1932

Abstract

An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-092021-042744
2022-06-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-092021-042744.html?itemId=/content/journals/10.1146/annurev-bioeng-092021-042744&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282:53911145–47
    [Google Scholar]
  2. 2.
    Stevens KR, Murry CE. 2018. Human pluripotent stem cell-derived engineered tissues: clinical considerations. Cell Stem Cell 22:3294–97
    [Google Scholar]
  3. 3.
    Luni C, Serena E, Elvassore N 2014. Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol. 25:45–50
    [Google Scholar]
  4. 4.
    Shi Y, Inoue H, Wu JC, Yamanaka S. 2017. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16:2115–30
    [Google Scholar]
  5. 5.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:5861–72
    [Google Scholar]
  6. 6.
    Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K et al. 2015. A comparison of non-integrating reprogramming methods. Nat. Biotechnol. 33:158–63
    [Google Scholar]
  7. 7.
    Madl CM, Heilshorn SC, Blau HM. 2018. Bioengineering strategies to accelerate stem cell therapeutics. Nature 557:7705335–42
    [Google Scholar]
  8. 8.
    Zhu M, Zernicka-Goetz M. 2020. Principles of self-organization of the mammalian embryo. Cell 183:61467–78
    [Google Scholar]
  9. 9.
    Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:7101368–73
    [Google Scholar]
  10. 10.
    Gagliano O, Elvassore N, Luni C. 2016. Microfluidic technology enhances the potential of human pluripotent stem cells. Biochem. Biophys. Res. Commun. 473:3683–87
    [Google Scholar]
  11. 11.
    Przybyla LM, Voldman J. 2012. Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. PNAS 109:3835–40
    [Google Scholar]
  12. 12.
    Giulitti S, Magrofuoco E, Prevedello L, Elvassore N. 2013. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture. Lab Chip 13:224430–41
    [Google Scholar]
  13. 13.
    Squires TM, Quake SR. 2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:3977–1026
    [Google Scholar]
  14. 14.
    Loh Y-H, Agarwal S, Park I-H, Urbach A, Huo H et al. 2009. Generation of induced pluripotent stem cells from human blood. Blood 113:225476–79
    [Google Scholar]
  15. 15.
    Zhou T, Benda C, Duzinger S, Huang Y, Li X et al. 2011. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22:71221–28
    [Google Scholar]
  16. 16.
    Brouwer M, Zhou H, Kasri NN. 2016. Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev. Rep. 12:154–72
    [Google Scholar]
  17. 17.
    Takahashi K, Yamanaka S. 2016. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17:183–93
    [Google Scholar]
  18. 18.
    Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. 2016. In vitro and ex vivo strategies for intracellular delivery. Nature 538:7624183–92
    [Google Scholar]
  19. 19.
    Luni C, Giulitti S, Serena E, Ferrari L, Zambon A et al. 2016. High-efficiency cellular reprogramming with microfluidics. Nat. Methods 13:5446–52
    [Google Scholar]
  20. 20.
    Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J. 2009. Microfluidic control of cell pairing and fusion. Nat. Methods 6:2147–52
    [Google Scholar]
  21. 21.
    Okanojo M, Okeyo KO, Hanzawa H, Kurosawa O, Oana H et al. 2019. Nuclear transplantation between allogeneic cells through topological reconnection of plasma membrane in a microfluidic system. Biomicrofluidics 13:3034115
    [Google Scholar]
  22. 22.
    Sharei A, Zoldan J, Adamo A, Sim WY, Cho N et al. 2013. A vector-free microfluidic platform for intracellular delivery. PNAS 110:62082–87
    [Google Scholar]
  23. 23.
    Uchugonova A, Breunig HG, Batista A, König K. 2016. Optical reprogramming of human cells in an ultrashort femtosecond laser microfluidic transfection platform. J. Biophoton. 9:9942–47
    [Google Scholar]
  24. 24.
    Gagliano O, Luni C, Qin W, Bertin E, Galvanin S et al. 2019. Microfluidic reprogramming to pluripotency of human somatic cells. Nat. Protoc. 14:722–37
    [Google Scholar]
  25. 25.
    Hackett JA, Surani MA. 2014. Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:4416–30
    [Google Scholar]
  26. 26.
    Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS et al. 2008. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26:3313–15
    [Google Scholar]
  27. 27.
    Giulitti S, Pellegrini M, Zorzan I, Martini P, Gagliano O et al. 2019. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat. Cell Biol. 21:2275–86
    [Google Scholar]
  28. 28.
    Lin H, Li Q, Du Q, Wang O, Wang Z et al. 2019. Integrated generation of induced pluripotent stem cells in a low-cost device. Biomaterials 189:23–36
    [Google Scholar]
  29. 29.
    Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H et al. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:5618–30
    [Google Scholar]
  30. 30.
    Manfrin A, Tabata Y, Paquet ER, Vuaridel AR, Rivest FR et al. 2019. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat. Methods 16:7640–48
    [Google Scholar]
  31. 31.
    Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN et al. 2019. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573:7774421–25
    [Google Scholar]
  32. 32.
    Rifes P, Isaksson M, Rathore GS, Aldrin-Kirk P, Møller OK et al. 2020. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat Biotechnol 38:111265–73
    [Google Scholar]
  33. 33.
    Giobbe GG, Michielin F, Luni C, Giulitti S, Martewicz S et al. 2015. Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12:7637–40
    [Google Scholar]
  34. 34.
    Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A et al. 2020. Direct on-chip differentiation of intestinal tubules from induced pluripotent stem cells. Int. J. Mol. Sci. 21:144964
    [Google Scholar]
  35. 35.
    Hirano K, Konagaya S, Turner A, Noda Y, Kitamura S et al. 2017. Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells. Biochem. Biophys. Res. Commun. 487:2344–50
    [Google Scholar]
  36. 36.
    Tao T, Wang Y, Chen W, Li Z, Su W et al. 2019. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 19:6948–58
    [Google Scholar]
  37. 37.
    Tonon F, Giobbe GG, Zambon A, Luni C, Gagliano O et al. 2019. In vitro metabolic zonation through oxygen gradient on a chip. Sci. Rep. 9:113557
    [Google Scholar]
  38. 38.
    Michielin F, Giobbe GG, Luni C, Hu Q, Maroni I et al. 2020. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs. Cell Rep 33:9108453
    [Google Scholar]
  39. 39.
    Tolomeo AM, Laterza C, Grespan E, Michielin F, Canals I et al. 2021. NGN2 mmRNA-based transcriptional programming in microfluidic guides hiPSCs toward neural fate with multiple identities. Front. Cell. Neurosci. 15:602888
    [Google Scholar]
  40. 40.
    Selmin G, Gagliano O, De Coppi P, Serena E, Urciuolo A, Elvassore N 2021. MYOD modified mRNA drives direct on-chip programming of human pluripotent stem cells into skeletal myocytes. Biochem. Biophys. Res. Commun. 560:139–45
    [Google Scholar]
  41. 41.
    de Souza N. 2018. Organoids. Nat. Methods 15:23
    [Google Scholar]
  42. 42.
    Shahbazi MN, Zernicka-Goetz M. 2018. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20:8878–87
    [Google Scholar]
  43. 43.
    Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11:8847–54
    [Google Scholar]
  44. 44.
    Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:12786–801
    [Google Scholar]
  45. 45.
    Kim DH, Provenzano PP, Smith CL, Levchenko A. 2012. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197:3351–60
    [Google Scholar]
  46. 46.
    Hu Q, Luni C, Elvassore N. 2018. Microfluidics for secretome analysis under enhanced endogenous signaling. Biochem. Biophys. Res. Commun. 497:2480–84
    [Google Scholar]
  47. 47.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of the Cell New York: Garland Science. , 4th ed..
  48. 48.
    Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM. 2000. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:228311–16
    [Google Scholar]
  49. 49.
    Flitsch LJ, Laupman KE, Brüstle O. 2020. Transcription factor-based fate specification and forward programming for neural regeneration. Front. . Cell. Neurosci. 14:121
    [Google Scholar]
  50. 50.
    Shimojo H, Ohtsuka T, Kageyama R. 2011. Dynamic expression of Notch signaling genes in neural stem/progenitor cells. Front. Neurosci. 5:78
    [Google Scholar]
  51. 51.
    Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A et al. 2011. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:1106–18
    [Google Scholar]
  52. 52.
    Ahmadian Baghbaderani B, Tian X, Neo BH, Burkall A, Dimezzo T et al. 2015. cGMP-manufactured human induced pluripotent stem cells are available for pre-clinical and clinical applications. Stem Cell Rep 5:647–59
    [Google Scholar]
  53. 53.
    Sahin U, Karikó K, Türeci Ö. 2015. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13:759–80
    [Google Scholar]
  54. 54.
    Melin J, Quake SR. 2007. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36:213–31
    [Google Scholar]
  55. 55.
    Byun CK, Abi-Samra K, Cho Y-K, Takayama S. 2014. Pumps for microfluidic cell culture. Electrophoresis 35:2–3245–57
    [Google Scholar]
  56. 56.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–84
    [Google Scholar]
  57. 57.
    Sackmann E, Fulton A, Beebe D 2014. The present and future role of microfluidics in biomedical research. Nature 507:181–89
    [Google Scholar]
  58. 58.
    Lee JN, Park C, Whitesides GM. 2003. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75:6544–54
    [Google Scholar]
  59. 59.
    Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I. 2000. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. B Polym. Phys. 38:415–34
    [Google Scholar]
  60. 60.
    Toepkea MW, Beebe DJ. 2006. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–86
    [Google Scholar]
  61. 61.
    Li W, Zhang L, Ge X, Xu B, Zhang W et al. 2018. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47:155646–83
    [Google Scholar]
  62. 62.
    Correia CR, Nadine S, Mano JF 2020. Cell encapsulation systems toward modular tissue regeneration: from immunoisolation to multifunctional devices. Adv. Funct. Mater. 30:261908061
    [Google Scholar]
  63. 63.
    Xu J, Shamul JG, Staten NA, White AM, Jiang B, He X. 2021. Bioinspired 3D culture in nanoliter hyaluronic acid-rich core-shell hydrogel microcapsules isolates highly pluripotent human iPSCs. Small 17:33e2102219
    [Google Scholar]
  64. 64.
    Finklea FB, Tian Y, Kerscher P, Seeto WJ, Ellis ME, Lipke EA. 2021. Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 274:120818
    [Google Scholar]
  65. 65.
    Seeto WJ, Tian Y, Pradhan S, Kerscher P, Lipke EA. 2019. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform. Small 15:471902058
    [Google Scholar]
  66. 66.
    Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S, Korner A. 2015. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology – GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr. Cartil. 23:122224–32
    [Google Scholar]
  67. 67.
    Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 2018. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3:2144–56
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-092021-042744
Loading
/content/journals/10.1146/annurev-bioeng-092021-042744
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error