1932

Abstract

Recreating human organ–level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-090120-094330
2021-07-13
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-090120-094330.html?itemId=/content/journals/10.1146/annurev-bioeng-090120-094330&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Clevers H. 2016. Modeling development and disease with organoids. Cell 165:71586–97 https://doi.org/10.1016/j.cell.2016.05.082
    [Crossref] [Google Scholar]
  2. 2. 
    Phan DTT, Wang X, Craver BM, Sobrino A, Zhao D et al. 2017. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17:3511–20 https://doi.org/10.1039/c6lc01422d
    [Crossref] [Google Scholar]
  3. 3. 
    Esch MB, Ueno H, Applegate DR, Shuler ML. 2016. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16:142719–29 https://doi.org/10.1039/c6lc00461j
    [Crossref] [Google Scholar]
  4. 4. 
    Jain RK, Au P, Tam J, Duda DG, Fukumura D. 2005. Engineering vascularized tissue. Nat. Biotechnol. 23:7821–23 https://doi.org/10.1038/nbt0705-821
    [Crossref] [Google Scholar]
  5. 5. 
    Daniel E, Cleaver O. 2019. Vascularizing organogenesis: lessons from developmental biology and implications for regenerative medicine. Curr. Top. Dev. Biol. 132:177–220 https://doi.org/10.1016/bs.ctdb.2018.12.012
    [Crossref] [Google Scholar]
  6. 6. 
    Nakatsu MN, Hughes CCW. 2008. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol 443:65–82 https://doi.org/10.1016/S0076-6879(08)02004-1
    [Crossref] [Google Scholar]
  7. 7. 
    Welch-Reardon KM, Ehsan SM, Wang KH, Wu N, Newman AC et al. 2014. Angiogenic sprouting is regulated by endothelial cell expression of Slug. J. Cell Sci. 127:92017–28 https://doi.org/10.1242/jcs.143420
    [Crossref] [Google Scholar]
  8. 8. 
    Chrobak KM, Potter DR, Tien J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71:3185–96 https://doi.org/10.1016/j.mvr.2006.02.005
    [Crossref] [Google Scholar]
  9. 9. 
    Song JW, Munn LL 2011. Fluid forces control endothelial sprouting. PNAS 108:3715342–47 https://doi.org/10.1073/pnas.1105316108
    [Crossref] [Google Scholar]
  10. 10. 
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science 328:59861662–68 https://doi.org/10.1126/science.1188302
    [Crossref] [Google Scholar]
  11. 11. 
    Zheng Y, Chen J, Craven M, Choi NW, Totorica S et al. 2012. In vitro microvessels for the study of angiogenesis and thrombosis. PNAS 109:249342–47 https://doi.org/10.1073/pnas.1201240109
    [Crossref] [Google Scholar]
  12. 12. 
    Bischel LL, Young EWK, Mader BR, Beebe DJ. 2013. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34:51471–77 https://doi.org/10.1016/j.biomaterials.2012.11.005
    [Crossref] [Google Scholar]
  13. 13. 
    Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH et al. 2012. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:9768–74 https://doi.org/10.1038/nmat3357
    [Crossref] [Google Scholar]
  14. 14. 
    Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD et al. 2013. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J. Biomed. Mater. Res. A 101:102948–56 https://doi.org/10.1002/jbm.a.34587
    [Crossref] [Google Scholar]
  15. 15. 
    Fisher AB, Chien S, Barakat AI, Nerem RM. 2001. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:3L529–33 https://doi.org/10.1152/ajplung.2001.281.3.L529
    [Crossref] [Google Scholar]
  16. 16. 
    Atkins GB, Jain MK. 2007. Role of Krüppel-like transcription factors in endothelial biology. Circ. Res. 100:121686–95 https://doi.org/10.1161/01.res.0000267856.00713.0a
    [Crossref] [Google Scholar]
  17. 17. 
    Haase K, Kamm RD. 2017. Advances in on-chip vascularization. Regen. Med. 12:3285–302 https://doi.org/10.2217/rme-2016-0152
    [Crossref] [Google Scholar]
  18. 18. 
    Bogorad MI, Destefano J, Karlsson J, Wong AD, Gerecht S, Searson PC 2015. vitro microvessel models. Lab Chip 15:224242–55 https://doi.org/10.1039/c5lc00832h
    [Crossref] [Google Scholar]
  19. 19. 
    Grebenyuk S, Ranga A. 2019. Engineering organoid vascularization. Front. Bioeng. Biotechnol. 7:39 https://doi.org/10.3389/fbioe.2019.00039
    [Crossref] [Google Scholar]
  20. 20. 
    Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. 2007. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:114761–68 https://doi.org/10.1182/blood-2006-12-062471
    [Crossref] [Google Scholar]
  21. 21. 
    Yoon CH, Hur J, Park KW, Kim JH, Lee CS et al. 2005. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:111618–27 https://doi.org/10.1161/CIRCULATIONAHA.104.503433
    [Crossref] [Google Scholar]
  22. 22. 
    Sobrino A, Phan DTT, Datta R, Wang X, Hachey SJ et al. 2016. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6:131589 https://doi.org/10.1038/srep31589
    [Crossref] [Google Scholar]
  23. 23. 
    Shirure VS, Bi Y, Curtis MB, Lezia A, Goedegebuure MM et al. 2018. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18:233687–702 https://doi.org/10.1039/c8lc00596f
    [Crossref] [Google Scholar]
  24. 24. 
    Moya ML, Hsu Y-H, Lee AP, Hughes CCW, George SC. 2013. In vitro perfused human capillary networks. Tissue Eng. C 19:9730–37 https://doi.org/10.1089/ten.tec.2012.0430
    [Crossref] [Google Scholar]
  25. 25. 
    Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL et al. 2015. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. PNAS 112:1214–19 https://doi.org/10.1073/pnas.1417115112
    [Crossref] [Google Scholar]
  26. 26. 
    Kim S, Lee H, Chung M, Jeon NL 2013. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:81489–500 https://doi.org/10.1039/c3lc41320a
    [Crossref] [Google Scholar]
  27. 27. 
    Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa Y-S et al. 2017. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr. Biol. 9:6506–18 https://doi.org/10.1039/c7ib00024c
    [Crossref] [Google Scholar]
  28. 28. 
    Song HHG, Lammers A, Sundaram S, Rubio L, Chen AX et al. 2020. Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues. Adv. Funct. Mater. 2020:2003777 https://doi.org/10.1002/adfm.202003777
    [Crossref] [Google Scholar]
  29. 29. 
    Wang X, Phan DT, Sobrino A, George SC, Hughes CC, Lee AP. 2016. Engineering anastomosis between living capillary networks and endothelial cell–lined microfluidic channels. Lab Chip 16:2282–90 https://doi.org/10.1039/c5lc01050k
    [Crossref] [Google Scholar]
  30. 30. 
    Newman AC, Chou W, Welch-Reardon KM, Fong AH, Popson SA et al. 2013. Analysis of stromal cell secretomes reveals a critical role for stromal cell–derived hepatocyte growth factor and fibronectin in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 33:3513–22 https://doi.org/10.1161/ATVBAHA.112.300782
    [Crossref] [Google Scholar]
  31. 31. 
    Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. 2011. The requirement for fibroblasts in angiogenesis: Fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22:203791–800 https://doi.org/10.1091/mbc.E11-05-0393
    [Crossref] [Google Scholar]
  32. 32. 
    Chen X, Aledia AS, Popson SA, Him L, Hughes CCW, George SC. 2010. Rapid anastomosis of endothelial progenitor cell–derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng. A 16:2585–94 https://doi.org/10.1089/ten.tea.2009.0491
    [Crossref] [Google Scholar]
  33. 33. 
    Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA et al. 2008. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111:31302–5 https://doi.org/10.1182/blood-2007-06-094318
    [Crossref] [Google Scholar]
  34. 34. 
    De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. 2020. Application of CRISPR/Cas9 to human induced pluripotent stem cells: from gene editing to drug discovery. Hum. Genom. 14:125 https://doi.org/10.1186/s40246-020-00276-2
    [Crossref] [Google Scholar]
  35. 35. 
    Samuel R, Daheron L, Liao S, Vardam T, Kamoun WS et al. 2013. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. PNAS 110:3112774–79 https://doi.org/10.1073/pnas.1310675110
    [Crossref] [Google Scholar]
  36. 36. 
    Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T et al. 2015. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat. Cell Biol. 17:8994–1003 https://doi.org/10.1038/ncb3205
    [Crossref] [Google Scholar]
  37. 37. 
    Kurokawa YK, Yin RT, Shang MR, Shirure VS, Moya ML, George SC. 2017. Human induced pluripotent stem cell–derived endothelial cells for three-dimensional microphysiological systems. Tissue Eng. C 23:8474–84 https://doi.org/10.1089/ten.tec.2017.0133
    [Crossref] [Google Scholar]
  38. 38. 
    Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S 2013. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. PNAS 110:3112601–6 https://doi.org/10.1073/pnas.1306562110
    [Crossref] [Google Scholar]
  39. 39. 
    Marcu R, Choi YJ, Xue J, Fortin CL, Wang Y et al. 2018. Human organ–specific endothelial cell heterogeneity. iScience 4:20–35 https://doi.org/10.1016/j.isci.2018.05.003
    [Crossref] [Google Scholar]
  40. 40. 
    Nolan DJ, Ginsberg M, Israely E, Palikuqi B, Poulos MG et al. 2013. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev. Cell 26:2204–19 https://doi.org/10.1016/j.devcel.2013.06.017
    [Crossref] [Google Scholar]
  41. 41. 
    Herron LA, Hansen CS, Abaci HE. 2019. Engineering tissue-specific blood vessels. Bioeng. Transl. Med. 4:3e10139 https://doi.org/10.1002/btm2.10139
    [Crossref] [Google Scholar]
  42. 42. 
    Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E. 2014. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci. Transl. Med. 6:221221ra14 https://doi.org/10.1126/scitranslmed.3006894
    [Crossref] [Google Scholar]
  43. 43. 
    Bi Y, Shirure VS, Liu R, Cunningham C, Ding L et al. 2020. Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. Integr. Biol. 12:9221–32 https://doi.org/10.1093/intbio/zyaa017
    [Crossref] [Google Scholar]
  44. 44. 
    Griffith CK, Miller C, Sainson RC, Calvert JW, Jeon NL et al. 2005. Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11:1–2257–66
    [Google Scholar]
  45. 45. 
    Hughes CC. 2008. Endothelial–stromal interactions in angiogenesis. Curr. Opin. Hematol. 15:3204–9 https://doi.org/10.1097/moh.0b013e3282f97dbc
    [Crossref] [Google Scholar]
  46. 46. 
    Sewell-Loftin MK, Bayer SVH, Crist E, Hughes T, Joison SM et al. 2017. Cancer-associated fibro-blasts support vascular growth through mechanical force. Sci. Rep. 7:112574 https://doi.org/10.1038/s41598-017-13006-x
    [Crossref] [Google Scholar]
  47. 47. 
    Ghajar CM, Blevins KS, Hughes CC, George SC, Putnam AJ. 2006. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12:102875–88 https://doi.org/10.1089/ten.2006.12.2875
    [Crossref] [Google Scholar]
  48. 48. 
    Orlova VV, van den Hil FE, Petrus-Reurer S, Drabsch Y, Ten Dijke P, Mummery CL 2014. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat. Protoc. 9:61514–31 https://doi.org/10.1038/nprot.2014.102
    [Crossref] [Google Scholar]
  49. 49. 
    Swartz MA, Fleury ME. 2007. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–56 https://doi.org/10.1146/annurev.bioeng.9.060906.151850
    [Crossref] [Google Scholar]
  50. 50. 
    Shirure VS, Lezia A, Tao A, Alonzo LF, George SC. 2017. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20:4493–504 https://doi.org/10.1007/s10456-017-9559-4
    [Crossref] [Google Scholar]
  51. 51. 
    Hsu YH, Moya ML, Abiri P, Hughes CC, George SC, Lee AP. 2013. Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13:181–89 https://doi.org/10.1039/c2lc40787f
    [Crossref] [Google Scholar]
  52. 52. 
    Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS 2014. Fluid shear stress threshold regulates angiogenic sprouting. PNAS 111:227968–73 https://doi.org/10.1073/pnas.1310842111
    [Crossref] [Google Scholar]
  53. 53. 
    Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD 2014. Mechanotransduction of fluid stresses governs 3D cell migration. PNAS 111:72447–52 https://doi.org/10.1073/pnas.1316848111
    [Crossref] [Google Scholar]
  54. 54. 
    Ghajar CM, Chen X, Harris JW, Suresh V, Hughes CC et al. 2008. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94:51930–41
    [Google Scholar]
  55. 55. 
    Shamloo A, Heilshorn SC. 2010. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10:223061–68 https://doi.org/10.1039/c005069e
    [Crossref] [Google Scholar]
  56. 56. 
    Crosby CO, Zoldan J 2019. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen. Biomater. 6:261–73 https://doi.org/10.1093/rb/rbz003
    [Crossref] [Google Scholar]
  57. 57. 
    Osaki T, Sivathanu V, Kamm RD. 2018. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci. Rep. 8:15168 https://doi.org/10.1038/s41598-018-23512-1
    [Crossref] [Google Scholar]
  58. 58. 
    Badylak S, Freytes D, Gilbert T. 2009. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:11–13 https://doi.org/10.1016/j.actbio.2008.09.013
    [Crossref] [Google Scholar]
  59. 59. 
    Romero-Lopez M, Trinh AL, Sobrino A, Hatch MM, Keating MT et al. 2017. Recapitulating the human tumor microenvironment: Colon tumor–derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 116:118–29 https://doi.org/10.1016/j.biomaterials.2016.11.034
    [Crossref] [Google Scholar]
  60. 60. 
    Natividad-Diaz SL, Browne S, Jha AK, Ma Z, Hossainy S et al. 2019. A combined hiPSC-derived endothelial cell and in vitro microfluidic platform for assessing biomaterial-based angiogenesis. Biomaterials 194:73–83 https://doi.org/10.1016/j.biomaterials.2018.11.032
    [Crossref] [Google Scholar]
  61. 61. 
    Wenz A, Tjoeng I, Schneider I, Kluger PJ, Borchers K. 2018. Improved vasculogenesis and bone matrix formation through coculture of endothelial cells and stem cells in tissue-specific methacryloyl gelatin–based hydrogels. Biotechnol. Bioeng. 115:102643–53 https://doi.org/10.1002/bit.26792
    [Crossref] [Google Scholar]
  62. 62. 
    Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A et al. 2016. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15:6669–78 https://doi.org/10.1038/nmat4570
    [Crossref] [Google Scholar]
  63. 63. 
    Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC et al. 2014. Bone marrow–on–a–chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11:6663–69 https://doi.org/10.1038/nmeth.2938
    [Crossref] [Google Scholar]
  64. 64. 
    Correia C, Grayson WL, Park M, Hutton D, Zhou B et al. 2011. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLOS ONE 6:12e28352 https://doi.org/10.1371/journal.pone.0028352
    [Crossref] [Google Scholar]
  65. 65. 
    Marturano-Kruik A, Nava MM, Yeager K, Chramiec A, Hao L et al. 2018. Human bone perivascular niche-on-a-chip for studying metastatic colonization. PNAS 115:61256–61 https://doi.org/10.1073/pnas.1714282115
    [Crossref] [Google Scholar]
  66. 66. 
    Bersini S, Jeon JS, Dubini G, Arrigoni C, Chung S et al. 2014. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:82454–61 https://doi.org/10.1016/j.biomaterials.2013.11.050
    [Crossref] [Google Scholar]
  67. 67. 
    Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P et al. 2020. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng.394–406 https://doi.org/10.1038/s41551-019-0495-z
    [Crossref] [Google Scholar]
  68. 68. 
    Sieber S, Wirth L, Cavak N, Koenigsmark M, Marx U et al. 2018. Bone marrow-on-a-chip: long-term culture of human haematopoietic stem cells in a three-dimensional microfluidic environment. J. Tissue Eng. Regen. Med. 12:2479–89 https://doi.org/10.1002/term.2507
    [Crossref] [Google Scholar]
  69. 69. 
    Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS et al. 2020. Organ-on-a-chip model of vascularized human bone marrow niches. bioRxiv 2020.04.17.039339. https://doi.org/10.1101/2020.04.17.039339
    [Crossref] [Google Scholar]
  70. 70. 
    Phan DT, Bender RHF, Andrejecsk JW, Sobrino A, Hachey SJ et al. 2017. Blood-brain barrier-on-a-chip: microphysiological systems that capture the complexity of the blood–central nervous system interface. Exp. Biol. Med. 242:171669–78 https://doi.org/10.1177/1535370217694100
    [Crossref] [Google Scholar]
  71. 71. 
    Wang YI, Abaci HE, Shuler ML. 2017. Microfluidic blood-brain barrier model provides in vivo–like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114:1184–94 https://doi.org/10.1002/bit.26045
    [Crossref] [Google Scholar]
  72. 72. 
    Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD et al. 2015. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9:5054124 https://doi.org/10.1063/1.4934713
    [Crossref] [Google Scholar]
  73. 73. 
    Herland A, van der Meer AD, FitzGerald EA, Park TE, Sleeboom JJ, Ingber DE. 2016. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLOS ONE 11:3e0150360 https://doi.org/10.1371/journal.pone.0150360
    [Crossref] [Google Scholar]
  74. 74. 
    Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK et al. 2012. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30:8783–91 https://doi.org/10.1038/nbt.2247
    [Crossref] [Google Scholar]
  75. 75. 
    Wolff A, Antfolk M, Brodin B, Tenje M. 2015. In vitro blood–brain barrier models—an overview of established models and new microfluidic approaches. J. Pharm. Sci. 104:92727–46 https://doi.org/10.1002/jps.24329
    [Crossref] [Google Scholar]
  76. 76. 
    Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 2018. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–29 https://doi.org/10.1016/j.biomaterials.2018.07.014
    [Crossref] [Google Scholar]
  77. 77. 
    Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD et al. 2017. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J. Neurochem. 140:6874–88 https://doi.org/10.1111/jnc.13923
    [Crossref] [Google Scholar]
  78. 78. 
    Schwartz MP, Hou Z, Propson NE, Zhang J, Engstrom CJ et al. 2015. Human pluripotent stem cell–derived neural constructs for predicting neural toxicity. PNAS 112:4012516–21 https://doi.org/10.1073/pnas.1516645112
    [Crossref] [Google Scholar]
  79. 79. 
    Maoz BM, Herland A, Fitzgerald EA, Grevesse T, Vidoudez C et al. 2018. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36:9865–74 https://doi.org/10.1038/nbt.4226
    [Crossref] [Google Scholar]
  80. 80. 
    Aird WC. 2007. Phenotypic heterogeneity of the endothelium. Circ. Res. 100:2174–90 https://doi.org/10.1161/01.res.0000255690.03436.ae
    [Crossref] [Google Scholar]
  81. 81. 
    Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ. 2012. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ. Res. 111:3344–58 https://doi.org/10.1161/CIRCRESAHA.110.227512
    [Crossref] [Google Scholar]
  82. 82. 
    Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L et al. 2018. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:7700239–43 https://doi.org/10.1038/s41586-018-0016-3
    [Crossref] [Google Scholar]
  83. 83. 
    Fong AH, Romero-Lopez M, Heylman CM, Keating M, Tran D et al. 2016. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell–derived cardiomyocytes. Tissue Eng. A 22:15–161016–25 https://doi.org/10.1089/ten.TEA.2016.0027
    [Crossref] [Google Scholar]
  84. 84. 
    Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J et al. 2008. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:14 Suppl. 1145–52 https://doi.org/10.1161/circulationaha.107.757286
    [Crossref] [Google Scholar]
  85. 85. 
    Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G et al. 2007. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100:2263–72 https://doi.org/10.1161/01.res.0000257776.05673.ff
    [Crossref] [Google Scholar]
  86. 86. 
    Kurokawa YK, Shang MR, Yin RT, George SC. 2018. Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell–derived cardiomyocytes. Toxicol. Lett. 285:74–80 https://doi.org/10.1016/j.toxlet.2018.01.001
    [Crossref] [Google Scholar]
  87. 87. 
    Polonchuk L, Chabria M, Badi L, Hoflack J-C, Figtree G et al. 2017. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci. Rep. 7:17005 https://doi.org/10.1038/s41598-017-06385-8
    [Crossref] [Google Scholar]
  88. 88. 
    Arai K, Murata D, Verissimo AR, Mukae Y, Itoh M et al. 2018. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLOS ONE 13:12e0209162 https://doi.org/10.1371/journal.pone.0209162
    [Crossref] [Google Scholar]
  89. 89. 
    Weng K-C, Kurokawa YK, Hajek BS, Paladin JA, Shirure VS, George SC. 2020. Human induced pluripotent stem-cardiac-endothelial-tumor-on-a-chip to assess anticancer efficacy and cardiotoxicity. Tissue Eng. C 26:144–55 https://doi.org/10.1089/ten.tec.2019.0248
    [Crossref] [Google Scholar]
  90. 90. 
    Pepper AR, Gala-Lopez B, Ziff O, Shapiro AMJ. 2013. Revascularization of transplanted pancreatic islets and role of the transplantation site. Clin. Dev. Immunol. 2013:352315 https://doi.org/10.1155/2013/352315
    [Crossref] [Google Scholar]
  91. 91. 
    Vlahos AE, Cober N, Sefton MV 2017. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. PNAS 114:359337–42 https://doi.org/10.1073/pnas.1619216114
    [Crossref] [Google Scholar]
  92. 92. 
    Jun Y, Lee J, Choi S, Yang JH, Sander M et al. 2019. In vivo–mimicking microfluidic perfusion culture of pancreatic islet spheroids. Sci. Adv. 5:11eaax4520 https://doi.org/10.1126/sciadv.aax4520
    [Crossref] [Google Scholar]
  93. 93. 
    Rambol MH, Han E, Niklason LE 2020. Microvessel network formation and interactions with pancreatic islets in three-dimensional chip cultures. Tissue Eng. A 26:9–10556–68 https://doi.org/10.1089/ten.TEA.2019.0186
    [Crossref] [Google Scholar]
  94. 94. 
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:7459481–84 https://doi.org/10.1038/nature12271
    [Crossref] [Google Scholar]
  95. 95. 
    Takebe T, Koike N, Sekine K, Fujiwara R, Amiya T et al. 2014. Engineering of human hepatic tissue with functional vascular networks. Organogenesis 10:2260–67 https://doi.org/10.4161/org.27590
    [Crossref] [Google Scholar]
  96. 96. 
    Ribeiro AJS, Yang X, Patel V, Madabushi R, Strauss DG. 2019. Liver microphysiological systems for predicting and evaluating drug effects. Clin. Pharmacol. Ther. 106:1139–47 https://doi.org/10.1002/cpt.1458
    [Crossref] [Google Scholar]
  97. 97. 
    Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y et al. 2017. Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials 133:263–74 https://doi.org/10.1016/j.biomaterials.2017.02.034
    [Crossref] [Google Scholar]
  98. 98. 
    Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH et al. 2016. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8:1015007 https://doi.org/10.1088/1758-5090/8/1/015007
    [Crossref] [Google Scholar]
  99. 99. 
    Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY et al. 2016. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp. Biol. Med. 241:1101–14 https://doi.org/10.1177/1535370215592121
    [Crossref] [Google Scholar]
  100. 100. 
    Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR et al. 2017. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7:142296 https://doi.org/10.1038/srep42296
    [Crossref] [Google Scholar]
  101. 101. 
    Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:7332105–9 https://doi.org/10.1038/nature09691
    [Crossref] [Google Scholar]
  102. 102. 
    Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N et al. 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20:111310–14 https://doi.org/10.1038/nm.3737
    [Crossref] [Google Scholar]
  103. 103. 
    Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR et al. 2017. Bioengineering of functional human induced pluripotent stem cell–derived intestinal grafts. Nat. Commun. 8:1765 https://doi.org/10.1038/s41467-017-00779-y
    [Crossref] [Google Scholar]
  104. 104. 
    Seiler KM, Bajinting A, Alvarado DM, Traore MA, Binkley MM et al. 2020. Patient-derived small intestinal myofibroblasts direct perfused, physiologically responsive capillary development in a microfluidic Gut-on-a-Chip Model. Sci. Rep. 10:13842 https://doi.org/10.1038/s41598-020-60672-5
    [Crossref] [Google Scholar]
  105. 105. 
    Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A et al. 2018. Development of a primary human Small Intestine–on–a–Chip using biopsy-derived organoids. Sci. Rep. 8:12871 https://doi.org/10.1038/s41598-018-21201-7
    [Crossref] [Google Scholar]
  106. 106. 
    Jalili-Firoozinezhad S, Gazzaniga FS, Calamari EL, Camacho DM, Fadel CW et al. 2019. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3:7520–31 https://doi.org/10.1038/s41551-019-0397-0
    [Crossref] [Google Scholar]
  107. 107. 
    Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ et al. 2015. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:7574564–68 https://doi.org/10.1038/nature15695
    [Crossref] [Google Scholar]
  108. 108. 
    Yeung CK, Himmelfarb J. 2019. Kidneys on chips. Clin. J. Am. Soc. Nephrol. 14:1144–46 https://doi.org/10.2215/cjn.06690518
    [Crossref] [Google Scholar]
  109. 109. 
    Jang K-J, Mehr AP, Hamilton GA, McPartlin LA, Chung S et al. 2013. Human kidney proximal tubule–on–a–chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5:91119–29 https://doi.org/10.1039/c3ib40049b
    [Crossref] [Google Scholar]
  110. 110. 
    Weber EJ, Chapron A, Chapron BD, Voellinger JL, Lidberg KA et al. 2016. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int 90:3627–37 https://doi.org/10.1016/j.kint.2016.06.011
    [Crossref] [Google Scholar]
  111. 111. 
    Petrosyan A, Cravedi P, Villani V, Angeletti A, Manrique J et al. 2019. A glomerulus-on-a-chip to recapitulate the human glomerular filtration barrier. Nat. Commun. 10:13656 https://doi.org/10.1038/s41467-019-11577-z
    [Crossref] [Google Scholar]
  112. 112. 
    Ligresti G, Nagao RJ, Xue J, Choi YJ, Xu J et al. 2016. A novel three-dimensional human peritubular microvascular system. J. Am. Soc. Nephrol. 27:82370–81 https://doi.org/10.1681/ASN.2015070747
    [Crossref] [Google Scholar]
  113. 113. 
    Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C et al. 2016. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13:2151–57 https://doi.org/10.1038/nmeth.3697
    [Crossref] [Google Scholar]
  114. 114. 
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S et al. 2012. A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4:159159ra47–ra1 https://doi.org/10.1126/scitranslmed.3004249
    [Crossref] [Google Scholar]
  115. 115. 
    Huang SXL, Islam MN, O'Neill J, Hu Z, Yang Y-G et al. 2014. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32:184–91 https://doi.org/10.1038/nbt.2754
    [Crossref] [Google Scholar]
  116. 116. 
    Dye BR, Hill DR, Ferguson MA, Tsai Y-H, Nagy MS et al. 2015. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 4:05098 https://doi.org/10.7554/elife.05098
    [Crossref] [Google Scholar]
  117. 117. 
    Thompson HG, Truong DT, Griffith CK, George SC. 2007. A three-dimensional in vitro model of angiogenesis in the airway mucosa. Pulm. Pharmacol. Ther. 20:2141–48 https://doi.org/10.1016/j.pupt.2005.12.001
    [Crossref] [Google Scholar]
  118. 118. 
    Tan Q, Choi KM, Sicard D, Tschumperlin DJ. 2017. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 113:118–32 https://doi.org/10.1016/j.biomaterials.2016.10.046
    [Crossref] [Google Scholar]
  119. 119. 
    Shirure VS, Ye B, Curtis MB, Lezia A, Goedegebuure MM et al. 2018. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18:233687–702 https://doi.org/10.1039/c8lc00596f
    [Crossref] [Google Scholar]
  120. 120. 
    Lee H, Park W, Ryu H, Jeon NL. 2014. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics 8:5054102 https://doi.org/10.1063/1.4894595
    [Crossref] [Google Scholar]
  121. 121. 
    Ehsan SM, Welch-Reardon KM, Waterman ML, Hughes CCW, George SC. 2014. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. 6:6603–10 https://doi.org/10.1039/c3ib40170g
    [Crossref] [Google Scholar]
  122. 122. 
    David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP 2008. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 4:2256–63 https://doi.org/10.1016/j.actbio.2007.08.012
    [Crossref] [Google Scholar]
  123. 123. 
    Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC. 2009. Hyaluronic acid–based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30:306076–85 https://doi.org/10.1016/j.biomaterials.2009.07.054
    [Crossref] [Google Scholar]
  124. 124. 
    Serebriiskii I, Castello-Cros R, Lamb A, Golemis EA, Cukierman E. 2008. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol 27:6573–85 https://doi.org/10.1016/j.matbio.2008.02.008
    [Crossref] [Google Scholar]
  125. 125. 
    Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ. 2010. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res. Treat. 122:135–43 https://doi.org/10.1007/s10549-009-0502-2
    [Crossref] [Google Scholar]
  126. 126. 
    Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC. 2014. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp. Biol. Med. 239:91240–54 https://doi.org/10.1177/1535370214525295
    [Crossref] [Google Scholar]
  127. 127. 
    Baginska J, Viry E, Paggetti J, Medves S, Berchem G et al. 2013. The critical role of the tumor microenvironment in shaping natural killer cell–mediated anti-tumor immunity. Front. Immunol. 4:490 https://doi.org/10.3389/fimmu.2013.00490
    [Crossref] [Google Scholar]
  128. 128. 
    Blonska M, Agarwal NK, Vega F. 2015. Shaping of the tumor microenvironment: stromal cells and vessels. Semin. Cancer Biol. 34:3–13 https://doi.org/10.1016/j.semcancer.2015.03.002
    [Crossref] [Google Scholar]
  129. 129. 
    McAllister SS, Weinberg RA. 2014. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat. Cell Biol. 16:8717–27 https://doi.org/10.1038/ncb3015
    [Crossref] [Google Scholar]
  130. 130. 
    Hachey SJ, Movsesyan S, Nguyen QH, Burton-Sojo G, Tankanzyan A et al. 2020. An in vitro vascularized micro-tumor model of human colorectal cancer recapitulates in vivo drug responses. bioRxiv 2020.03.03.973891. https://doi.org/10.1101/2020.03.03.973891
    [Crossref]
  131. 131. 
    Miller CP, Tsuchida C, Zheng Y, Himmelfarb J, Akilesh S. 2018. A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20:6610–20 https://doi.org/10.1016/j.neo.2018.02.011
    [Crossref] [Google Scholar]
  132. 132. 
    Griffith LG, Swartz MA. 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:3211–24 https://doi.org/10.1038/Nrm1858
    [Crossref] [Google Scholar]
  133. 133. 
    Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD 2012. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. PNAS 109:3413515–20 https://doi.org/10.1073/pnas.1210182109
    [Crossref] [Google Scholar]
  134. 134. 
    Hassell BA, Goyal G, Lee E, Sontheimer-Phelps A, Levy O et al. 2017. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep 21:2508–16 https://doi.org/10.1016/j.celrep.2017.09.043
    [Crossref] [Google Scholar]
  135. 135. 
    Chen MB, Whisler JA, Frose J, Yu C, Shin Y, Kamm RD. 2017. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 12:5865–80 https://doi.org/10.1038/nprot.2017.018
    [Crossref] [Google Scholar]
  136. 136. 
    Xu H, Li Z, Yu Y, Sizdahkhani S, Ho WS et al. 2016. A dynamic in vivo–like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6:36670 https://doi.org/10.1038/srep36670
    [Crossref] [Google Scholar]
  137. 137. 
    Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. 2016. Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Res 76:92513–24 https://doi.org/10.1158/0008-5472.CAN-15-1325
    [Crossref] [Google Scholar]
  138. 138. 
    Boussommier-Calleja A, Atiyas Y, Haase K, Headley M, Lewis C, Kamm RD. 2019. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198:180–93 https://doi.org/10.1016/j.biomaterials.2018.03.005
    [Crossref] [Google Scholar]
  139. 139. 
    Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 122:3787–95 https://doi.org/10.1172/JCI59643
    [Crossref] [Google Scholar]
  140. 140. 
    Ayuso JM, Truttschel R, Gong MM, Humayun M, Virumbrales-Munoz M et al. 2019. Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. OncoImmunology 8:31553477 https://doi.org/10.1080/2162402x.2018.1553477
    [Crossref] [Google Scholar]
  141. 141. 
    Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A et al. 2013. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13:183496–511 https://doi.org/10.1039/c3lc50243k
    [Crossref] [Google Scholar]
  142. 142. 
    Abaci HE, Shuler ML. 2015. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. 7:4383–91 https://doi.org/10.1039/c4ib00292j
    [Crossref] [Google Scholar]
  143. 143. 
    Stahl WR. 1965. Organ weights in primates and other mammals. Science 150:36991039–42 https://doi.org/10.1126/science.150.3699.1039
    [Crossref] [Google Scholar]
  144. 144. 
    Edington CD, Chen WLK, Geishecker E, Kassis T, Soenksen LR et al. 2018. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8:14530 https://doi.org/10.1038/s41598-018-22749-0
    [Crossref] [Google Scholar]
  145. 145. 
    Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP et al. 2015. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15:122688–99 https://doi.org/10.1039/c5lc00392j
    [Crossref] [Google Scholar]
  146. 146. 
    Oleaga C, Bernabini C, Smith AST, Srinivasan B, Jackson M et al. 2016. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6:120030 https://doi.org/10.1038/srep20030
    [Crossref] [Google Scholar]
  147. 147. 
    Zhang YS, Aleman J, Shin SR, Kilic T, Kim D et al. 2017. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. PNAS 114:12E2293–302 https://doi.org/10.1073/pnas.1612906114
    [Crossref] [Google Scholar]
  148. 148. 
    Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R et al. 2020. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4:4421–36 https://doi.org/10.1038/s41551-019-0498-9
    [Crossref] [Google Scholar]
  149. 149. 
    Traore MA, George SC. 2017. Tissue engineering the vascular tree. Tissue Eng. B 23:6505–14 https://doi.org/10.1089/ten.teb.2017.0010
    [Crossref] [Google Scholar]
  150. 150. 
    Mestas J, Hughes CC. 2004. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172:52731–38 https://doi.org/10.4049/jimmunol.172.5.2731
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-090120-094330
Loading
/content/journals/10.1146/annurev-bioeng-090120-094330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error