1932

Abstract

Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-122019-115833
2021-07-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-122019-115833.html?itemId=/content/journals/10.1146/annurev-bioeng-122019-115833&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Huang H, Song W, Rieffel J, Lovell JF. 2015. Emerging applications of porphyrins in photomedicine. Front. Phys. 3:23
    [Google Scholar]
  2. 2. 
    Cheng L, Wang C, Feng L, Yang K, Liu Z 2014. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114:2110869–939
    [Google Scholar]
  3. 3. 
    Li Y, Lin T, Luo Y, Liu Q, Xiao W et al. 2014. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5:14712
    [Google Scholar]
  4. 4. 
    Patel SK, Janjic JM. 2015. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 5:2150–72
    [Google Scholar]
  5. 5. 
    Pushpan S, Venkatraman S, Anand V, Sankar J, Parmeswaran D et al. 2002. Porphyrins in photodynamic therapy—a search for ideal photosensitizers. Curr. Med. Chem. Anticancer Agents 2:2187–207
    [Google Scholar]
  6. 6. 
    Oniszczuk A, Wojtunik-Kulesza KA, Oniszczuk T, Kasprzak K. 2016. The potential of photodynamic therapy (PDT)—experimental investigations and clinical use. Biomed. Pharmacother. 83:912–29
    [Google Scholar]
  7. 7. 
    Hönigsmann H. 2013. History of phototherapy in dermatology. Photochem. Photobiol. Sci. 12:116–21
    [Google Scholar]
  8. 8. 
    Calixto G, Bernegossi J, de Freitas L, Fontana C, Chorilli M. 2016. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21:3342
    [Google Scholar]
  9. 9. 
    Liu Y, Bhattarai P, Dai Z, Chen X 2019. Photothermal therapy and photoacoustic imaging via nano-theranostics in fighting cancer. Chem. Soc. Rev. 48:72053–108
    [Google Scholar]
  10. 10. 
    Foote CS. 1991. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54:5659
    [Google Scholar]
  11. 11. 
    Lan G, Ni K, Lin W. 2019. Nanoscale metal-organic frameworks for phototherapy of cancer. Coord. Chem. Rev. 379:65–81
    [Google Scholar]
  12. 12. 
    Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS et al. 2010. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110:52795–838
    [Google Scholar]
  13. 13. 
    Morton CA, Szeimies R-M, Basset-Séguin N, Calzavara-Pinton PG, Gilaberte Y et al. 2020. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 2: emerging indications - field cancerization, photorejuvenation and inflammatory/infective dermatoses. J. Eur. Acad. Dermatol. Venereol. 34:117–29
    [Google Scholar]
  14. 14. 
    Raab O. 1900. On the effect of fluorescent substances on infusoria. Z. Biol. 39:524–26
    [Google Scholar]
  15. 15. 
    Macmillan JD, Maxwell WA, Chichester CO. 1966. Lethal photosensitization of microorganisms with light from a continuous-wave gas laser. Photochem. Photobiol. 5:7555–65
    [Google Scholar]
  16. 16. 
    Taub AF. 2007. Photodynamic therapy: other uses. Dermatol. Clin. 25:1101–9
    [Google Scholar]
  17. 17. 
    Hamblin MR, Hasan T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem. Photobiol. Sci. 3:5436–50
    [Google Scholar]
  18. 18. 
    Araújo NC, Fontana CR, Bagnato VS, Gerbi MEM. 2014. Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med. Sci. 29:2629–35
    [Google Scholar]
  19. 19. 
    Hu Z, Liu L, Zhang W, Liu H, Li J et al. 2018. Dynamics of HPV viral loads reflect the treatment effect of photodynamic therapy in genital warts. Photodiagn. Photodyn. Ther. 21:86–90
    [Google Scholar]
  20. 20. 
    Wainwright M. 2004. Photoinactivation of viruses. Photochem. Photobiol. Sci. 3:5406–11
    [Google Scholar]
  21. 21. 
    van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. 2017. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers 9:219
    [Google Scholar]
  22. 22. 
    Mimura S, Ito Y, Nagayo T, Ichii M, Kato H et al. 1996. Cooperative clinical trial of photodynamic therapy with Photofrin II and excimer dye laser for early gastric cancer. Lasers Surg. Med. 19:2168–72
    [Google Scholar]
  23. 23. 
    Golusiński P, Szybiak B, Wegner A, Pazdrowski J, Pieńkowski P. 2015. Photodynamic therapy in palliative treatment of head and neck cancer. Otolaryngol. Pol. 69:315–20
    [Google Scholar]
  24. 24. 
    Hamblin MR. 2020. Photodynamic therapy for cancer: What's past is prologue. Photochem. Photobiol. 96:3506–16
    [Google Scholar]
  25. 25. 
    Isakoff SJ, Rogers GS, Hill S, McMullan P, Habin KR et al. 2017. An open label, phase II trial of continuous low-irradiance photodynamic therapy (CLIPT) using verteporfin for the treatment of cutaneous breast cancer metastases. J. Clin. Oncol. 35:TPS1121
    [Google Scholar]
  26. 26. 
    Mery E, Golzio M, Guillermet S, Lanore D, Le Naour A et al. 2017. Fluorescence-guided surgery for cancer patients: a proof of concept study on human xenografts in mice and spontaneous tumors in pets. Oncotarget 8:65109559–74
    [Google Scholar]
  27. 27. 
    Jewell EL, Huang JJ, Abu-Rustum NR, Gardner GJ, Brown CL et al. 2014. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol. Oncol. 133:274–77
    [Google Scholar]
  28. 28. 
    Cho SS, Salinas R, Lee JYK. 2019. Indocyanine-green for fluorescence-guided surgery of brain tumors: evidence, techniques, and practical experience. Front. Surg. 6:11
    [Google Scholar]
  29. 29. 
    Kim SH, Rho SY, Kang CM. 2018. Indocyanine green-fluorescent pancreatic perfusion-guided resection of distal pancreas in solid pseudopapillary neoplasm: usefulness and feasibility during pancreaticobiliary surgery. J. Minim. Invasive Surg. 21:143–45
    [Google Scholar]
  30. 30. 
    Zhang C, Zhao Y, Zhang H, Chen X, Zhao N et al. 2017. The application of heptamethine cyanine dye DZ-1 and indocyanine green for imaging and targeting in xenograft models of hepatocellular carcinoma. Int. J. Mol. Sci. 18:61332
    [Google Scholar]
  31. 31. 
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F et al. 2006. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:5392–401
    [Google Scholar]
  32. 32. 
    Hadjipanayis CG, Stummer W. 2019. 5-ALA and FDA approval for glioma surgery. J. Neurooncol. 141:3479–86
    [Google Scholar]
  33. 33. 
    Lwin TM, Murakami T, Miyake K, Yazaki PJ, Shivley JE et al. 2018. Tumor-specific labeling of pancreatic cancer using a humanized anti-CEA antibody conjugated to a near-infrared fluorophore. Ann. Surg. Oncol. 25:41079–85
    [Google Scholar]
  34. 34. 
    Tummers WS, Miller SE, Teraphongphom NT, Gomez A, Steinberg I et al. 2018. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann. Surg. Oncol. 25:71880–88
    [Google Scholar]
  35. 35. 
    Arsen'ev AI, Kanaev SV, Barchuk AS, Vedenin IO, Klitenko VN et al. 2007. Опыт эндотрахеобронхиальных операций в комбинации с химиолучевыми методами при лечении распространенного немелкоклегочного рака легкого [Use of endotracheobronchial surgery in conjunction with radiochemotherapy for advanced non-small lung cancer. ]. Vopr. Onkol. 53:4461–67
    [Google Scholar]
  36. 36. 
    Simone CB2nd, Cengel KA 2014. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin. Oncol. 41:6820–30
    [Google Scholar]
  37. 37. 
    Higa JT, Hwang JH 2016. History of ablative therapies for Barrett's and superficial adenocarcinoma. Barrett's Esophagus: Emerging Evidence for Improved Clinical Practice DK Pleskow, T Erim 133–49 Boston: Academic
    [Google Scholar]
  38. 38. 
    Hsieh Y-J, Wu C-C, Chang C-J, Yu J-S. 2003. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: When plasma membranes are the main targets. J. Cell. Physiol. 194:3363–75
    [Google Scholar]
  39. 39. 
    Dougherty TJ, Cooper MT, Mang TS. 1990. Cutaneous phototoxic occurrences in patients receiving Photofrin®. Lasers Surg. Med. 10:485–88
    [Google Scholar]
  40. 40. 
    Sachar M, Anderson KE, Ma X. 2016. Protoporphyrin IX: the good, the bad, and the ugly. J. Pharmacol. Exp. Ther. 356:2267–75
    [Google Scholar]
  41. 41. 
    Fukuda H, Paredes S, Batlle AM. 1989. Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Drug Des. Deliv. 5:2133–39
    [Google Scholar]
  42. 42. 
    Chen R, Huang Z, Chen G, Li Y, Chen X et al. 2008. Kinetics and subcellular localization of 5-ALA-induced PpIX in DHL cells via two-photon excitation fluorescence microscopy. Int. J. Oncol. 32:4861–67
    [Google Scholar]
  43. 43. 
    de Oliveira ER, Inada NM, Blanco KC, Bagnato VS, Salvio AG. 2019. Cancerization field treatment using topical photodynamic therapy: a comparison between two aminolevulinate derivatives. Photodiagn. Photodyn. Ther. 30:101603
    [Google Scholar]
  44. 44. 
    Berger AP, Steiner H, Stenzl A, Akkad T, Bartsch G, Holtl L. 2003. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: a single-center study. Urology 61:2338–41
    [Google Scholar]
  45. 45. 
    Inoue K. 2017. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int. J. Urol. 24:297–101
    [Google Scholar]
  46. 46. 
    Warren CB, Karai LJ, Vidimos A, Maytin EV. 2009. Pain associated with aminolevulinic acid-photodynamic therapy of skin disease. J. Am. Acad. Dermatol. 61:61033–43
    [Google Scholar]
  47. 47. 
    Kang M-H, Jeong GS, Smoot DT, Ashktorab H, Hwang CM et al. 2017. Verteporfin inhibits gastric cancer cell growth by suppressing adhesion molecule FAT1. Oncotarget 8:5898887–97
    [Google Scholar]
  48. 48. 
    Aquaron R, Forzano O, Murati JL, Fayet G, Aquaron C, Ridings B. 2002. Simple, reliable and fast spectrofluorometric method for determination of plasma verteporfin (Visudyne) levels during photodynamic therapy for choroidal neovascularization. Cell. Mol. Biol. 48:8925–30
    [Google Scholar]
  49. 49. 
    Scott LJ, Goa KL 2000. Verteporfin. Drugs Aging 16:2139–46
    [Google Scholar]
  50. 50. 
    Gibault F, Corvaisier M, Bailly F, Huet G, Melnyk P, Cotelle P. 2016. Non-photoinduced biological properties of verteporfin. Curr. Med. Chem. 23:111171–84
    [Google Scholar]
  51. 51. 
    Lui JW, Xiao S, Ogomori K, Hammarstedt JE, Little EC, Lang D. 2019. The efficiency of verteporfin as a therapeutic option in pre-clinical models of melanoma. J. Cancer 10:11–10
    [Google Scholar]
  52. 52. 
    Wei H, Wang F, Wang Y, Li T, Xiu P et al. 2017. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci 108:3478–87
    [Google Scholar]
  53. 53. 
    Mazor O, Brandis A, Plaks V, Neumark E, Rosenbach-Belkin V et al. 2005. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochem. Photobiol. 81:2342–51
    [Google Scholar]
  54. 54. 
    Azzouzi A-R, Vincendeau S, Barret E, Cicco A, Kleinclauss F et al. 2017. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol 18:2181–91
    [Google Scholar]
  55. 55. 
    Michael-Titus AT, Whelpton R, Yaqub Z. 1995. Binding of temoporfin to the lipoprotein fractions of human serum. Br. J. Clin. Pharmacol. 40:6594–97
    [Google Scholar]
  56. 56. 
    Teiten M-H, Marchal S, D'Hallewin MA, Guillemin F, Bezdetnaya L 2003. Primary photodamage sites and mitochondrial events after Foscan photosensitization of MCF-7 human breast cancer cells. Photochem. Photobiol. 78:19–14
    [Google Scholar]
  57. 57. 
    D'Cruz AK, Robinson MH, Biel MA 2004. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study of 128 patients. Head Neck 26:3232–40
    [Google Scholar]
  58. 58. 
    Senge MO, Brandt JC. 2011. Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)—a second-generation photosensitizer. Photochem. Photobiol. 87:61240–96
    [Google Scholar]
  59. 59. 
    Tsukagoshi S 2004. 光線力学的治療法に用いる新しい光感受性物質 talaporfin sodium についxて [Development of a novel photosensitizer, talaporfin sodium, for the photodynamic therapy (PDT)]. Gan To Kagaku Ryoho 31:6979–85
    [Google Scholar]
  60. 60. 
    Kanda T, Sugihara T, Takata T, Mae Y, Kinoshita H et al. 2019. Low‑density lipoprotein receptor expression is involved in the beneficial effect of photodynamic therapy using talaporfin sodium on gastric cancer cells. Oncol. Lett. 17:33261–66
    [Google Scholar]
  61. 61. 
    Miki Y, Akimoto J, Yokoyama S, Homma T, Tsutsumi M et al. 2013. Photodynamic therapy in combination with talaporfin sodium induces mitochondrial apoptotic cell death accompanied with necrosis in glioma cells. Biol. Pharm. Bull. 36:2215–21
    [Google Scholar]
  62. 62. 
    Ohashi S, Kikuchi O, Tsurumaki M, Nakai Y, Kasai H et al. 2014. Preclinical validation of talaporfin sodium-mediated photodynamic therapy for esophageal squamous cell carcinoma. PLOS ONE 9:8e103126
    [Google Scholar]
  63. 63. 
    Oliveira J, Monteiro E, Santos J, Silva JD, Almeida L, Santos LL. 2017. A first in human study using photodynamic therapy with Redaporfin in advanced head and neck cancer. J. Clin. Oncol. 35:15 Suppl.e14056
    [Google Scholar]
  64. 64. 
    Nava HR, Allamaneni SS, Dougherty TJ, Cooper MT, Tan W et al. 2011. Photodynamic therapy (PDT) using HPPH for the treatment of precancerous lesions associated with Barrett's esophagus. Lasers Surg. Med. 43:7705–12
    [Google Scholar]
  65. 65. 
    Rigual NR, Shafirstein G, Frustino J, Seshadri M, Cooper M et al. 2013. Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol. Head Neck Surg. 139:7706–11
    [Google Scholar]
  66. 66. 
    Jones HJ, Vernon DI, Brown SB. 2003. Photodynamic therapy effect of m-THPC (Foscan®) in vivo: correlation with pharmacokinetics. Br. J. Cancer 89:2398–404
    [Google Scholar]
  67. 67. 
    Li B, Lin L, Lin H, Wilson BC. 2016. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy. J. Biophotonics 9:11–121314–25
    [Google Scholar]
  68. 68. 
    Kosaka N, Ogawa M, Choyke PL, Kobayashi H. 2009. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol 5:91501–11
    [Google Scholar]
  69. 69. 
    Cao J, Zhu B, Zheng K, He S, Meng L et al. 2020. Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol. 7:487
    [Google Scholar]
  70. 70. 
    Haque A, Faizi MSH, Rather JA, Khan MS. 2017. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg. Med. Chem. 25:72017–34
    [Google Scholar]
  71. 71. 
    Hong G, Antaris AL, Dai H. 2017. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1:0010
    [Google Scholar]
  72. 72. 
    Wang H, Li X, Tse BW-C, Yang H, Thorling CA et al. 2018. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 8:51227–42
    [Google Scholar]
  73. 73. 
    Usama SM, Thavornpradit S, Burgess K. 2018. Optimized heptamethine cyanines for photodynamic therapy. ACS Appl. Bio Mater. 1:41195–205
    [Google Scholar]
  74. 74. 
    Kilin VN, Anton H, Anton N, Steed E, Vermot J et al. 2014. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. Biomaterials 35:184950–57
    [Google Scholar]
  75. 75. 
    Shulov I, Arntz Y, Mély Y, Pivovarenko VG, Klymchenko AS. 2016. Non-coordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles. Chem. Commun. 52:517962–65
    [Google Scholar]
  76. 76. 
    Reisch A, Didier P, Richert L, Oncul S, Arntz Y et al. 2014. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nat. Commun. 5:14089
    [Google Scholar]
  77. 77. 
    Shulov I, Oncul S, Reisch A, Arntz Y, Collot M et al. 2015. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale 7:4318198–210
    [Google Scholar]
  78. 78. 
    Magut PKS, Das S, Fernand VE, Losso J, McDonough K et al. 2013. Tunable cytotoxicity of rhodamine 6G via anion variations. J. Am. Chem. Soc. 135:4215873–79
    [Google Scholar]
  79. 79. 
    Siraj N, Kolic PE, Regmi BP, Warner IM. 2015. Strategy for tuning the photophysical properties of photosensitizers for use in photodynamic therapy. Chemistry 21:4114440–46
    [Google Scholar]
  80. 80. 
    Broadwater D, Bates M, Jayaram M, Young M, He J et al. 2019. Modulating cellular cytotoxicity and phototoxicity of fluorescent organic salts through counterion pairing. Sci. Rep. 9:115288
    [Google Scholar]
  81. 81. 
    Zhang C, Zhao Y, Zhao N, Tan D, Zhang H et al. 2018. NIRF optical/PET dual-modal imaging of hepatocellular carcinoma using heptamethine carbocyanine dye. Contrast Media Mol. Imaging 2018:4979746
    [Google Scholar]
  82. 82. 
    Randall LM, Wenham RM, Low PS, Dowdy SC, Tanyi JL. 2019. A phase II, multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-alpha positive ovarian cancer. Gynecol. Oncol. 155:163–68
    [Google Scholar]
  83. 83. 
    Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J et al. 2017. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin. Cancer Res. 23:112730–41
    [Google Scholar]
  84. 84. 
    Li D, Qu C, Liu Q, Wu Y, Hu X et al. 2020. Monitoring the real-time circulatory system-related physiological and pathological processes in vivo using a multifunctional NIR-II probe. Adv. Funct. Mater. 30:61906343
    [Google Scholar]
  85. 85. 
    Antaris AL, Chen H, Cheng K, Sun Y, Hong G et al. 2016. A small-molecule dye for NIR-II imaging. Nat. Mater. 15:2235–42
    [Google Scholar]
  86. 86. 
    Wang S, Fan Y, Li D, Sun C, Lei Z et al. 2019. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10:11058
    [Google Scholar]
  87. 87. 
    Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X 2018. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics 8:154141–51
    [Google Scholar]
  88. 88. 
    Staggers N, McCasky T, Brazelton N, Kennedy R. 2008. Nanotechnology: the coming revolution and its implications for consumers, clinicians, and informatics. Nurs. Outlook 56:5268–74
    [Google Scholar]
  89. 89. 
    Babu A, Templeton AK, Munshi A, Ramesh R 2013. Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges. J. Nanomater. 2013:31–11
    [Google Scholar]
  90. 90. 
    Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A 2018. Nanomaterials history, classification, unique properties, production and market. Emerging Applications of Nanoparticles and Architecture Nanostructures A Barhoum, ASH Makhlouf 341–84 Amsterdam: Elsevier
    [Google Scholar]
  91. 91. 
    Pokropivny VV, Skorokhod VV. 2007. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27:5–8990–93
    [Google Scholar]
  92. 92. 
    Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. 2019. Contrast agents delivery: an up-to-date review of nanodiagnostics in neuroimaging. Nanomaterials 9:4542
    [Google Scholar]
  93. 93. 
    Yi G, Hong SH, Son J, Yoo J, Park C et al. 2018. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg. 8:4433–43
    [Google Scholar]
  94. 94. 
    Ananikov VP. 2019. Organic-inorganic hybrid nanomaterials. Nanomaterials 9:91197
    [Google Scholar]
  95. 95. 
    Berry CC. 2012. Applications of inorganic nanoparticles for biotechnology. Front. Nanosci. 4:159–80
    [Google Scholar]
  96. 96. 
    Casais-Molina ML, Cab C, Canto G, Medina J, Tapia A. 2018. Carbon nanomaterials for breast cancer treatment. J. Nanomaterials 2018:1–9
    [Google Scholar]
  97. 97. 
    Albert K, Hsu H-Y. 2016. Carbon-based materials for photo-triggered theranostic applications. Molecules 21:111585
    [Google Scholar]
  98. 98. 
    Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M et al. 2012. Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J. Toxicol. Environ. Health Part A 75:2112–28
    [Google Scholar]
  99. 99. 
    Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R et al. 2010. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology 272:1–339–45
    [Google Scholar]
  100. 100. 
    de Melo C, Jullien M, Battie Y, En Naciri A, Ghanbaja J et al. 2018. Tunable localized surface plasmon resonance and broadband visible photoresponse of Cu nanoparticles/ZnO surfaces. ACS Appl. Mater. Interfaces 10:4740958–65
    [Google Scholar]
  101. 101. 
    Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71:81185–98
    [Google Scholar]
  102. 102. 
    Reimann SM, Manninen M. 2002. Electronic structure of quantum dots. Rev. Mod. Phys. 74:41283–342
    [Google Scholar]
  103. 103. 
    Li Y, Yang X-Y, Feng Y, Yuan Z-Y, Su B-L. 2012. One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 37:11–74
    [Google Scholar]
  104. 104. 
    Kim H, Lee D. 2018. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 10:9961
    [Google Scholar]
  105. 105. 
    Chen W, Ayala-Orozco C, Biswal NC, Perez-Torres C, Bartels M et al. 2014. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine 9:81209–22
    [Google Scholar]
  106. 106. 
    Skrabalak SE, Chen J, Sun Y, Lu X, Au L et al. 2008. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41:121587–95
    [Google Scholar]
  107. 107. 
    Ungureanu C, Kroes R, Petersen W, Groothuis TAM, Ungureanu F et al. 2011. Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett 11:51887–94
    [Google Scholar]
  108. 108. 
    Zhang Z, Wang L, Wang J, Jiang X, Li X et al. 2012. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24:111418–23
    [Google Scholar]
  109. 109. 
    Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P et al. 2014. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6:260ra149
    [Google Scholar]
  110. 110. 
    Ge J, Jia Q, Liu W, Lan M, Zhou B et al. 2016. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 5:665–75
    [Google Scholar]
  111. 111. 
    Chen F, Madajewski B, Ma K, Zanoni DK, Stambuk H et al. 2019. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci. Adv. 5:12eaax5208
    [Google Scholar]
  112. 112. 
    Hong Y, Lam JWY, Tang BZ. 2011. Aggregation-induced emission. Chem. Soc. Rev. 40:115361
    [Google Scholar]
  113. 113. 
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ et al. 2001. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001:1740–41
    [Google Scholar]
  114. 114. 
    Tang BZ, Zhao Z, Zhang H, Lam JWY. 2020. Aggregation-induced emission: new vistas at aggregate level. Angew. Chem. Int. Ed. 59:259888–907
    [Google Scholar]
  115. 115. 
    Yang H, Liu Y, Guo Z, Lei B, Zhuang J et al. 2019. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 10:11789
    [Google Scholar]
  116. 116. 
    Dong J, Li X, Zhang K, Yuan YD, Wang Y et al. 2018. Confinement of aggregation-induced emission molecular rotors in ultrathin two-dimensional porous organic nanosheets for enhanced molecular recognition. J. Am. Chem. Soc. 140:114035–46
    [Google Scholar]
  117. 117. 
    Feng G, Mao D, Liu J, Goh CC, Ng LG et al. 2018. Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale 10:135869–74
    [Google Scholar]
  118. 118. 
    Li D, Zhao X, Qin W, Zhang H, Fei Y et al. 2016. Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish. Nano Res 9:71921–33
    [Google Scholar]
  119. 119. 
    Henson PM, Hume DA. 2006. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:5244–50
    [Google Scholar]
  120. 120. 
    Cheng H, Wang Z, Fu L, Xu T. 2019. Macrophage polarization in the development and progression of ovarian cancers: an overview. Front. Oncol. 9:421
    [Google Scholar]
  121. 121. 
    Negus RP, Stamp GW, Relf MG, Burke F, Malik ST et al. 1995. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J. Clin. Investig. 95:52391–96
    [Google Scholar]
  122. 122. 
    Kousis PC, Henderson BW, Maier PG, Gollnick SO. 2007. Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils. Cancer Res 67:2110501–10
    [Google Scholar]
  123. 123. 
    Sano K, Nakajima T, Choyke PL, Kobayashi H. 2014. The effect of photoimmunotherapy (PIT) followed by liposomal daunorubicin in a mixed tumor model: a demonstration of the super enhanced permeability and retention (SUPR) effect after PIT. Mol. Cancer Ther. 13:2426–32
    [Google Scholar]
  124. 124. 
    Li W, Yang J, Luo L, Jiang M, Qin B et al. 2019. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10:13349
    [Google Scholar]
  125. 125. 
    Golombek SK, May J-N, Theek B, Appold L, Drude N et al. 2018. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130:17–38
    [Google Scholar]
  126. 126. 
    Tanaka N, Kanatani S, Tomer R, Sahlgren C, Kronqvist P et al. 2017. Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat. Biomed. Eng. 1:10796–806
    [Google Scholar]
  127. 127. 
    Kato A, Kataoka H, Yano S, Hayashi K, Hayashi N et al. 2017. Maltotriose conjugation to a chlorin derivative enhances the antitumor effects of photodynamic therapy in peritoneal dissemination of pancreatic cancer. Mol. Cancer Ther. 16:61124–32
    [Google Scholar]
  128. 128. 
    Tanaka M, Kataoka H, Yano S, Ohi H, Moriwaki K et al. 2014. Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol. Cancer Ther. 13:4767–75
    [Google Scholar]
  129. 129. 
    Yan S, Huang Q, Chen J, Song X, Chen Z et al. 2019. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int. J. Nanomed. 14:6799–812
    [Google Scholar]
  130. 130. 
    Yoon HY, Koo H, Choi KY, Lee SJ, Kim K et al. 2012. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 33:153980–89
    [Google Scholar]
  131. 131. 
    Aung W, Tsuji AB, Sugyo A, Takashima H, Yasunaga M et al. 2018. Near-infrared photoimmunotherapy of pancreatic cancer using an indocyanine green-labeled anti-tissue factor antibody. World J. Gastroenterol. 24:485491–504
    [Google Scholar]
  132. 132. 
    Debie P, Hernot S. 2019. Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front. Pharmacol. 10:510
    [Google Scholar]
  133. 133. 
    Schmidt MM, Wittrup KD. 2009. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 8:102861–71
    [Google Scholar]
  134. 134. 
    Sano K, Nakajima T, Choyke PL, Kobayashi H. 2013. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors. ACS Nano 7:1717–24
    [Google Scholar]
  135. 135. 
    Gao W, Wang Z, Lv L, Yin D, Chen D et al. 2016. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics 6:81131–44
    [Google Scholar]
  136. 136. 
    Boni L, David G, Mangano A, Dionigi G, Rausei S et al. 2015. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg. Endosc. 29:72046–55
    [Google Scholar]
  137. 137. 
    Henderson BW, Busch TM, Snyder JW. 2006. Fluence rate as a modulator of PDT mechanisms. Lasers Surg. Med. 38:5489–93
    [Google Scholar]
  138. 138. 
    Sitnik TM, Henderson BW. 1998. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy. Photochem. Photobiol. 67:4462–66
    [Google Scholar]
  139. 139. 
    Müller S, Walt H, Dobler-Girdziunaite D, Fiedler D, Haller U. 1998. Enhanced photodynamic effects using fractionated laser light. J. Photochem. Photobiol. B Biol. 42:167–70
    [Google Scholar]
  140. 140. 
    de Bruijn HS, Brooks S, van der Ploeg-van den Heuvel A, ten Hagen TLM, de Haas ERM, Robinson DJ. 2016. Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLOS ONE 11:2e0148850
    [Google Scholar]
  141. 141. 
    Weersink RA, Bogaards A, Gertner M, Davidson SRH, Zhang K et al. 2005. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. J. Photochem. Photobiol. B Biol. 79:3211–22
    [Google Scholar]
  142. 142. 
    Li J, Zhu TC. 2008. Determination of in vivo light fluence distribution in a heterogeneous prostate during photodynamic therapy. Phys. Med. Biol. 53:82103–14
    [Google Scholar]
  143. 143. 
    Espina V, Mariani BD, Gallagher RI, Tran K, Banks S et al. 2010. Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival. PLOS ONE 5:4e10240
    [Google Scholar]
  144. 144. 
    Smith AG, Macleod KF. 2019. Autophagy, cancer stem cells and drug resistance. J. Pathol. 247:5708–18
    [Google Scholar]
  145. 145. 
    Kim J, Lim W, Kim S, Jeon S, Hui Z et al. 2014. Photodynamic therapy (PDT) resistance by PARP1 regulation on PDT-induced apoptosis with autophagy in head and neck cancer cells. J. Oral Pathol. Med. 43:9675–84
    [Google Scholar]
  146. 146. 
    Wei M-F, Chen M-W, Chen K-C, Lou P-J, Lin SY-F et al. 2014. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 10:71179–92
    [Google Scholar]
  147. 147. 
    Domagala A, Stachura J, Gabrysiak M, Muchowicz A, Zagozdzon R et al. 2018. Inhibition of autophagy sensitizes cancer cells to Photofrin-based photodynamic therapy. BMC Cancer 18:1210
    [Google Scholar]
  148. 148. 
    Cincotta L, Szeto D, Lampros E, Hasan T, Cincotta AH. 1996. Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas. Photochem. Photobiol. 63:2229–37
    [Google Scholar]
  149. 149. 
    Chen M, Xie S. 2018. Therapeutic targeting of cellular stress responses in cancer. Thorac. Cancer 9:121575–82
    [Google Scholar]
  150. 150. 
    Fahey JM, Girotti AW. 2017. Nitric oxide-mediated resistance to photodynamic therapy in a human breast tumor xenograft model: improved outcome with NOS2 inhibitors. Nitric Oxide 62:52–61
    [Google Scholar]
  151. 151. 
    Bhowmick R, Girotti AW. 2011. Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge. Photochem. Photobiol. 87:2378–86
    [Google Scholar]
  152. 152. 
    Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MRL, Chaplin DJ. 2000. Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy. Br. J. Cancer 82:111835–43
    [Google Scholar]
  153. 153. 
    Henderson BW, Sitnik-Busch TM, Vaughan LA. 1999. Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase inhibition is fluence rate dependent. Photochem. Photobiol. 70:164–71
    [Google Scholar]
  154. 154. 
    Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:157–70
    [Google Scholar]
  155. 155. 
    Casas A, Di Venosa G, Hasan T, Batlle A. 2011. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. 18:162486–515
    [Google Scholar]
  156. 156. 
    Weijer R, Broekgaarden M, van Golen RF, Bulle E, Nieuwenhuis E et al. 2015. Low-power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells. BMC Cancer 15:1014
    [Google Scholar]
  157. 157. 
    Morgan J, Jackson JD, Zheng X, Pandey SK, Pandey RK. 2010. Substrate affinity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy. Mol. Pharm. 7:51789–804
    [Google Scholar]
  158. 158. 
    Kishen A, Upadya M, Tegos GP, Hamblin MR. 2010. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem. Photobiol. 86:61343–49
    [Google Scholar]
  159. 159. 
    Sharkey SM, Wilson BC, Moorehead R, Singh G. 1993. Mitochondrial alterations in photodynamic therapy-resistant cells. Cancer Res 53:204994–99
    [Google Scholar]
  160. 160. 
    Shen XY, Zacal N, Singh G, Rainbow AJ. 2005. Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells. Photochem. Photobiol. 81:2306–13
    [Google Scholar]
  161. 161. 
    Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S et al. 2017. Combination therapy in combating cancer. Oncotarget 8:2338022–43
    [Google Scholar]
  162. 162. 
    Cuperus R, van Kuilenburg ABP, Leen R, Bras J, Caron HN, Tytgat GAM. 2011. Promising effects of the 4HPR-BSO combination in neuroblastoma monolayers and spheroids. Free Radic. Biol. Med. 51:61213–20
    [Google Scholar]
  163. 163. 
    Kimani SG, Phillips JB, Bruce JI, MacRobert AJ, Golding JP. 2012. Antioxidant inhibitors potentiate the cytotoxicity of photodynamic therapy. Photochem. Photobiol. 88:1175–87
    [Google Scholar]
  164. 164. 
    Smith D, O'Leary VJ, Darley-Usmar VM 1993. The role of α-tocopherol as a peroxyl radical scavenger in human low density lipoprotein. Biochem. Pharmacol. 45:2195–201
    [Google Scholar]
  165. 165. 
    Chen Q, Feng L, Liu J, Zhu W, Dong Z et al. 2016. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28:337129–36
    [Google Scholar]
  166. 166. 
    Yang G, Xu L, Chao Y, Xu J, Sun X et al. 2017. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8:1902
    [Google Scholar]
  167. 167. 
    Fan H, Yan G, Zhao Z, Hu X, Zhang W et al. 2016. A smart photosensitizer-manganese dioxide nanosystem for enhanced photodynamic therapy by reducing glutathione levels in cancer cells. Angew. Chem. Int. Ed. 55:185477–82
    [Google Scholar]
  168. 168. 
    Singer E, Judkins J, Salomonis N, Matlaf L, Soteropoulos P et al. 2015. Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis 6:1e1601
    [Google Scholar]
  169. 169. 
    Ling X, Zhang S, Liu Y, Bai M. 2018. Light-activatable cannabinoid prodrug for combined and target-specific photodynamic and cannabinoid therapy. J. Biomed. Opt. 23:101–9
    [Google Scholar]
  170. 170. 
    Anand S, Rollakanti KR, Horst RL, Hasan T, Maytin EV. 2014. Combination of oral vitamin D3 with photodynamic therapy enhances tumor cell death in a murine model of cutaneous squamous cell carcinoma. Photochem. Photobiol. 90:51126–35
    [Google Scholar]
  171. 171. 
    Anand S, Yasinchak A, Bullock T, Govande M, Maytin EV. 2019. A non-toxic approach for treatment of breast cancer and its metastases: Capecitabine enhanced photodynamic therapy in a murine breast tumor model. J. Cancer Metastasis Treat. 5:6
    [Google Scholar]
  172. 172. 
    Fukuhara H, Inoue K, Kurabayashi A, Furihata M, Fujita H et al. 2013. The inhibition of ferrochelatase enhances 5-aminolevulinic acid-based photodynamic action for prostate cancer. Photodiagn. Photodyn. Ther. 10:4399–409
    [Google Scholar]
  173. 173. 
    Xu T, Ding W, Ji X, Ao X, Liu Y et al. 2019. Molecular mechanisms of ferroptosis and its role in cancer therapy. J. Cell Mol. Med. 23:84900–12
    [Google Scholar]
  174. 174. 
    Chen G, Guo G, Zhou X, Chen H. 2020. Potential mechanism of ferroptosis in pancreatic cancer. Oncol. Lett. 19:1579–87
    [Google Scholar]
  175. 175. 
    Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR. 2015. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:5517–32
    [Google Scholar]
  176. 176. 
    Anayo L, Magnussen A, Perry A, Wood M, Curnow A. 2018. An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy. Lasers Surg. Med. 50:5552–65
    [Google Scholar]
  177. 177. 
    Curnow A, Perry A, Wood M. 2019. Improving in vitro photodynamic therapy through the development of a novel iron chelating aminolaevulinic acid prodrug. Photodiagn. Photodyn Ther. 25:157–65
    [Google Scholar]
  178. 178. 
    Mrozek-Wilczkiewicz A, Malarz K, Rams-Baron M, Serda M, Bauer D et al. 2017. Iron chelators and exogenic photosensitizers. Synergy through oxidative stress gene expression. J. Cancer 8:111979–87
    [Google Scholar]
  179. 179. 
    Biswas R, Chung P-S, Moon JH, Lee S-H, Ahn J-C. 2014. Carboplatin synergistically triggers the efficacy of photodynamic therapy via caspase 3-, 8-, and 12-dependent pathways in human anaplastic thyroid cancer cells. Lasers Med. Sci. 29:3995–1007
    [Google Scholar]
  180. 180. 
    Cheng Y-S, Peng Y-B, Yao M, Teng J-P, Ni D et al. 2017. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth. Biochem. Biophys. Res. Commun. 487:3567–72
    [Google Scholar]
  181. 181. 
    Ahn T-G, Jung JM, Lee E-J, Choi JH. 2019. Effects of cisplatin on photosensitizer-mediated photodynamic therapy in breast tumor-bearing nude mice. Obstet. Gynecol. Sci. 62:2112–19
    [Google Scholar]
  182. 182. 
    Pogue BW, O'Hara JA, Demidenko E, Wilmot CM, Goodwin IA et al. 2003. Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res 63:51025–33
    [Google Scholar]
  183. 183. 
    Xu J, Gao J, Wei Q. 2016. Combination of photodynamic therapy with radiotherapy for cancer treatment. J. Nanomater. 2016:8507924
    [Google Scholar]
  184. 184. 
    Mroz P, Hashmi JT, Huang Y-Y, Lange N, Hamblin MR. 2011. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 7:175–91
    [Google Scholar]
  185. 185. 
    Sharma P, Allison JP. 2015. The future of immune checkpoint therapy. Science 348:623056–61
    [Google Scholar]
  186. 186. 
    He C, Duan X, Guo N, Chan C, Poon C et al. 2016. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 7:12499
    [Google Scholar]
  187. 187. 
    Castano AP, Hamblin MR. 2006. Immune stimulation and photodynamic therapy to treat a metastatic model of breast cancer. Cancer Res 66:8 Suppl1122–23
    [Google Scholar]
  188. 188. 
    Li X, Le H, Wolf RF, Chen VA, Sarkar A et al. 2011. Long-term effect on EMT6 tumors in mice induced by combination of laser immunotherapy and surgery. Integr. Cancer Ther. 10:4368–73
    [Google Scholar]
  189. 189. 
    Schweitzer VG. 2001. Photofrin-mediated photodynamic therapy for treatment of aggressive head and neck nonmelanomatous skin tumors in elderly patients. Laryngoscope 111:61091–98
    [Google Scholar]
  190. 190. 
    Shishkova N, Kuznetsova O, Berezov T. 2012. Photodynamic therapy for gynecological diseases and breast cancer. Cancer Biol. Med. 9:19–17
    [Google Scholar]
  191. 191. 
    Cramer SW, Chen CC. 2020. Photodynamic therapy for the treatment of glioblastoma. Front. Surg. 6:81
    [Google Scholar]
  192. 192. 
    Railkar R, Agarwal PK. 2018. Photodynamic therapy in the treatment of bladder cancer: past challenges and current innovations. Eur. Urol. Focus 4:4509–11
    [Google Scholar]
  193. 193. 
    Ericson MB, Wennberg A-M, Larkö O. 2008. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag. 4:11–9
    [Google Scholar]
  194. 194. 
    Geavlete B, Mulţescu R, Georgescu D, Geavlete P. 2008. Hexvix blue light fluorescence cystoscopy—a promising approach in diagnosis of superficial bladder tumors. J. Med. Life 1:3355–62
    [Google Scholar]
  195. 195. 
    Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S et al. 2014. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 110:71698–704
    [Google Scholar]
  196. 196. 
    Akimoto J. 2016. Photodynamic therapy for malignant brain tumors. Neurol. Med. Chir. 56:4151–57
    [Google Scholar]
  197. 197. 
    Ishida N, Osawa S, Miyazu T, Kaneko M, Tamura S et al. 2020. Photodynamic therapy using talaporfin sodium for local failure after chemoradiotherapy or radiotherapy for esophageal cancer: a single center experience. J. Clin. Med. 9:51509
    [Google Scholar]
  198. 198. 
    Sahu A, Choi WI, Lee JH, Tae G. 2013. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:266239–48
    [Google Scholar]
  199. 199. 
    Xie L, Wang G, Zhou H, Zhang F, Guo Z et al. 2016. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials 103:219–28
    [Google Scholar]
  200. 200. 
    Choudhury P, Das PK. 2019. Carbon dots-stimulated amplification of aggregation-induced emission of size-tunable organic nanoparticles. Langmuir 35:3210582–95
    [Google Scholar]
  201. 201. 
    Shi C, Wu JB, Chu GCY, Li Q, Wang R et al. 2014. Heptamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF-1α/OATPs signaling axis. Oncotarget 5:10114–26
    [Google Scholar]
  202. 202. 
    Guo W, Qiu Z, Guo C, Ding D, Li T et al. 2017. Multifunctional theranostic agent of Cu2(OH)PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl. Mater. Interfaces 9:119348–58
    [Google Scholar]
  203. 203. 
    Liu X, Braun GB, Qin M, Ruoslahti E, Sugahara KN. 2017. In vivo cation exchange in quantum dots for tumor-specific imaging. Nat. Commun. 8:1343
    [Google Scholar]
  204. 204. 
    Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S et al. 2014. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8:32725–38
    [Google Scholar]
  205. 205. 
    Li Y, Tang R, Liu X, Gong J, Zhao Z et al. 2020. Bright aggregation-induced emission nanoparticles for two-photon imaging and localized compound therapy of cancers. ACS Nano 14:1216840–53
    [Google Scholar]
  206. 206. 
    Dong Q, Yang H, Wan C, Zheng D, Zhou Z et al. 2019. Her2-functionalized gold-nanoshelled magnetic hybrid nanoparticles: a theranostic agent for dual-modal imaging and photothermal therapy of breast cancer. Nanoscale Res. Lett. 14:1235
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-122019-115833
Loading
/content/journals/10.1146/annurev-bioeng-122019-115833
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error