1932

Abstract

In the last two decades, numerous studies have conducted patient-specific computations of blood flow dynamics in cerebral aneurysms and reported correlations between various hemodynamic metrics and aneurysmal disease progression or treatment outcomes. Nevertheless, intra-aneurysmal flow analysis has not been adopted in current clinical practice, and hemodynamic factors usually are not considered in clinical decision making. This review presents the state of the art in cerebral aneurysm imaging and image-based modeling, discussing the advantages and limitations of each approach and focusing on the translational value of hemodynamic analysis. Combining imaging and modeling data obtained from different flow modalities can improve the accuracy and fidelity of resulting velocity fields and flow-derived factors that are thought to affect aneurysmal disease progression. It is expected that predictive models utilizing hemodynamic factors in combination with patient medical history and morphological data will outperform current risk scores and treatment guidelines. Possible future directions include novel approaches enabling data assimilation and multimodality analysis of cerebral aneurysm hemodynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-092419-061429
2020-06-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-092419-061429.html?itemId=/content/journals/10.1146/annurev-bioeng-092419-061429&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Vlak MH, Algra A, Brandenburg R, Rinkel GJ 2011. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 10:626–36
    [Google Scholar]
  2. 2. 
    Thompson BG, Brown RD Jr., Amin-Hanjani S, Broderick JP, Cockroft KM et al. 2015. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46:2368–400
    [Google Scholar]
  3. 3. 
    Krings T, Mandell DM, Kiehl TR, Geibprasert S, Tymianski M et al. 2011. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat. Rev. Neurol. 7:547–59
    [Google Scholar]
  4. 4. 
    Frosen J, Tulamo R, Paetau A, Laaksamo E, Korja M et al. 2012. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 123:773–86
    [Google Scholar]
  5. 5. 
    Brown RD Jr., Broderick JP. 2014. Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 13:393–404
    [Google Scholar]
  6. 6. 
    Etminan N, Rinkel GJ 2016. Unruptured intracranial aneurysms: development, rupture and preventive management. Nat. Rev. Neurol 12:699–713 2017. Nat. Rev. Neurol 13:126
    [Google Scholar]
  7. 7. 
    Etminan N, Brown RD Jr., Beseoglu K, Juvela S, Raymond J et al. 2015. The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology 85:881–89
    [Google Scholar]
  8. 8. 
    Deleted in proof
  9. 9. 
    Weir B. 2002. Unruptured intracranial aneurysms: a review. J. Neurosurg. 96:3–42
    [Google Scholar]
  10. 10. 
    Schievink WI. 1997. Intracranial aneurysms. N. Engl. J. Med. 336:28–40
    [Google Scholar]
  11. 11. 
    Ma B, Harbaugh RE, Raghavan ML 2004. Three-dimensional geometrical characterization of cerebral aneurysms. Ann. Biomed. Eng. 32:264–73
    [Google Scholar]
  12. 12. 
    Ho H, Suresh V, Kang W, Cooling MT, Watton PN, Hunter PJ 2011. Multiscale modeling of intracranial aneurysms: cell signaling, hemodynamics, and remodeling. IEEE Trans. Biomed. Eng. 58:2974–77
    [Google Scholar]
  13. 13. 
    Björkman J, Frösen J, Töhtinen O, Huttunen T, Huttunen J et al. 2018. Aneurysm size is the strongest risk factor for intracranial aneurysm growth in the eastern Finnish population. Neurosurgery 84:1098–103
    [Google Scholar]
  14. 14. 
    Ramachandran M, Retarekar R, Raghavan ML, Berkowitz B, Dickerhoff B et al. 2016. Assessment of image-derived risk factors for natural course of unruptured cerebral aneurysms. J. Neurosurg. 124:288–95
    [Google Scholar]
  15. 15. 
    Naggara ON, Lecler A, Oppenheim C, Meder JF, Raymond J 2012. Endovascular treatment of intracranial unruptured aneurysms: a systematic review of the literature on safety with emphasis on subgroup analyses. Radiology 263:828–35
    [Google Scholar]
  16. 16. 
    Kotowski M, Naggara O, Darsaut TE, Nolet S, Gevry G et al. 2013. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis of the literature from 1990 to 2011. J. Neurol. Neurosurg. Psychiatry 84:42–48
    [Google Scholar]
  17. 17. 
    Kodama N, Suzuki J. 1982. Surgical treatment of giant aneurysms. Neurosurg. Rev. 5:155–60
    [Google Scholar]
  18. 18. 
    Lawton MT, Spetzler RF. 1999. Surgical strategies for giant intracranial aneurysms. Acta Neurochir. Suppl. 72:141–56
    [Google Scholar]
  19. 19. 
    Pia HW, Zierski J. 1982. Giant cerebral aneurysms. Neurosurg. Rev. 5:117–48
    [Google Scholar]
  20. 20. 
    Malhotra A, Wu X, Forman HP, Grossetta Nardini HK, Matouk CC et al. 2017. Growth and rupture risk of small unruptured intracranial aneurysms: a systematic review. Ann. Intern. Med. 167:26–33
    [Google Scholar]
  21. 21. 
    Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr. et al. 2003. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–10
    [Google Scholar]
  22. 22. 
    Lindgren AE, Koivisto T, Björkman J, von und zu Fraunberg M, Helin K et al. 2016. Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke 47:1219–26
    [Google Scholar]
  23. 23. 
    Brinjikji W, Zhu YQ, Lanzino G, Cloft HJ, Murad MH et al. 2016. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. Am. J. Neuroradiol. 37:615–20
    [Google Scholar]
  24. 24. 
    Backes D, Rinkel GJE, Greving JP, Velthuis BK, Murayama Y et al. 2017. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology 88:1600–6
    [Google Scholar]
  25. 25. 
    Greving JP, Wermer MJ, Brown RD Jr., Morita A, Juvela S et al. 2014. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66
    [Google Scholar]
  26. 26. 
    Investigators UJ, Morita A, Kirino T, Hashi K, Aoki N et al. 2012. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N. Engl. J. Med. 366:2474–82
    [Google Scholar]
  27. 27. 
    Lin N, Cahill KS, Frerichs KU, Friedlander RM, Claus EB 2012. Treatment of ruptured and unruptured cerebral aneurysms in the USA: a paradigm shift. J. Neurointerv. Surg. 4:182–89
    [Google Scholar]
  28. 28. 
    Rutledge WC, Lawton MT. 2016. Basilar artery aneurysm: role for open surgery. Controversies in Vascular Neurosurgery E Veznedaroglu 83–92 Berlin: Springer
    [Google Scholar]
  29. 29. 
    Smith TR, Cote DJ, Dasenbrock HH, Hamade YJ, Zammar SG et al. 2015. Comparison of the efficacy and safety of endovascular coiling versus microsurgical clipping for unruptured middle cerebral artery aneurysms: a systematic review and meta-analysis. World Neurosurg 84:942–53
    [Google Scholar]
  30. 30. 
    Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M et al. 2005. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366:809–17
    [Google Scholar]
  31. 31. 
    Ries T, Siemonsen S, Thomalla G, Grzyska U, Zeumer H, Fiehler J 2007. Long-term follow-up of cerebral aneurysms after endovascular therapy prediction and outcome of retreatment. Am. J. Neuroradiol. 28:1755–61
    [Google Scholar]
  32. 32. 
    Shapiro M, Becske T, Sahlein D, Babb J, Nelson PK 2012. Stent-supported aneurysm coiling: a literature survey of treatment and follow-up. Am. J. Neuroradiol. 33:159–63
    [Google Scholar]
  33. 33. 
    Benitez RP, Silva MT, Klem J, Veznedaroglu E, Rosenwasser RH 2004. Endovascular occlusion of wide-necked aneurysms with a new intracranial microstent (Neuroform) and detachable coils. Neurosurgery 54:1359–68
    [Google Scholar]
  34. 34. 
    Nishido H, Piotin M, Bartolini B, Pistocchi S, Redjem H, Blanc R 2014. Analysis of complications and recurrences of aneurysm coiling with special emphasis on the stent-assisted technique. Am. J. Neuroradiol. 35:339–44
    [Google Scholar]
  35. 35. 
    Arrese I, Sarabia R, Pintado R, Delgado-Rodriguez M 2013. Flow-diverter devices for intracranial aneurysms: systematic review and meta-analysis. Neurosurgery 73:193–200
    [Google Scholar]
  36. 36. 
    Brinjikji W, Lanzino G, Cloft HJ, Kallmes DF 2014. Patency of the posterior communicating artery after flow diversion treatment of internal carotid artery aneurysms. Clin. Neurol. Neurosurg. 120:84–88
    [Google Scholar]
  37. 37. 
    Kallmes DF, Hanel R, Lopes D, Boccardi E, Bonafe A et al. 2015. International retrospective study of the Pipeline embolization device: a multicenter aneurysm treatment study. Am. J. Neuroradiol. 36:108–15
    [Google Scholar]
  38. 38. 
    Kallmes DF, Brinjikji W, Cekirge S, Fiorella D, Hanel RA et al. 2017. Safety and efficacy of the Pipeline embolization device for treatment of intracranial aneurysms: a pooled analysis of 3 large studies. J. Neurosurg. 127:775–80
    [Google Scholar]
  39. 39. 
    Ye G, Zhang M, Deng L, Chen X, Wang Y 2016. Meta-analysis of the efficiency and prognosis of intracranial aneurysm treated with flow diverter devices. J. Mol. Neurosci. 59:158–67
    [Google Scholar]
  40. 40. 
    Jalali A, Srinivasan VM, Chinnadurai P, Kan P, Arthur A, Duckworth EA 2016. Two-color 3D-3D fusion of selective rotational cerebral angiograms: a novel approach to imaging in cerebrovascular neurosurgery. J. Neurointerv. Surg. 8:1056–60
    [Google Scholar]
  41. 41. 
    Green NE, Chen SY, Messenger JC, Groves BM, Carroll JD 2004. Three-dimensional vascular angiography. Curr. Probl. Cardiol. 29:104–42
    [Google Scholar]
  42. 42. 
    Vali A, Abla AA, Lawton MT, Saloner D, Rayz VL 2017. Computational fluid dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries. J. Biomech. 50:195–201
    [Google Scholar]
  43. 43. 
    Strother CM, Bender F, Deuerling-Zheng Y, Royalty K, Pulfer KA et al. 2010. Parametric color coding of digital subtraction angiography. Am. J. Neuroradiol. 31:919–24
    [Google Scholar]
  44. 44. 
    Westerlaan HE, van Dijk JM, Jansen-van der Weide MC, de Groot JC, Groen RJ et al. 2011. Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis–systematic review and meta-analysis. Radiology 258:134–45
    [Google Scholar]
  45. 45. 
    Lu L, Zhang LJ, Poon CS, Wu SY, Zhou CS et al. 2012. Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Radiology 262:605–12
    [Google Scholar]
  46. 46. 
    Philipp LR, McCracken DJ, McCracken CE, Halani SH, Lovasik BP et al. 2017. Comparison between CTA and digital subtraction angiography in the diagnosis of ruptured aneurysms. Neurosurgery 80:769–77
    [Google Scholar]
  47. 47. 
    Edelman RR. 1992. Basic principles of magnetic resonance angiography. Cardiovasc. Interv. Radiol. 15:3–13
    [Google Scholar]
  48. 48. 
    Laub GA. 1995. Time-of-flight method of MR angiography. Magn. Reson. Imaging Clin. N. Am. 3:391–98
    [Google Scholar]
  49. 49. 
    Prince MR. 1998. Contrast-enhanced MR angiography: theory and optimization. Magn. Reson. Imaging Clin. N. Am. 6:257–67
    [Google Scholar]
  50. 50. 
    Maki JH, Chenevert TL, Prince MR 1996. Three-dimensional contrast-enhanced MR angiography. Top. Magn. Reson. Imaging 8:322–44
    [Google Scholar]
  51. 51. 
    Saloner D, Martin A, Hurwit D, Sohrabi S, Lee A et al. 2013. MRI/A in the evaluation of changes over time in untreated aneurysms. Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine2995 Concord, CA: Int. Soc. Magn. Reson. Med.
    [Google Scholar]
  52. 52. 
    Tian B, Toossi S, Eisenmenger L, Faraji F, Ballweber MK et al. 2019. Visualizing wall enhancement over time in unruptured intracranial aneurysms using 3D vessel wall imaging. J. Magn. Reson. Imaging 50:193–200
    [Google Scholar]
  53. 53. 
    Portanova A, Hakakian N, Mikulis DJ, Virmani R, Abdalla WM, Wasserman BA 2013. Intracranial vasa vasorum: insights and implications for imaging. Radiology 267:667–79
    [Google Scholar]
  54. 54. 
    Edjlali M, Gentric JC, Regent-Rodriguez C, Trystram D, Hassen WB et al. 2014. Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms?. Stroke 45:3704–6
    [Google Scholar]
  55. 55. 
    Zhu C, Wang X, Degnan AJ, Shi Z, Tian B et al. 2018. Wall enhancement of intracranial unruptured aneurysm is associated with increased rupture risk and traditional risk factors. Eur. Radiol. 28:5019–26
    [Google Scholar]
  56. 56. 
    Polzin JA, Alley MT, Korosec FR, Grist TM, Wang Y, Mistretta CA 1995. A complex-difference phase-contrast technique for measurement of volume flow rates. J. Magn. Reson. Imaging 5:129–37
    [Google Scholar]
  57. 57. 
    Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M 2014. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 4:173–92
    [Google Scholar]
  58. 58. 
    Korosec FR, Reeder SB. 2012. “MR Physics for Clinicians” series: enhancement for the JMRI CME program. J. Magn. Reson. Imaging 35:997
    [Google Scholar]
  59. 59. 
    Markl M, Schnell S, Barker AJ 2014. 4D flow imaging: current status to future clinical applications. Curr. Cardiol. Rep. 16:481
    [Google Scholar]
  60. 60. 
    Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O 2012. 4D flow MRI. J. Magn. Reson. Imaging 36:1015–36
    [Google Scholar]
  61. 61. 
    Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ et al. 2015. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17:72
    [Google Scholar]
  62. 62. 
    Schnell S, Ansari SA, Vakil P, Wasielewski M, Carr ML et al. 2014. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology. J. Magn. Reson. Imaging 39:120–31
    [Google Scholar]
  63. 63. 
    Hope MD, Purcell DD, Hope TA, von Morze C, Vigneron DB et al. 2009. Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. Am. J. Neuroradiol. 30:362–66
    [Google Scholar]
  64. 64. 
    Ansari SA, Schnell S, Carroll T, Vakil P, Hurley MC et al. 2013. Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. Am. J. Neuroradiol. 34:1922–28
    [Google Scholar]
  65. 65. 
    Boussel L, Rayz VL, Martin A, Acevedo-Bolton G, Lawton MT et al. 2009. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61:409–17
    [Google Scholar]
  66. 66. 
    van Ooij P, Guedon A, Poelma C, Schneiders J, Rutten MC et al. 2012. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed 25:14–26
    [Google Scholar]
  67. 67. 
    Schnell S, Ansari SA, Wu C, Garcia J, Murphy IG et al. 2017. Accelerated dual-venc 4D flow MRI for neurovascular applications. J. Magn. Reson. Imaging 46:102–14
    [Google Scholar]
  68. 68. 
    Liu J, Koskas L, Faraji F, Kao E, Wang Y et al. 2017. Highly accelerated intracranial 4D flow MRI: evaluation of healthy volunteers and patients with intracranial aneurysms. MAGMA 31:295–307
    [Google Scholar]
  69. 69. 
    Xiang J, Yu J, Snyder KV, Levy EI, Siddiqui AH, Meng H 2016. Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J. Neurointerv. Surg. 8:104–10
    [Google Scholar]
  70. 70. 
    Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J et al. 2011. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42:144–52
    [Google Scholar]
  71. 71. 
    Frosen J, Cebral J, Robertson AM, Aoki T 2019. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Neurosurg. Focus 47:E21
    [Google Scholar]
  72. 72. 
    Cebral JR, Mut F, Weir J, Putman CM 2011. Association of hemodynamic characteristics and cerebral aneurysm rupture. Am. J. Neuroradiol. 32:264–70
    [Google Scholar]
  73. 73. 
    Cebral JR, Detmer F, Chung BJ, Choque-Velasquez J, Rezai B et al. 2019. Local hemodynamic conditions associated with focal changes in the intracranial aneurysm wall. Am. J. Neuroradiol. 40:510–16
    [Google Scholar]
  74. 74. 
    Dolan JM, Kolega J, Meng H 2013. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41:1411–27
    [Google Scholar]
  75. 75. 
    Zhou G, Zhu Y, Yin Y, Su M, Li M 2017. Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis. Sci. Rep. 7:5331
    [Google Scholar]
  76. 76. 
    Xiang J, Tutino VM, Snyder KV, Meng H 2014. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. Am. J. Neuroradiol. 35:1849–57
    [Google Scholar]
  77. 77. 
    Meng H, Tutino VM, Xiang J, Siddiqui A 2014. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am. J. Neuroradiol. 35:1254–62
    [Google Scholar]
  78. 78. 
    Steinman DA, Pereira VM. 2019. How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability. Neurosurg. Focus 47:E14
    [Google Scholar]
  79. 79. 
    Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J et al. 2018. Real-world variability in the prediction of intracranial aneurysm wall shear stress: the 2015 International Aneurysm CFD Challenge. Cardiovasc. Eng. Technol. 9:544–64
    [Google Scholar]
  80. 80. 
    Radaelli AG, Augsburger L, Cebral JR, Ohta M, Rufenacht DA et al. 2008. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007. J. Biomech. 41:2069–81
    [Google Scholar]
  81. 81. 
    Steinman DA, Hoi Y, Fahy P, Morris L, Walsh MT et al. 2013. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J. Biomech. Eng. 135:021016
    [Google Scholar]
  82. 82. 
    Berg P, Voss S, Saalfeld S, Janiga G, Bergersen AW et al. 2018. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH). Phase I: Segmentation. Cardiovasc. Eng. Technol. 9:565–81
    [Google Scholar]
  83. 83. 
    Berg P, Voss S, Janiga G, Saalfeld S, Bergersen AW et al. 2019. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. Int. J. Comput. Assist. Radiol. Surg. 14:1795–804
    [Google Scholar]
  84. 84. 
    Berg P, Saalfeld S, Voss S, Beuing O, Janiga G 2019. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg. Focus 47:E15
    [Google Scholar]
  85. 85. 
    Cebral J, Mut F, Sforza D, Lohner R, Scrivano E et al. 2011. Clinical application of image-based CFD for cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27:977–92
    [Google Scholar]
  86. 86. 
    Geers AJ, Larrabide I, Radaelli AG, Bogunovic H, Kim M et al. 2011. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. Am. J. Neuroradiol. 32:581–86
    [Google Scholar]
  87. 87. 
    Ramachandran M, Retarekar R, Harbaugh RE, Hasan D, Policeni B et al. 2013. Sensitivity of quantified intracranial aneurysm geometry to imaging modality. Cardiovasc. Eng. Technol. 4:75–86
    [Google Scholar]
  88. 88. 
    Rayz VL, Boussel L, Acevedo-Bolton G, Martin AJ, Young WL et al. 2008. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130:051011
    [Google Scholar]
  89. 89. 
    Rayz VL, Abla A, Boussel L, Leach JR, Acevedo-Bolton G et al. 2015. Computational modeling of flow-altering surgeries in basilar aneurysms. Ann. Biomed. Eng. 43:1210–22
    [Google Scholar]
  90. 90. 
    Castro MA, Putman CM, Cebral JR 2006. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J. Neuroradiol. 27:1703–9
    [Google Scholar]
  91. 91. 
    Hodis S, Kargar S, Kallmes DF, Dragomir-Daescu D 2015. Artery length sensitivity in patient-specific cerebral aneurysm simulations. Am. J. Neuroradiol. 36:737–43
    [Google Scholar]
  92. 92. 
    Pereira VM, Brina O, Marcos Gonzales A, Narata AP, Bijlenga P et al. 2013. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J. Biomech. 46:1531–39
    [Google Scholar]
  93. 93. 
    Botti L, Paliwal N, Conti P, Antiga L, Meng H 2018. Modeling hemodynamics in intracranial aneurysms: comparing accuracy of CFD solvers based on finite element and finite volume schemes. Int. J. Numer. Methods Biomed. Eng. 34:e3111
    [Google Scholar]
  94. 94. 
    Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC 2017. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45:525–41
    [Google Scholar]
  95. 95. 
    Khlebnikov R, Figueroa CA. 2015. CRIMSON: towards a software environment for patient-specific blood flow simulation for diagnosis and treatment. Proceedings of the 4th International Workshop on Clinical Image-Based Procedures (CLIP 2015)10–18 Berlin: Springer
    [Google Scholar]
  96. 96. 
    Valen-Sendstad K, Steinman DA. 2014. Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. Am. J. Neuroradiol. 35:536–43
    [Google Scholar]
  97. 97. 
    Valen-Sendstad K, Mardal KA, Steinman DA 2013. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms. J. Biomech. 46:402–7
    [Google Scholar]
  98. 98. 
    Khan MO, Valen-Sendstad K, Steinman DA 2015. Narrowing the expertise gap for predicting intracranial aneurysm hemodynamics: impact of solver numerics versus mesh and time-step resolution. Am. J. Neuroradiol. 36:1310–16
    [Google Scholar]
  99. 99. 
    Ford MD, Piomelli U. 2012. Exploring high frequency temporal fluctuations in the terminal aneurysm of the basilar bifurcation. J. Biomech. Eng. 134:091003
    [Google Scholar]
  100. 100. 
    Khan MO, Steinman DA, Valen-Sendstad K 2017. Non-Newtonian versus numerical rheology: practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Int. J. Numer. Methods Biomed. Eng. 33:e2836
    [Google Scholar]
  101. 101. 
    Xiang J, Tremmel M, Kolega J, Levy EI, Natarajan SK, Meng H 2012. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. J. Neurointerv. Surg. 4:351–57
    [Google Scholar]
  102. 102. 
    Robertson AM, Duan X, Aziz KM, Hill MR, Watkins SC, Cebral JR 2015. Diversity in the strength and structure of unruptured cerebral aneurysms. Ann. Biomed. Eng. 43:1502–15
    [Google Scholar]
  103. 103. 
    Humphrey JD. 2008. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78
    [Google Scholar]
  104. 104. 
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA 2010. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13:625–40
    [Google Scholar]
  105. 105. 
    Formaggia L, Lamponi D, Tuveri M, Veneziani A 2006. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9:273–88
    [Google Scholar]
  106. 106. 
    Alastruey J, Xiao N, Fok H, Schaeffter T, Figueroa CA 2016. On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics. J. R. Soc. Interface 13:20160073
    [Google Scholar]
  107. 107. 
    Formaggia L, Lamponi D, Quarteroni A 2003. One-dimensional models for blood flow in arteries. J. Eng. Math. 47:251–76
    [Google Scholar]
  108. 108. 
    Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F et al. 2018. Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int. J. Comput. Assist. Radiol. Surg. 13:1767–79
    [Google Scholar]
  109. 109. 
    Retarekar R, Ramachandran M, Berkowitz B, Harbaugh RE, Hasan D et al. 2015. Stratification of a population of intracranial aneurysms using blood flow metrics. Comput. Methods Biomech. Biomed. Eng. 18:1072–82
    [Google Scholar]
  110. 110. 
    Ruedinger KL, Medero R, Roldan-Alzate A 2019. Fabrication of low-cost patient-specific vascular models for particle image velocimetry. Cardiovasc. Eng. Technol. 10:500–7
    [Google Scholar]
  111. 111. 
    Yazdi SG, Geoghegan PH, Docherty PD, Jermy M, Khanafer A 2018. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng. 46:1697–721
    [Google Scholar]
  112. 112. 
    Lieber BB, Livescu V, Hopkins LN, Wakhloo AK 2002. Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann. Biomed. Eng. 30:768–77
    [Google Scholar]
  113. 113. 
    Trager AL, Sadasivan C, Seong J, Lieber BB 2009. Correlation between angiographic and particle image velocimetry quantifications of flow diverters in an in vitro model of elastase-induced rabbit aneurysms. J. Biomech. Eng. 131:034506
    [Google Scholar]
  114. 114. 
    Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM et al. 2008. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015
    [Google Scholar]
  115. 115. 
    Raschi M, Mut F, Byrne G, Putman CM, Tateshima S et al. 2012. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Methods Biomed. Eng. 28:214–28
    [Google Scholar]
  116. 116. 
    Roloff C, Stucht D, Beuing O, Berg P 2019. Comparison of intracranial aneurysm flow quantification techniques: standard PIV versus stereoscopic PIV versus tomographic PIV versus phase-contrast MRI versus CFD. J. Neurointerv. Surg. 11:275–82
    [Google Scholar]
  117. 117. 
    Amili O, Schiavazzi D, Moen S, Jagadeesan B, Van de Moortele PF, Coletti F 2018. Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI. PLOS ONE 13:e0188323
    [Google Scholar]
  118. 118. 
    Brindise MC, Rothenberger S, Dickerhoff B, Schnell S, Markl M et al. 2019. Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics. J. R. Soc. Interface 16:20190465
    [Google Scholar]
  119. 119. 
    Sforza DM, Kono K, Tateshima S, Vinuela F, Putman C, Cebral JR 2016. Hemodynamics in growing and stable cerebral aneurysms. J. Neurointerv. Surg. 8:407–12
    [Google Scholar]
  120. 120. 
    Walcott BP, Reinshagen C, Stapleton CJ, Choudhri O, Rayz VL et al. 2016. Predictive modeling and in vivo assessment of cerebral blood flow in the management of complex cerebral aneurysms. J. Cereb. Blood Flow Metab. 36:998–1003
    [Google Scholar]
  121. 121. 
    Rayz VL, Lawton MT, Martin AJ, Young WL, Saloner D 2008. Numerical simulation of pre- and postsurgical flow in a giant basilar aneurysm. J. Biomech. Eng. 130:021004
    [Google Scholar]
  122. 122. 
    Lawton MT, Abla AA, Rutledge WC, Benet A, Zador Z et al. 2016. Bypass surgery for the treatment of dolichoectatic basilar trunk aneurysms: a work in progress. Neurosurgery 79:83–99
    [Google Scholar]
  123. 123. 
    Babiker MH, Chong B, Gonzalez LF, Cheema S, Frakes DH 2013. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J. Biomech. 46:2809–16
    [Google Scholar]
  124. 124. 
    Morales HG, Larrabide I, Geers AJ, San Roman L, Blasco J et al. 2013. A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans. Med. Imaging 32:119–29
    [Google Scholar]
  125. 125. 
    Zhang Q, Meng Z, Zhang Y, Yao K, Liu J et al. 2016. Phantom-based experimental validation of fast virtual deployment of self-expandable stents for cerebral aneurysms. Biomed. Eng. Online 15:125
    [Google Scholar]
  126. 126. 
    Paliwal N, Yu H, Xu J, Xiang J, Siddiqui A et al. 2016. Virtual stenting workflow with vessel-specific initialization and adaptive expansion for neurovascular stents and flow diverters. Comput. Methods Biomech. Biomed. Eng. 19:1423–31
    [Google Scholar]
  127. 127. 
    Damiano RJ, Ma D, Xiang J, Siddiqui AH, Snyder KV, Meng H 2015. Finite element modeling of endovascular coiling and flow diversion enables hemodynamic prediction of complex treatment strategies for intracranial aneurysm. J. Biomech. 48:3332–40
    [Google Scholar]
  128. 128. 
    Mut F, Chung BJ, Chudyk J, Lylyk P, Kadirvel R et al. 2019. Image-based modeling of blood flow in cerebral aneurysms treated with intrasaccular flow diverting devices. Int. J. Numer. Methods Biomed. Eng. 35:e3202
    [Google Scholar]
  129. 129. 
    Nair P, Chong BW, Indahlastari A, Ryan J, Workman C et al. 2016. Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. J. Biomech. Eng. 138:021011
    [Google Scholar]
  130. 130. 
    Augsburger L, Reymond P, Rufenacht DA, Stergiopulos N 2011. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39:850–63
    [Google Scholar]
  131. 131. 
    Raschi M, Mut F, Lohner R, Cebral JR 2014. Strategy for modeling flow diverters in cerebral aneurysms as a porous medium. Int. J. Numer. Methods Biomed. Eng. 30:909–25
    [Google Scholar]
  132. 132. 
    Cebral JR, Mut F, Raschi M, Scrivano E, Ceratto R et al. 2011. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. Am. J. Neuroradiol. 32:27–33
    [Google Scholar]
  133. 133. 
    Paliwal N, Damiano RJ, Davies JM, Siddiqui AH, Meng H 2017. Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters. Proc. SPIE Int. Soc. Opt. Eng. 10135:101352F
    [Google Scholar]
  134. 134. 
    Mut F, Raschi M, Scrivano E, Bleise C, Chudyk J et al. 2015. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J. Neurointerv. Surg. 7:286–90
    [Google Scholar]
  135. 135. 
    Peach TW, Ricci D, Ventikos Y 2019. A virtual comparison of the eCLIPs device and conventional flow-diverters as treatment for cerebral bifurcation aneurysms. Cardiovasc. Eng. Technol. 10:508–19
    [Google Scholar]
  136. 136. 
    Podgorsak AR, Rava RA, Shiraz Bhurwani MM, Chandra AR, Davies JM et al. 2019. Automatic radiomic feature extraction using deep learning for angiographic parametric imaging of intracranial aneurysms. J. Neurointerv. Surg. https://doi.org/10.1136/neurintsurg-2019-015214
    [Crossref] [Google Scholar]
  137. 137. 
    Montoya JC, Li Y, Strother C, Chen GH 2018. 3D deep learning angiography (3D-DLA) from C-arm conebeam CT. Am. J. Neuroradiol. 39:916–22
    [Google Scholar]
  138. 138. 
    Min JK, Taylor CA, Achenbach S, Koo BK, Leipsic J et al. 2015. Noninvasive fractional flow reserve derived from coronary CT angiography: clinical data and scientific principles. JACC Cardiovasc. Imaging 8:1209–22
    [Google Scholar]
  139. 139. 
    Seo JH, Eslami P, Caplan J, Tamargo RJ, Mittal R 2018. A highly automated computational method for modeling of intracranial aneurysm hemodynamics. Front. Physiol. 9:681
    [Google Scholar]
  140. 140. 
    Park A, Chute C, Rajpurkar P, Lou J, Ball RL et al. 2019. Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model. JAMA Netw. Open 2:e195600
    [Google Scholar]
  141. 141. 
    Schiavazzi DE, Doostan A, Iaccarino G, Marsden AL 2017. A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. Comput. Methods Appl. Mech. Eng. 314:196–221
    [Google Scholar]
  142. 142. 
    Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY et al. 2016. Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. 32:e02737
    [Google Scholar]
  143. 143. 
    Sarrami-Foroushani A, Lassila T, Gooya A, Geers AJ, Frangi AF 2016. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability. J. Biomech. 49:3815–23
    [Google Scholar]
  144. 144. 
    Sankaran S, Marsden AL. 2011. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133:031001
    [Google Scholar]
  145. 145. 
    Langille BL, O'Donnell F. 1986. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–7
    [Google Scholar]
  146. 146. 
    Cebral JR, Duan X, Gade PS, Chung BJ, Mut F et al. 2016. Regional mapping of flow and wall characteristics of intracranial aneurysms. Ann. Biomed. Eng. 44:3553–67
    [Google Scholar]
  147. 147. 
    Cebral JR, Mut F, Gade P, Cheng F, Tobe Y et al. 2018. Combining data from multiple sources to study mechanisms of aneurysm disease: tools and techniques. Int. J. Numer. Methods Biomed. Eng. 34:e3133
    [Google Scholar]
  148. 148. 
    Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V et al. 2017. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. Am. J. Neuroradiol. 38:119–26
    [Google Scholar]
  149. 149. 
    Boussel L, Rayz VL, McCulloch C, Martin A, Acevedo-Bolton G et al. 2008. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002
    [Google Scholar]
  150. 150. 
    Jing L, Fan J, Wang Y, Li H, Wang S et al. 2015. Morphologic and hemodynamic analysis in the patients with multiple intracranial aneurysms: ruptured versus unruptured. PLOS ONE 10:e0132494
    [Google Scholar]
  151. 151. 
    Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S et al. 2012. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J. Neurosurg. 117:774–80
    [Google Scholar]
  152. 152. 
    Miura Y, Ishida F, Umeda Y, Tanemura H, Suzuki H et al. 2013. Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 44:519–21
    [Google Scholar]
  153. 153. 
    Kallmes DF. 2012. Point: CFD—computational fluid dynamics or confounding factor dissemination. Am. J. Neuroradiol. 33:395–96
    [Google Scholar]
  154. 154. 
    Cebral JR, Meng H. 2012. Counterpoint: Realizing the clinical utility of computational fluid dynamics—closing the gap. Am. J. Neuroradiol. 33:396–98
    [Google Scholar]
  155. 155. 
    Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M et al. 2018. Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochir 160:1643–52
    [Google Scholar]
  156. 156. 
    Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL 2015. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Biomed. Eng. Online 14:110
    [Google Scholar]
  157. 157. 
    Bertoglio C, Moireau P, Gerbeau JF 2012. Sequential parameter estimation for fluid-structure problems: application to hemodynamics. Int. J. Numer. Methods Biomed. Eng. 28:434–55
    [Google Scholar]
  158. 158. 
    Devault K, Gremaud PA, Novak V, Olufsen MS, Vernieres G, Zhao P 2008. Blood flow in the circle of Willis: modeling and calibration. Multiscale Model. Simul. 7:888–909
    [Google Scholar]
  159. 159. 
    Bakhshinejad A, Baghaie A, Vali A, Saloner D, Rayz VL, D'Souza RM 2017. Merging computational fluid dynamics and 4D flow MRI using proper orthogonal decomposition and ridge regression. J. Biomech. 58:162–73
    [Google Scholar]
  160. 160. 
    Raissi M, Karniadakis GE. 2018. Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357:125–41
    [Google Scholar]
  161. 161. 
    Raissi M, Perdikaris P, Karniadakis GE 2019. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378:686–707
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-092419-061429
Loading
/content/journals/10.1146/annurev-bioeng-092419-061429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error