 2013. Engineered antibody Fc variant with selectively enhanced FcγRIIb binding over both FcγRIIaR131 and FcγRIIaH131. Protein Eng. Des. Sel. 26:10589–98
    [Google Scholar]
  141. 141.
    Knorr DA, Dahan R, Ravetch JV. 2018. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. PNAS 115:4311048–53
    [Google Scholar]
  142. 142.
    de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD et al. 2016. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLOS Biol 14:11002344
    [Google Scholar]
  143. 143.
    Boross P, Jansen JHM, de Haij S, Beurskens FJ, van der Poel CE et al. 2011. The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 96:121822–30
    [Google Scholar]
  144. 144.
    Beers SA, Chan CHT, James S, French RR, Attfield KE et al. 2008. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 112:104170–77
    [Google Scholar]
  145. 145.
    Moore GL, Chen H, Karki S, Lazar GA. 2010. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2:2181–89
    [Google Scholar]
  146. 146.
    Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW et al. 2009. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 182:127663–71
    [Google Scholar]
  147. 147.
    Acqua WFD, Woods RM, Ward ES, Palaszynski SR, Patel NK et al. 2002. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J. Immunol. 169:95171–80
    [Google Scholar]
  148. 148.
    Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IWL et al. 2010. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 28:2157–59
    [Google Scholar]
  149. 149.
    Ulrichts P, Guglietta A, Dreier T, Van Bragt T, Hanssens V et al. 2018. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Investig. 128:104372–86
    [Google Scholar]
  150. 150.
    Washburn N, Schwabb I, Ortiz D, Bhatnagar N, Lansing JC et al. 2015. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. PNAS 112:11E1297–306
    [Google Scholar]
  151. 151.
    Dekkers G, Treffers L, Plomp R, Bentlage AEH, Boer M de et al. 2017. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of Fc-receptor- and complement-mediated-effector activities. Front. Immunol. 8:877
    [Google Scholar]
  152. 152.
    Temming AR, de Taeye SW, de Graaf EL, de Neef LA, Dekkers G et al. 2019. Functional attributes of antibodies, effector cells, and target cells affecting NK cell-mediated antibody-dependent cellular cytotoxicity. J. Immunol. 203:123126–35
    [Google Scholar]
  153. 153.
    Ortiz DF, Lansing JC, Rutitzky L, Kurtagic E, Prod'homme T et al. 2016. Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors. Sci. Transl. Med. 8:365365ra158
    [Google Scholar]
  154. 154.
    Iwayanagi Y, Igawa T, Maeda A, Haraya K, Wada NA et al. 2015. Inhibitory FcγRIIb-mediated soluble antigen clearance from plasma by a pH-dependent antigen-binding antibody and its enhancement by Fc engineering. J. Immunol. 195:73198–205
    [Google Scholar]
  155. 155.
    Muramatsu H, Kuramochi T, Katada H, Ueyama A, Ruike Y et al. 2021. Novel myostatin-specific antibody enhances muscle strength in muscle disease models. Sci. Rep. 11:12160
    [Google Scholar]
  156. 156.
    Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS et al. 2020. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12:545eaay1359
    [Google Scholar]
  157. 157.
    Kelton W, Mehta N, Charab W, Lee J, Lee CH et al. 2014. IgGA: a “cross-isotype” engineered human Fc antibody domain that displays both IgG-like and IgA-like effector functions. Chem. Biol. 21:121603–9
    [Google Scholar]
  158. 158.
    Gunn BM, Lu R, Slein MD. 2021. A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity 54:815–28.e5
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082721-024500
Loading
/content/journals/10.1146/annurev-bioeng-082721-024500
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error