1932

Abstract

Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange. They are exceptionally large protein complexes that fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. About 30 different protein components, termed nucleoporins, assemble in multiple copies into an intricate cylindrical architecture. Here, we review our current knowledge of the structure of nucleoporins and how those come together in situ. We delineate architectural principles on several hierarchical organization levels, including isoforms, posttranslational modifications, nucleoporins, and higher-order oligomerization of nucleoporin subcomplexes. We discuss how cells exploit this modularity to faithfully assemble NPCs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115308
2019-05-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115308.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115308&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams RL, Mason AC, Glass L, Aditi Wente SR 2017. Nup42 and IP6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Traffic 18:12776–90
    [Google Scholar]
  2. 2.
    Aksu M, Pleiner T, Karaca S, Kappert C, Dehne H-J et al. 2018. Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J. Cell Biol. 217:72329–40
    [Google Scholar]
  3. 3.
    Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R et al. 2011. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146:2277–89
    [Google Scholar]
  4. 4.
    Anderson DJ, Hetzer MW 2007. Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat. Cell Biol. 9:101160–66
    [Google Scholar]
  5. 5.
    Baade I, Spillner C, Schmitt K, Valerius O, Kehlenbach RH 2018. Extensive identification and in-depth validation of importin 13 cargoes. Mol. Cell. Proteom. 17:71337–53
    [Google Scholar]
  6. 6.
    Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:5285–98
    [Google Scholar]
  7. 7.
    Becher I, Andrés-Pons A, Romanov N, Stein F, Schramm M et al. 2018. Pervasive protein thermal stability variation during the cell cycle. Cell 173:61495–507.e18
    [Google Scholar]
  8. 8.
    Beck M, Baumeister W 2016. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail?. Trends Cell Biol 26:11825–37
    [Google Scholar]
  9. 9.
    Beck M, Hurt E 2016. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18:273–89
    [Google Scholar]
  10. 10.
    Beck M, Schirmacher P, Singer S 2017. Alterations of the nuclear transport system in hepatocellular carcinoma—new basis for therapeutic strategies. J. Hepatol. 67:51051–61
    [Google Scholar]
  11. 11.
    Belgareh N, Rabut G, Baï SW, van Overbeek M, Beaudouin J et al. 2001. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154:61147–60
    [Google Scholar]
  12. 12.
    Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R et al. 1999. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci. 112:132253–64
    [Google Scholar]
  13. 13.
    Boni A, Politi AZ, Strnad P, Xiang W, Hossain MJ, Ellenberg J 2015. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells. J. Cell Biol. 209:5705–20
    [Google Scholar]
  14. 14.
    Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L et al. 2013. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155:61233–43
    [Google Scholar]
  15. 15.
    Çağatay T, Chook YM 2018. Karyopherins in cancer. Curr. Opin. Cell Biol. 52:30–42
    [Google Scholar]
  16. 16.
    Campbell EM, Hope TJ 2015. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 13:8471–83
    [Google Scholar]
  17. 17.
    Capelson M, Hetzer MW 2009. The role of nuclear pores in gene regulation, development and disease. EMBO Rep 10:7697–705
    [Google Scholar]
  18. 18.
    Cordes VC, Rackwitz HR, Reidenbach S 1997. Mediators of nuclear protein import target karyophilic proteins to pore complexes of cytoplasmic annulate lamellae. Exp. Cell Res. 237:2419–33
    [Google Scholar]
  19. 19.
    D'Angelo MA, Anderson DJ, Richard E, Hetzer MW 2006. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312:5772440–43
    [Google Scholar]
  20. 20.
    Dawson TR, Lazarus MD, Hetzer MW, Wente SR 2009. ER membrane-bending proteins are necessary for de novo nuclear pore formation. J. Cell Biol. 184:5659–75
    [Google Scholar]
  21. 21.
    de Boor S, Knyphausen P, Kuhlmann N, Wroblowski S, Brenig J et al. 2015. Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation. PNAS 112:28E3679–88
    [Google Scholar]
  22. 22.
    De Magistris P, Tatarek-Nossol M, Dewor M, Antonin W 2018. A self-inhibitory interaction within Nup155 and membrane binding are required for nuclear pore complex formation. J. Cell Sci. 131:1jcs208538
    [Google Scholar]
  23. 23.
    Dharan A, Talley S, Tripathi A, Mamede JI, Majetschak M et al. 2016. KIF5B and Nup358 cooperatively mediate the nuclear import of HIV-1 during infection. PLOS Pathog 12:e1005700
    [Google Scholar]
  24. 24.
    Doucet CM, Talamas JA, Hetzer MW 2010. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141:61030–41
    [Google Scholar]
  25. 25.
    Drin G, Casella J-F, Gautier R, Boehmer T, Schwartz TU, Antonny B 2007. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14:2138–46
    [Google Scholar]
  26. 26.
    Drisaldi B, Colnaghi L, Fioriti L, Rao N, Myers C et al. 2015. SUMOylation is an inhibitory constraint that regulates the prion-like aggregation and activity of CPEB3. Cell Rep 11:111694–702
    [Google Scholar]
  27. 27.
    Dultz E, Ellenberg J 2010. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol. 191:115–22
    [Google Scholar]
  28. 28.
    Dultz E, Huet S, Ellenberg J 2009. Formation of the nuclear envelope permeability barrier studied by sequential photoswitching and flux analysis. Biophys. J. 97:71891–97
    [Google Scholar]
  29. 29.
    Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut G et al. 2008. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180:5857–65
    [Google Scholar]
  30. 30.
    Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O 2015. Structure and gating of the nuclear pore complex. Nat. Commun. 6:17532
    [Google Scholar]
  31. 31.
    Eisenhardt N, Redolfi J, Antonin W 2014. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell Sci. 127:4908–21
    [Google Scholar]
  32. 32.
    Fernandez-Martinez J, Kim SJ, Shi Y, Upla P, Pellarin R et al. 2016. Structure and function of the nuclear pore complex cytoplasmic mRNA export platform. Cell 167:51215–28.e25
    [Google Scholar]
  33. 33.
    Fischer J, Teimer R, Amlacher S, Kunze R, Hurt E 2015. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22:10774–81
    [Google Scholar]
  34. 34.
    Fisher PDE, Shen Q, Akpinar B, Davis LK, Chung KKH et al. 2018. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 12:21508–18
    [Google Scholar]
  35. 35.
    Fontoura BM, Blobel G, Matunis MJ 1999. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J. Cell Biol. 144:61097–112
    [Google Scholar]
  36. 36.
    Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D et al. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16:4807–16
    [Google Scholar]
  37. 37.
    Franz C, Walczak R, Yavuz S, Santarella R, Gentzel M et al. 2007. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep 8:2165–72
    [Google Scholar]
  38. 38.
    Frey S, Rees R, Schünemann J, Ng SC, Fünfgeld K et al. 2018. Surface properties determining passage rates of proteins through nuclear pores. Cell 174:1202–17
    [Google Scholar]
  39. 39.
    Gaik M, Flemming D, von Appen A, Kastritis P, Mücke N et al. 2015. Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. J. Cell Biol. 208:3283–97
    [Google Scholar]
  40. 40.
    Galy V, Askjaer P, Franz C, López-Iglesias C, Mattaj IW 2006. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol 16:171748–56
    [Google Scholar]
  41. 41.
    Gambetta MC, Oktaba K, Müller J 2009. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325:593693–96
    [Google Scholar]
  42. 42.
    Gontan C, Güttler T, Engelen E, Demmers J, Fornerod M et al. 2009. Exportin 4 mediates a novel nuclear import pathway for Sox family transcription factors. J. Cell Biol. 185:127–34
    [Google Scholar]
  43. 43.
    Görlich D, Kutay U 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–60
    [Google Scholar]
  44. 44.
    Greco TM, Yu F, Guise AJ, Cristea IM 2011. Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol. Cell. Proteom. 10:2M110.004317
    [Google Scholar]
  45. 45.
    Grünwald M, Lazzaretti D, Bono F 2013. Structural basis for the nuclear export activity of Importin13. EMBO J 32:6899–913
    [Google Scholar]
  46. 46.
    Güttler T, Görlich D 2011. Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30:173457–74
    [Google Scholar]
  47. 47.
    Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS et al. 2013. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J. Proteome Res. 12:2927–36
    [Google Scholar]
  48. 48.
    Hampoelz B, Mackmull M-T, Machado P, Ronchi P, Bui KH et al. 2016. Pre-assembled nuclear pores insert into the nuclear envelope during early development. Cell 166:3664–78
    [Google Scholar]
  49. 49.
    Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C et al. 2000. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J. Cell Sci. 113:5779–94
    [Google Scholar]
  50. 50.
    Hase ME, Cordes VC 2003. Direct interaction with Nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol. Biol. Cell 14:51923–40
    [Google Scholar]
  51. 51.
    Hattersley N, Cheerambathur D, Moyle M, Stefanutti M, Richardson A et al. 2016. A nucleoporin docks protein phosphatase 1 to direct meiotic chromosome segregation and nuclear assembly. Dev. Cell 38:5463–77
    [Google Scholar]
  52. 52.
    Hawryluk-Gara LA, Shibuya EK, Wozniak RW 2005. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16:52382–94
    [Google Scholar]
  53. 53.
    Hoelz A, Debler EW, Blobel G 2011. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80:613–43
    [Google Scholar]
  54. 54.
    Hoelz A, Glavy JS, Beck M 2016. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat. Struct. Mol. Biol. 23:7624–30
    [Google Scholar]
  55. 55.
    Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW 1987. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J. Cell Biol. 104:51157–64
    [Google Scholar]
  56. 56.
    Hu T, Gerace L 1998. cDNA cloning and analysis of the expression of nucleoporin p45. Gene 221:2245–53
    [Google Scholar]
  57. 57.
    Huang K-Y, Su M-G, Kao H-J, Hsieh Y-C, Jhong J-H et al. 2016. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res 44:D1D435–46
    [Google Scholar]
  58. 58.
    Hülsmann BB, Labokha AA, Görlich D 2012. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150:4738–51
    [Google Scholar]
  59. 59.
    Hutten S, Flotho A, Melchior F, Kehlenbach RH 2008. The Nup358-RanGAP complex is required for efficient importin α/β-dependent nuclear import. Mol. Biol. Cell 19:52300–10
    [Google Scholar]
  60. 60.
    Joseph J, Liu S-T, Jablonski SA, Yen TJ, Dasso M 2004. The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr. Biol. 14:7611–17
    [Google Scholar]
  61. 61.
    Kampmann M, Atkinson CE, Mattheyses AL, Simon SM 2011. Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy. Nat. Struct. Mol. Biol. 18:6643–49
    [Google Scholar]
  62. 62.
    Kapinos LE, Huang B, Rencurel C, Lim RYH 2017. Karyopherins regulate nuclear pore complex barrier and transport function. J. Cell Biol. 216:113609–24
    [Google Scholar]
  63. 63.
    Katsani KR, Karess RE, Dostatni N, Doye V 2008. In vivo dynamics of Drosophila nuclear envelope components. Mol. Biol. Cell 19:93652–66
    [Google Scholar]
  64. 64.
    Kelley K, Knockenhauer KE, Kabachinski G, Schwartz TU 2015. Atomic structure of the Y complex of the nuclear pore. Nat. Struct. Mol. Biol. 22:5425–31
    [Google Scholar]
  65. 65.
    Kessel RG 1992. Annulate lamellae: a last frontier in cellular organelles. Int. Rev. Cytol. 133:43–120
    [Google Scholar]
  66. 66.
    Ketterer P, Ananth AN, Laman Trip DS, Mishra A, Bertosin E et al. 2018. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 9:1902
    [Google Scholar]
  67. 67.
    Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W et al. 2018. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475–82
    [Google Scholar]
  68. 68.
    Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N 2017. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 6:e21184
    [Google Scholar]
  69. 69.
    Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT et al. 2015. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 4:e11466
    [Google Scholar]
  70. 70.
    Knockenhauer KE, Schwartz TU 2016. The nuclear pore complex as a flexible and dynamic gate. Cell 164:61162–71
    [Google Scholar]
  71. 71.
    Köhler A, Hurt E 2010. Gene regulation by nucleoporins and links to cancer. Mol. Cell 38:16–15
    [Google Scholar]
  72. 72.
    Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S et al. 2009. Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat. Struct. Mol. Biol. 16:101026–35
    [Google Scholar]
  73. 73.
    Kosinski J, Mosalaganti S, Von Appen A, Teimer R, DiGuilio AL et al. 2016. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352:6283363–65
    [Google Scholar]
  74. 74.
    Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L et al. 2010. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29:101659–73
    [Google Scholar]
  75. 75.
    Krull S, Thyberg J, Björkroth B, Rackwitz H-R, Cordes VC 2004. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 15:94261–77
    [Google Scholar]
  76. 76.
    LaJoie D, Ullman KS 2017. Coordinated events of nuclear assembly. Curr. Opin. Cell Biol. 46:39–45
    [Google Scholar]
  77. 77.
    Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B et al. 2011. Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144:4539–50
    [Google Scholar]
  78. 78.
    Leisegang MS, Martin R, Ramírez AS, Bohnsack MT 2012. Exportin T and Exportin 5: tRNA and miRNA biogenesis—and beyond. Biol. Chem. 393:7599–604
    [Google Scholar]
  79. 79.
    Lemke EA 2016. The multiple faces of disordered nucleoporins. J. Mol. Biol. 428:102011–24
    [Google Scholar]
  80. 80.
    Li B, Kohler JJ 2014. Glycosylation of the nuclear pore. Traffic 15:4347–61
    [Google Scholar]
  81. 81.
    Lin DH, Correia AR, Cai SW, Huber FM, Jette CA, Hoelz A 2018. Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat. Commun. 9:12319
    [Google Scholar]
  82. 82.
    Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T et al. 2016. Architecture of the symmetric core of the nuclear pore. Science 352:6283aaf1015
    [Google Scholar]
  83. 83.
    Linder MI, Köhler M, Boersema P, Weberruss M, Wandke C et al. 2017. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev. Cell 43:2141–156.e7
    [Google Scholar]
  84. 84.
    Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J et al. 2004. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15:73333–44
    [Google Scholar]
  85. 85.
    Lowe AR, Tang JH, Yassif J, Graf M, Huang WYC et al. 2015. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. eLife 4:e04052
    [Google Scholar]
  86. 86.
    Mackmull M-T, Klaus B, Heinze I, Chokkalingam M, Beyer A et al. 2017. Landscape of nuclear transport receptor cargo specificity. Mol. Syst. Biol. 13:12962
    [Google Scholar]
  87. 87.
    Mahadevan K, Zhang H, Akef A, Cui XA, Gueroussov S et al. 2013. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. PLOS Biol 11:4e1001545
    [Google Scholar]
  88. 88.
    Makio T, Stanton LH, Lin C-C, Goldfarb DS, Weis K, Wozniak RW 2009. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185:3459–73
    [Google Scholar]
  89. 89.
    Mans B, Anantharaman V, Aravind L, Koonin EV 2004. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:121625–50
    [Google Scholar]
  90. 90.
    Mansfeld J, Güttinger S, Hawryluk-Gara LA, Panté N, Mall M et al. 2006. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell 22:193–103
    [Google Scholar]
  91. 91.
    Martino L, Morchoisne-Bolhy S, Cheerambathur DK, Van Hove L, Dumont J et al. 2017. Channel nucleoporins recruit PLK-1 to nuclear pore complexes to direct nuclear envelope breakdown in C. elegans. Dev. . Cell 43:2157–71.e7
    [Google Scholar]
  92. 92.
    Mattaj IW, Englmeier L 1998. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67:265–306
    [Google Scholar]
  93. 93.
    Matunis MJ, Wu J, Blobel G 1998. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140:3499–509
    [Google Scholar]
  94. 94.
    Mingot J-M, Kostka S, Kraft R, Hartmann E, Görlich D 2001. Importin 13: a novel mediator of nuclear import and export. EMBO J 20:143685–94
    [Google Scholar]
  95. 95.
    Minguez P, Parca L, Diella F, Mende DR, Kumar R et al. 2012. Deciphering a global network of functionally associated post-translational modifications. Mol. Syst. Biol. 8:1599
    [Google Scholar]
  96. 96.
    Mitchell JM, Mansfeld J, Capitanio J, Kutay U, Wozniak RW 2010. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell Biol. 191:3505–21
    [Google Scholar]
  97. 97.
    Mosalaganti S, Kosinski J, Albert S, Schaffer M, Strenkert D et al. 2018. In situ architecture of the algal nuclear pore complex. Nat. Commun. 9:12361
    [Google Scholar]
  98. 98.
    Natalizio BJ, Wente SR 2013. Postage for the messenger: designating routes for nuclear mRNA export. Trends Cell Biol 23:8365–73
    [Google Scholar]
  99. 99.
    Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE et al. 2016. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLOS Biol 14:2e1002365
    [Google Scholar]
  100. 100.
    Obado SO, Field MC, Rout MP 2017. Comparative interactomics provides evidence for functional specialization of the nuclear pore complex. Nucleus 8:4340–52
    [Google Scholar]
  101. 101.
    Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML et al. 2010. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3:104ra3
    [Google Scholar]
  102. 102.
    Onischenko E, Tang JH, Andersen KR, Knockenhauer KE, Vallotton P et al. 2017. Natively unfolded FG repeats stabilize the structure of the nuclear pore complex. Cell 171:4904–17.e19
    [Google Scholar]
  103. 103.
    Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E 2005. Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol. Biol. Cell 16:115152–62
    [Google Scholar]
  104. 104.
    Osmani AH, Davies J, Liu H-L, Nile A, Osmani SA 2006. Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol. Biol. . Cell 17:124946–61
    [Google Scholar]
  105. 105.
    Otsuka S, Bui KH, Schorb M, Hossain MJ, Politi AZ et al. 2016. Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. eLife 5:e19071
    [Google Scholar]
  106. 106.
    Otsuka S, Steyer AM, Schorb M, Hériché J-K, Hossain MJ et al. 2018. Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings. Nat. Struct. Mol. Biol. 25:121–28
    [Google Scholar]
  107. 107.
    Pichler A, Gast A, Seeler JS, Dejean A, Melchior F 2002. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:1109–20
    [Google Scholar]
  108. 108.
    Port SA, Monecke T, Dickmanns A, Spillner C, Hofele R et al. 2015. Structural and functional characterization of CRM1-Nup214 interactions reveals multiple FG-binding sites involved in nuclear export. Cell Rep 13:4690–702
    [Google Scholar]
  109. 109.
    Rabut G, Doye V, Ellenberg J 2004. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6:111114–21
    [Google Scholar]
  110. 110.
    Raices M, D'Angelo MA 2012. Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat. Rev. Mol. Cell Biol. 13:11687–99
    [Google Scholar]
  111. 111.
    Rajoo S, Vallotton P, Onischenko E, Weis K 2018. Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. PNAS 115:17E3969–77
    [Google Scholar]
  112. 112.
    Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ 2006. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. PNAS 103:4717801–6
    [Google Scholar]
  113. 113.
    Rasala BA, Ramos C, Harel A, Forbes DJ 2008. Capture of AT-rich chromatin by ELYS recruits POM121 and NDC1 to initiate nuclear pore assembly. Mol. Biol. Cell 19:93982–96
    [Google Scholar]
  114. 114.
    Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F 2016. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat. Commun. 7:11482
    [Google Scholar]
  115. 115.
    Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148:4635–51
    [Google Scholar]
  116. 116.
    Rout MP, Field MC 2017. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu. Rev. Biochem. 86:637–57
    [Google Scholar]
  117. 117.
    Sachdev R, Sieverding C, Flötenmeyer M, Antonin W 2012. The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol. Biol. Cell 23:4740–49
    [Google Scholar]
  118. 118.
    Schmidt HB, Görlich D 2016. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41:146–61
    [Google Scholar]
  119. 119.
    Schwartz TU 2005. Modularity within the architecture of the nuclear pore complex. Curr. Opin. Struct. Biol. 15:2221–26
    [Google Scholar]
  120. 120.
    Schwartz TU 2016. The structure inventory of the nuclear pore complex. J. Mol. Biol. 428:101986–2000
    [Google Scholar]
  121. 121.
    Seo H-S, Ma Y, Debler EW, Wacker D, Kutik S et al. 2009. Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. PNAS 106:3414281–86
    [Google Scholar]
  122. 122.
    Simon DN, Rout MP 2014. Cancer and the Nuclear Pore Complex285–307 New York: Springer
  123. 123.
    Siniossoglou S, Lutzmann M, Santos-Rosa H, Leonard K, Mueller S et al. 2000. Structure and assembly of the Nup84p complex. J. Cell Biol. 149:141–54
    [Google Scholar]
  124. 124.
    Souquet B, Freed E, Berto A, Andric V, Audugé N et al. 2018. Nup133 is required for proper nuclear pore basket assembly and dynamics in embryonic stem cells. Cell Rep 23:82443–54
    [Google Scholar]
  125. 125.
    Stafstrom JP, Staehelin LA 1984. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur. J. Cell Biol. 34:1179–89
    [Google Scholar]
  126. 126.
    Stewart M 2007. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8:3195–208
    [Google Scholar]
  127. 127.
    Stewart M 2007. Ratcheting mRNA out of the nucleus. Mol. Cell 25:3327–30
    [Google Scholar]
  128. 128.
    Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR 2004. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6:3197–206
    [Google Scholar]
  129. 129.
    Teimer R, Kosinski J, von Appen A, Beck M, Hurt E 2017. A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nat. Commun. 8:11107
    [Google Scholar]
  130. 130.
    Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH 2013. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell Proteom. 12:3664–78
    [Google Scholar]
  131. 131.
    Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ et al. 2016. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 215:157–76
    [Google Scholar]
  132. 132.
    Ungricht R, Klann M, Horvath P, Kutay U 2015. Diffusion and retention are major determinants of protein targeting to the inner nuclear membrane. J. Cell Biol. 209:5687–704
    [Google Scholar]
  133. 133.
    Ungricht R, Kutay U 2017. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 18:4229–45
    [Google Scholar]
  134. 134.
    Vollmer B, Lorenz M, Moreno-Andrés D, Bodenhöfer M, De Magistris P et al. 2015. Nup153 recruits the Nup107–160 complex to the inner nuclear membrane for interphasic nuclear pore complex assembly. Dev. Cell 33:6717–28
    [Google Scholar]
  135. 135.
    Vollmer B, Schooley A, Sachdev R, Eisenhardt N, Schneider AM et al. 2012. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J 31:204072–84
    [Google Scholar]
  136. 136.
    von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL et al. 2015. In situ structural analysis of the human nuclear pore complex. Nature 526:7571140–43
    [Google Scholar]
  137. 137.
    Von Appen A, Beck M 2016. Structure determination of the nuclear pore complex with three-dimensional cryo electron microscopy. J. Mol. Biol. 428:102001–10
    [Google Scholar]
  138. 138.
    Walther TC, Askjaer P, Gentzel M, Habermann A, Griffiths G et al. 2003. RanGTP mediates nuclear pore complex assembly. Nature 424:6949689–94
    [Google Scholar]
  139. 139.
    Webster BM, Colombi P, Jäger J, Lusk CP 2014. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell 159:2388–401
    [Google Scholar]
  140. 140.
    Wente SR, Blobel G 1993. A temperature-sensitive NUP116 null mutant forms a nuclear envelope seal over the yeast nuclear pore complex thereby blocking nucleocytoplasmic traffic. J. Cell Biol. 123:2275–84
    [Google Scholar]
  141. 141.
    Wente SR, Rout MP 2010. The nuclear pore complex and nuclear transport. Cold Spring Harb. Perspect. Biol. 2:10a000562
    [Google Scholar]
  142. 142.
    Werner A, Flotho A, Melchior F 2012. The RanBP2/RanGAP1∗SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol. Cell 46:3287–98
    [Google Scholar]
  143. 143.
    Wozniak RW, Bartnik E, Blobel G 1989. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J. Cell Biol. 108:62083–92
    [Google Scholar]
  144. 144.
    Yasuhara N, Yamagishi R, Arai Y, Mehmood R, Kimoto C et al. 2013. Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev. Cell 26:2123–35
    [Google Scholar]
  145. 145.
    Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP 2000. Role of SUMO-1-modified PML in nuclear body formation. Blood 95:92748–52
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115308
Loading
/content/journals/10.1146/annurev-biophys-052118-115308
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error